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Abstract

In genetic association studies outcome dependent sampling is
often used in order to increase power. When analyzing the data,
correction for the ascertainment scheme generally has to be made
to avoid bias. Such correction is however not available in standard
statistical methods when the data structure and/or the ascertain-
ment scheme is complex. In this report three simulation based
approaches that can be used for correction of known ascertain-
ment schemes are described. These methods provide parameter
estimates and are flexible in terms of what statistical models and
ascertainment schemes can be handled. Some simulations are
conducted to evaluate the methods.
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Notation

A Ascertainment indicator

AA,Aa, aa Genotype outcomes

df Degrees of freedom

G Genotype score (exposure)

H0 Null hypothesis

HA Alternative hypothesis

L Likelihood

l Log likelihood

M Number of simulated observations

n Sample size

P Probability

Ph Phenotype (outcome)

w Weight

Y Data

α Significance level

β0X Intercept for X

βX1X2 Effect of X1 on X2

θ True parameter value

θ′ Assumed parameter value or starting value

θ̂ Estimated parameter value

π Probability of success

σ Standard deviation
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Abbreviations

BMI Body mass index

DNA Deoxyribonucleic acid

EM Estimation maximization

HWE Hardy Weinberg equilibrium

OR Odds ratio

RR Relative risk

SDPP Stockholm Diabetes Prevention Program

SEM Stochastic EM

SNP Single nucleotide polymorphism

SRS Simple random sample

TDT Transmission disequilibrium test

WHO World Health Organization
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1 Introduction

Statistical efficiency is a major concern in both study design and analysis of
data. This report is concerned with design and analysis of genetic associa-
tion studies. Typically the costs of such studies are high and statistical power
low, so making efficient use of available resources is of great importance. One
approach to increase efficiency is to assign differential ascertainment proba-
bilities according to specific characteristics of the sample units. An example
of such a scheme is case-control studies, where ascertainment probabilities
depends on disease status. The sampling scheme must however be taken into
account in the analysis. If it is not corrected for bias will generally result.

The importance of correcting for the sampling scheme when estimating pa-
rameters in human genetics studies has been known for a long time. Fisher
(1934) pointed out the need of ascertainment correction as early as 1934 and
also commented on the lack of such correction in genetic studies. When the
data structure is simple or only testing is of interest, ascertainment correc-
tion is sometimes straightforward or even not necessary, but for more complex
problems there is still no consensus of how to proceed. Unfortunately the
lack of easily accessible statistical tools to correct for ascertainment some-
times causes investigators to ignore the ascertainment scheme and perform
analysis that are statistically biased. It may also prevent the investigator
from using an ascertainment scheme that would be beneficial to the power
of the analysis.

An aim of this report is to describe the benefits of using differential ascer-
tainment probabilities in genetic association studies, and to stress the need
of flexible methods for ascertainment correction. Some background on ascer-
tainment is provided in Section 2. Different likelihoods for ascertained data
are presented in Section 2.2 and some methods to correct for ascertainment
are outlined in Section 2.3. The disadvantage of categorizing continuous
variables to facilitate analysis is discussed in Section 2.4. Section 3 contains
some background of genetic association studies. In Section 3.1 terminology
and basic concepts of genetics are described and in Section 3.2 genetic as-
sociation studies are introduced. Study design and ascertainment schemes
in genetic association studies are discussed in Section 3.3 and some com-
monly used methods to analyze association studies are presented in Section
3.4. A data-set concerning the metabolic syndrome is described in Section
3.5; this data-set was collected using a complex ascertainment scheme and is
presented in order to emphasize the need for statistical methods which can
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handle complex data structures.

A further aim of this report is to present and evaluate some estimation meth-
ods which correct for complex ascertainment. Three simulation based meth-
ods are described in Section 4. These methods can handle more general data
structures and ascertainment schemes than the methods described in Sec-
tion 2.3. In Section 4.4 some simulations which were performed to evaluate
these methods are presented. The results of these simulations are discussed
in Section 4.5.

The work in this report was inspired by sampling schemes which have been
used in genetic association studies. The methods presented in Section 4
are however not restricted to the analysis of genetic association studies, but
could be useful whenever sampling is performed in a complex manner. For
readers interested in other areas than genetic association studies it is possible
to skip Section 3 without any major loss of understanding of the statistical
reasoning.
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2 Background of ascertainment

The word ascertain means ”to discover with certainty, as through exami-
nation or experimentation” (Houghton-Mifflin-Company 1993). In statistics
ascertainment refers to measuring variables on study units. The ascertain-
ment probability is the probability for a study unit to be included in a par-
ticular sample. This probability may be the same for all units in the study
population, as in a simple random sample (SRS), or may depend on some
characteristics of the study units. In this report ascertainment probabilities
will depend on the value of the outcome variable, but not on the exposure.
Ideally the ascertainment probabilities are known, and even controlled, by the
investigator. In this report the word ascertainment refers to selection with
un-equal selection probabilities where these probabilities will be assumed to
be known to the investigator, and is considered to be distinct from situations
where subjects that are selected are not observed. Such non-response may
be the case for example when working with human volunteers, since they are
free to refuse to participate. The failure to observe data on selected units can
sometimes be handled by missing data methodology such as multiple impu-
tation, see for example Rubin & Schenker (1991) for an overview. Heckman
(1979) handles similar problems in the area of econometrics.

The concept of ascertainment was originally introduced into genetics in fam-
ily studies where selection probability typically depended on the number of
affected children in families. This sampling scheme increases the efficiency
whilst retaining a valid test, since under the null the test statistic distribu-
tion is invariant to the sampling scheme. But, as Fisher (1934) pointed out
for segregation analysis, the ascertainment scheme will bias estimates if not
accounted for. This is true for association studies as well, if the ascertain-
ment scheme is ignored in the analysis, it will generally lead to both biased
prevalence estimates, biased effect estimates and biased variance estimates.
Distributional assumptions for the residuals are also likely to be unrealistic.
In some testing situations the consequence of non-random ascertainment can
be an increased false positive rate. For an example in the genetics context
see Smoller, Lunetta & Robins (2000).

How to select subjects to increase power in genetic studies has been dis-
cussed by several authors. Morton & Collins (1998) discuss the benefits of
different approaches of how to select cases and controls in genetic association
studies. For example can cases and controls be chosen from the extremes
of the distribution, or selection probability can be decided by a combination
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of disease status and some other variable, such as age at onset of the dis-
ease, family history of the disease or some environmental exposure. What
selection scheme is optimal depends on what the relationship is between the
gene and the studied trait. Selection on extreme values of the outcome in
genetic studies has also been discussed by for example Purcell, Cherny, He-
witt & Sham (2001) who investigate optimal selection of sib-pairs for linkage
analysis, and Schork, Nath, Fallin & Chakravarti (2000) who concludes that
sampling from extremes may give substantial increase in power in studies
with unrelated individuals. Allison, Heo, Schork, Wong & Elston (1998) do
however argue that selection on extreme values is not always optimal in ge-
netic studies. In simulations they observe that under some genetic models
sampling on extremes reduces power. There may also be biological reason
for not sampling on extreme values of the outcome, sometimes there may
be reason to believe that really extreme values may be the result of rare
environmental factors, such as accidents.

In this section some background for the statistical issues of analyzing non-
randomly ascertained samples will be presented. First, in Section 2.1, some
background on sampling strategies in epidemiology will be provided. Dif-
ferent likelihoods for the ascertained data will then be presented in Section
2.2 and then some methods for ascertainment correction are presented in
Section 2.3. These methods do however only work in special cases or are
not very efficient. Continuous outcomes often complicate analysis and it is
often tempting to categorize variables to facilitate the analysis. Categorizing
continuous outcomes does however have disadvantages, such as loss of power.
In Section 2.4 the consequences of categorizing continuous outcomes are de-
scribed in more detail. Another complication in the analysis is comorbidity,
the association of diseases. The implications of comorbidity will be described
briefly in Section 2.5.

The diabetes data-set that will be presented in Section 3.5 is an example
of a situation where both continuous outcomes and comorbidity complicate
the analysis. The methods of analysis for association studies that typically
appear in the literature can not handle this level of complexity.

The statistical issues presented in this section are not specific to genetic as-
sociation studies and the section can be read without knowledge about such.
For notational coherency some notation referring to genetic terminology will
however be used, G will be used to denote exposure (genotype score) and
Ph will be used to denote outcome (phenotype). The words genotype and
phenotype will be defined in Section 3.1.
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2.1 Sampling strategies in epidemiology

Epidemiology is ”the branch of medicine that deals with the causes, distri-
bution, and control of disease in populations” (Houghton-Mifflin-Company
1993). Genetic association can be considered as a particular subclass of epi-
demiological studies. In epidemiology the outcome of interest is often a rare
disease, such as a specific kind of cancer. A simple random sample (SRS)
would thus have to be very large to attain reasonable statistical efficiency and
power. To reduce costs but maintain power a study can be designed so that
the inclusion probabilities of individuals depend in some way on their partic-
ular characteristics. The most common non-random ascertainment scheme
that is employed in epidemiology is the case-control study, where affected in-
dividuals are assigned probabilities of being ascertained that are higher than
those assigned to unaffected individuals. One advantage of the case-control
design is that under a specific statistical model the non-random ascertain-
ment scheme can be ignored at the data analysis stage without getting bi-
ased effect estimates; this is further discussed in Section 2.3. Disease status
is often straightforward to assess, as is typically the case when registers are
used for sampling from. If the disease status of subjects is unknown in the
sampling stage, another variable, that is associated with the disease, is some-
times used to determine sampling probabilities. Studies where ascertainment
probabilities are determined by more than one variable are not uncommon.

Sometimes non-random ascertainment is not a result of design but of in-
ability to sample according to a desired sampling scheme. An example of
this is when cases and controls are sampled from different populations. In
an ideal situation the study population can be chosen directly from a well
defined study base. In some countries, such as Sweden, there are population
registries that facilitate sample selection, but often such registries are not
available, or the cost of sampling from them would be too large. Cases are
sometimes sampled from hospital admissions for a specific disease, and it is
then very difficult to define the study base in order to select controls. A
variant of the case-control study that is often used to avoid selection bias
is the matched case-control study, where cases and controls are matched in
pairs or bigger groups on the basis of some characteristic of the subjects.
Common matching variables in epidemiology are gender and age. Ethnicity
is a relevant matching variable in genetic studies if available. One way to
match for ethnicity is to choose controls within the same family as the case.
The matching does always have to be taken into account in the analysis and
it is not possible to estimate the effect of a matching variable. A problem
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in case-control studies is that controls are often chosen from patients having
other diseases, meaning a discovered disease marker could as well be a marker
for not having the other disease. There is also the possibility that there is
differential non-response in for example different ethnical groups. Since non-
response often is larger in controls than in cases this can also introduce bias.
Non-random sampling due to anything but a planned and well-documented
sampling scheme can not be corrected for by statistical analysis. The impor-
tance of documentation of the sampling procedure should be stressed since
there is often neither practical nor economical reason to prevent doing this,
yet it is often not done.

2.2 Likelihoods of data under non-random ascertain-
ment

In likelihood-based analysis of data, ascertainment can be handled in a
number of different ways: four different likelihoods for data with outcome-
dependent ascertainment are written below as (2.1)-(2.4). The genetic ex-
posure is denoted G, the outcome is denoted Ph, and A is an indicator
variable signifying whether ascertainment has/has not occurred. The con-
ditional likelihood, (2.4), is appropriate only for discrete outcomes whilst
likelihoods (2.1), (2.2) and (2.3) are appropriate for continuous as well as
discrete outcomes.

Prospective likelihood

L(θ; Ph, G) = P (Ph|G,A = 1, θ) (2.1)

Retrospective likelihood

L(θ; Ph,G) = P (G|Ph,A = 1, θ) = P (G|Ph, θ) (2.2)

Joint likelihood

L(θ; Ph, G) = P (Ph, G|A = 1, θ) (2.3)
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Conditional likelihood for matched data

L(θ; Ph, G) = P (Ph|G,
∑

Ph, θ) (2.4)

Kraft & Thomas (2000) compare the efficiency of the different likelihoods for
family based case-control studies and conclude that the conditional likelihood
is the least efficient of the four, and that the joint likelihood is the most
effective. The relative efficiency of the prospective and the retrospective
likelihoods varied with data structure and genetic model. Kraft & Thomas
(2000) also describe properties of the likelihoods: the prospective likelihood
and the joint likelihood demand explicit modelling of the ascertainment rule
while the conditional likelihood and the retrospective likelihood do not. For
the retrospective likelihood this is however only true when the ascertainment
probability does not depend on the gene or on modelled covariates. Another
disadvantage of the retrospective likelihood is that it is not always possible to
obtain parameter estimates of the effect of exposure on outcome. It is possible
to write the retrospective likelihood in terms of P (Ph|G, θ) as in (2.5) but
the model is only identifiable under specific parameterizations (Chen 2003).

P (G|Ph, θ) =
P (Ph|G, θ)P (G|θ)

P (Ph|θ) =
P (Ph|G, θ)P (G|θ)∑
G P (Ph|G, θ)P (G|θ) (2.5)

The conclusion is that, in general, the two likelihoods, (2.1) and (2.3), that
require information about the ascertainment scheme, are unfortunately the
only ones that are flexible enough to handle complex data structures and
complex ascertainment schemes.

2.3 Some special cases where correction for non-random
ascertainment is straightforward

For binary outcome data odds ratios (OR) are commonly used to analyze data
under non-random ascertainment. An odds ratio for exposure i compared
with a reference exposure j is defined as

ORi =
πi

1−πi
πj

1−πj

(2.6)
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where πi is the probability of success for exposure i. If there is differential
ascertainment probabilities depending on outcome odds ratios will still give
unbiased estimates. If we denote probability of success for exposure i in the
ascertained sample π?

i = πiP (A = 1|success) then the odds ratio calculated
from the sample will be

π?
i

1−π?
i

π?
j

1−π?
j

=

πiP (A=1|success)
(1−πi)P (A=1|failure)

πjP (A=1|success)

(1−πj)P (A=1|failure)

=
πi

1−πi
πj

1−πj

(2.7)

which is the same as the population odds ratio.

Binary outcomes can also be modelled with logistic regression. The logistic
link models the odds and shares the odds ratios convenient property of giving
unbiased effect estimates in case-control sampling (Prentice & Pyke 1979).
The intercept is biased under non-random ascertainment even when a logistic
link is used and can thus not be used to estimate prevalence of disease. The
logistic link is the only link function that will give unbiased effect estimates
without taking the ascertainment into account. Kagan (2001) proves this
by comparing the likelihood under simple random sampling (2.8) with the
likelihood under an ascertainment scheme (2.9), for both of these sampling
schemes a prospective likelihood is applied.

P (Ph|G = g) =
n∏

i=1

{h(β0Ph + βGPh × g)}Phi{(1− h(β0Ph + βGPh × g)}1−Phi

(2.8)

P (Ph|G = g, A = 1) =
P (A = 1|Ph = ph)P (Ph|G = g)

P (A = 1)

=
n∏

i=1

{h(β0Ph + βGPh × g)}Phi{r(1− h(β0Ph + βGPh × g)}1−Phi

h(β0Ph + βGPh × g) + r(1− h(β0Ph + βGPh × g))
(2.9)

where h(β0Ph+βGPh×g) is the inverse of the link function and r = P (A=1|Ph=0,g)
P (A=1|Ph=1,g)

.

Kagan (2001) concludes that these two likelihoods are equal, except for the

intercept, if and only if the link function is of the form h(u) = exp(λ+µu)
1+exp(λ+µu)

for some λ and µ. If λ = 0 and µ = 1 this gives h(β0Ph + βGPh × g) =
exp(β0Ph+βGPh×g)

1+exp(β0Ph+βGPh×g)
. The bias of the intercept will be − 1

µ
log(r).

Neuhaus (2000) describes how link functions can be adjusted to correct for
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ascertainment in binary regression models. The correction is based on mod-
elling a prospective likelihood as in (2.1). The link function is corrected by
replacing the mean by a function of the mean and the sampling probabili-
ties. Neuhaus (2002) also specify what the bias will be when ascertainment
is ignored for some common non-logistic link functions, and conclude that
this bias can be substantial.

A simple, and more general, way to get unbiased estimates from data under
non-random ascertainment would be to weigh each observation with wi = 1/
(inclusion probability of subject i), see for example Armitrage & Colton
(1999). In likelihood terms the weighted log likelihood contribution of indi-
vidual i then is

wi log(L(θ; yi))

This method works for continuous outcomes as well as categorical. Weighting
will however not give fully efficient results since the observations contribute
with an unequal amount of information to the estimates.

Example of weighting: Linear regression

Since using the usual estimation equation for linear regression

∑

i

(Phi − (β0Ph + βGPhgi)) (2.10)

will give biased results in data with non-random ascertainment, a weighted
regression solving a weighted estimating equation is used:

∑

i

((Phi − (β0Ph + βGPhgi))× wi) (2.11)

where wi is proportional to 1/(inclusion probability of subject i). This will
give unbiased results but is not fully efficient since highest efficiency of a
weighted regression is obtained when wi is proportional to 1/(variance of
subject i), see for example Armitrage & Colton (1999). If the variance is
equal for all individuals, then the efficiency is highest if all weights are also
equal. ¥
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2.4 Disadvantages of categorizing continuous variables

Continuous variables are often categorized for computational simplicity, re-
duced cost, or due to lacking understanding of nature of the variable of in-
terest. Categorization is very common in case-control studies since treating
the outcome as binary allows a logistic regression model to be used without
further ascertainment correction. However, there is an information loss in the
categorization of continuous variables and this often leads to an unacceptably
high power loss. Cohen (1983) compares the product-moment correlation be-
tween two normally distributed variables with the correlation when one of
the variables is categorized and concludes that the reduction in correlation is
about 20 percent when the data is split at the median, and even larger when
the categories are of unequal size. If more than one variable are dichotomized
the reduction in correlation follows a more complicated pattern and Cohen’s
formula should not be used (Vargha, Rudas, Delaney & Maxwell 1996). The
reduction in efficiency has also been investigated in applications, for example
by Neale, Eaves & Kendler (1994) who compare the power of continuous and
categorized traits in genetic twin studies.

If the dichotomized variable is a confounder, a variable that affects the out-
come of interest and that is also associated with the exposure, the information
loss due to the dichotomizing can lead to insufficient confounder correction.
Insufficient correction due to dichotomizing is discussed by Vargha et al.
(1996).

Since the focus of this report is on ascertainment, it would be of interest to
see how efficiency is affected by categorization when data is non-randomly
ascertained. If individuals are chosen from the extremes of the outcome dis-
tribution, as discussed by for example Morton & Collins (1998), dichotomiza-
tion is not likely to make a big difference, since there is little variation within
the groups. If individuals are instead chosen from the whole range of the
outcome variable the result of categorizing is less obvious. To illustrate how
dichotomizing outcomes can affect power in an association study with non-
random ascertainment the following example is considered.

Example: Dichotomizing an underlying continuous phenotype

This example is designed so that the statistical model has similar structure
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to that commonly estimated in genetic association studies. Some genetic vo-
cabulary will be used to complement the statistical explanation. The genetic
concepts are defined in Section 3.1.

The model is represented by Figure 2.1 where arrows indicate a directed
causal relationship.

G Ph A

Figure 2.1: Data with ascertainment on phenotype

An explanatory variable, G, is assumed to be categorical and an outcome,
Ph, is assumed to be conditionally normally distributed. Ascertainment, A,
is dependent on the value of Ph according to a scheme described below. The
explanatory variable has three categories based on values from a binomial
distribution Bin(2,0.2). In genetic vocabulary this could be a biallelic SNP
with an allele frequency of 0.2. The categories of the explanatory variable
are then genotypes AA,Aa, aa. The relative effect of three genotypes on the
outcome variable determine the genetic model. Here the scores that are used
are G = (0, 0, 1) for a recessive genetic effect and (0, 0.5, 1) for an additive
genetic effect. For a dominant effect (0, 1, 1) are used.

The outcome Ph is assumed to be conditionally normally distributed where
the mean depends on G, Ph ∼ N(βGPh × g, 1) where βGPh = 0.5. In genetic
terms we would call Ph a phenotype.

Individuals that have a phenotypic value over some cut-off are considered
cases and all other individuals are controls. We suppose that the ascertain-
ment scheme is such that there is an equal expected number of cases as
controls regardless of cut-off, that is

P (A = 1|Ph < cut-off) =
(1− P (Ph < cut-off))

P (Ph < cut-off)
(2.12)

and

P (A = 1|Ph ≥ cut-off) = 1. (2.13)
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Simple random samples are also considered. The cut-off values are described
in terms of quantiles, that is the proportion of the data that are controls for
a SRS, P (Ph < cut-off).

The normal distribution of the phenotype is used for computational simplic-
ity although in real data phenotypes do not always have this characteristic.
It is also worth noting that if the genetic data is from a marker that is asso-
ciated with the gene rather than a coding part of the gene, the phenotypes
given the genetic data will be a mixture of distributions, as a result of the
misclassification in the genotype. It is likely that the reduction in power due
to categorization will be smaller when the data is not normally distributed
and the results below should be interpreted with that in mind.

Power is calculated for detecting a genetic effect on the phenotype for both
continuous phenotypes and dichotomized phenotypes. The power is calcu-
lated for a log likelihood ratio test with one degree of freedom, T 2 = 2[lA− l0]
where l0 is the log likelihood under the null hypothesis (βGPh = 0) and lA the
log likelihood under the alternative (βGPh 6= 0). Since the data has a simple
structure, modelling of the joint likelihood, defined in (2.3), is possible. For
the details of how the power calculations were performed, see Appendix A.

In Figure 2.2 it can be seen that the power using the dichotomized phenotype
is lower than using the continuous. This reduction in power is seen for each
of the applied ascertainment schemes but the difference is most pronounced
in the simple random sample, especially when a high cut-off is used. For
both continuous and dichotomized phenotypes there is a gain in power in
using the differential ascertainment probabilities compared with the SRS.
This gain is larger the more extreme cut-off point is chosen. For high cut-off
points an ascertainment sample with a dichotomized phenotype will give a
higher power than a continuous variable in a SRS, but for a lower cut-off this
will not be the case. ¥

2.5 Comorbidity

A complication when correcting for ascertainment is comorbidity, the associ-
ation of two or more diseases. Robins, Smoller & Lunetta (2001) argue that
if comorbidity is present in data with non-random ascertainment it can result
in non-valid tests. Robins et al. (2001) use causal directed acrylic graphs to
show when tests are valid/not valid, and to illustrate how conditioning will
affect the validity of tests. The tests discussed are TDT tests (Terwilliger &
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Ott 1992), which are tests of whether parents genetic material is inherited in
different proportions in cases and controls.

An example of comorbidity is the metabolic syndrome which will be described
in Section 3.5. In the metabolic syndrome there are many outcomes that may
affect each other in different extents and directions. Here we will however
only consider an extremely simplified model of the metabolic syndrome, as
in Figure 2.3, incorporating only BMI (body mass index) and plasma glucose
level. We will also assume that there is no causal effect of plasma glucose
level on BMI, but only of BMI on plasma glucose level. Let the genotype
score G affect both outcomes and let ascertainment probability A depend on
both outcomes.

Plasma Glucose

G A

BMI

Figure 2.3: Data with comorbidity

Now consider a testing situation, investigating if there is an effect of the
gene on plasma glucose. Figure 2.4 illustrates how the model would look
without such an effect. Even when there is no causal effect of the gene on
plasma glucose the gene and plasma glucose will be dependent through BMI,
so we will have to condition on BMI to obtain a valid test for the direct
relationship.

Plasma Glucose

G A

BMI

Figure 2.4: Data under H0: No effect of G on plasma glucose

If we instead are testing if there is a causal effect of the gene on BMI the
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situation is more complicated. If there is no such effect, as in Figure 2.5,
the gene and BMI will be dependent through plasma glucose and the ascer-
tainment scheme. Conditioning on plasma glucose is however not a solution,
such a conditioning would instead introduce dependence between the gene
and BMI. In situations like this other methods could instead be considered,
such as modelling the ascertainment corrected joint or prospective likelihood
as suggested in Section 2.2.

Plasma Glucose

G A

BMI

Figure 2.5: Data under H0: No effect of G on BMI
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3 Background of genetic association studies

3.1 Terminology and basic concepts of genetics

In this section some fundamental concepts concerning the structure of DNA,
chromosomes and genes, which are relevant to the central theme of this re-
port, are described.

The genetic code consists of strands of nucleotides, which consists of phos-
phate, sugar and bases. The bases in the nucleotides bind in pairs so that
the nucleotides build a double helix that form a chromosome. There are four
bases in the DNA, adenine (a), guanine (g), cytosine (c) and thymine (t).
In the base-pairs adenine always binds to thymine on the opposite strand
and guanine binds to cytosine. The human genome consists of more than
3,000,000,000 base-pairs, see for example Strachan & Reed (1999). Triplets
of these base pairs code for the 20 amino acids that are used to build the
about 90,000 different kinds of proteins that our bodies produces. A seg-
ment of bases that code for a protein is called a gene. Most gene products
in the human genome are identical in all individuals. Sometimes when gene
products vary between individual some variants are harmful and may cause
disease. In this report statistical methods that can be used for identifying
and characterizing genes with disease causing variants are considered.

Humans have 23 chromosome pairs. A location on a chromosome is called
a locus (pl. loci). The locus can be either a single nucleotide or a string of
nucleotides. Different variants that are present in the population at a specific
locus are called alleles, if there are only two variants the locus is biallelic.

When an individual inherits DNA from his/her parents one copy of each
chromosome is inherited from each parent. This means that for every in-
dividual there are two alleles at each locus, the number of a specific allele
observed at a locus is thus 0, 1 or 2. The combined outcome of the two alleles
at a locus is called a genotype. The two allele outcomes are often assumed to
be independent and the number of a specific allele at a biallelic locus can be
considered to be binomially distributed with two trials, p denoting the popu-
lation allele frequency. In the case of more than two alleles genotypes will be
multinomially distributed under independence. The independence property
is referred to as Hardy-Weinberg equilibrium (HWE). It can be shown that
genotype frequencies stabilize at Hardy-Weinberg proportions after a single
mating, starting with any genotype frequencies that are equal in males and

21



females if assumptions are met about of infinite population size, discrete gen-
erations and no selection, migration or mutation. Exceptions to HWE can
result if a sample is derived from a mixture of different populations (popu-
lation stratification), if there is non-random mating or if the probability of
ascertainment or survival is not independent of genotype.

If a genotype consists of two copies of the same allele it is homozygous and
otherwise heterozygous. Traits resulting from genotypes are called pheno-
types. In this report the word phenotype will be used to indicate an ob-
served variable in a broad sense. The phenotype can for example appear in
a causal pathway for some final endpoint. Phenotypes that are considered fi-
nal endpoints could be for example disease status and phenotypes in a causal
pathway of the endpoint could for example be produced level of a specific
protein.

When an individual inherits a chromosome from a parent it is not one of the
two parental copies, each parental chromosome recombine on average about
1.5 times, see for example Strachan & Reed (1999), so that the inherited
chromosome is a patchwork of the parental chromosomes. The location at
which parental chromosomes recombine differ from generation to generation
so that after several generations only small fragments of the original chro-
mosomes remain and only bases that are located close together are inherited
together. Recombination does not occur uniformly over chromosomes and
distances between loci are often described in terms of recombination rather
than physical distance, see for example Strachan & Reed (1999). Dependence
between loci is called linkage disequilibrium.

It is typically not feasible to collect information on whole areas of the genome.
Loci are instead selected which have previously been confirmed to be poly-
morphic, that is, where there exists variation between individuals. Areas that
are segregating, but not necessarily coding for the gene of interest, are called
genetic markers. When searching for a gene the hope is that markers are
either in a coding part of the gene or are in linkage disequilibrium with the
gene. Commonly used genetic markers are single nucleotide polymorphisms
(SNPs) and microsatellites. A SNP is a variation between individuals in a
single nucleotide base. The mapping of SNPs has been in rapid progress
and currently approximately 2.7 million SNPs have been mapped (Carlson,
Eberle, Rieder, Smith, Kruglyak & Nickerson 2003), most having been dis-
covered in recent years. Microsatellites consist of tandem repeats of between
one and five base-pairs. Microsatellites are more informative than SNPs since
there are many possible allele but there are not as many microsatellites in
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the genome as there are SNPs, see for example Strachan & Reed (1999).

Combinations of alleles from different loci which reside on the same chromo-
some are called haplotypes. Typically genetic markers are measured one-at-a-
time so that it is not always possible to infer haplotype phase with certainty,
that is, which alleles belong together on the same chromosome. When in-
formation about parental phenotype is available phase can sometimes be
inferred with certainty by observing which combinations are possible to in-
herit. Otherwise when phase is unknown the estimation of haplotypes can
be viewed as a missing data problem and classical statistical methods can be
used, see for example Excoffier & Slatkin (1995).

The way in which phenotype is related to genotype is referred to as pene-
trance. In the early days of genetics a few traits where found to be determined
by single uncommon genes with full penetrance, that is the gene fully deter-
mined the phenotype. Genes like these are often called Mendelian after the
monk Gregor Mendel who is often referred to as the father of genetics. Mendel
studied traits in Moravian peas, such as color and texture (Mendel 1865),
which are typical examples of traits that are determined by full penetrance
genes. The full penetrance genes are relatively easy to identify since they
create recognizable inheritance patterns in families and the gene locations
were often found via linkage analysis. Linkage analysis is based on samples
of related subjects and information about gene location is obtained by ob-
serving if the marker and the phenotype is inherited together in relatives.
Most genes in humans do however not have full penetrance. A trait is called
complex if multiple genes and/or environmental factors determine the trait.
To be of clinical relevance a gene that affects a complex trait typically has
to have a disease predisposing variant with a higher allele frequency of the
than a full penetrance gene does. The relative efficiency of the study designs
depend among other things on frequency of the disease causing allele and
the penetrance. Rare alleles with a big effects are detected most efficiently
in related individuals while for common, low penetrance genes, unrelated
individuals are well suited.

As mentioned there are three possible genotypes, (AA,Aa, aa), at a single
biallelic loci. If AA and Aa have the same effect on the phenotype the genetic
model is referred to as recessive while if Aa and aa have the same effect on
the phenotype the genetic model is referred to as dominant. There are also
models where Aa has an intermediate effect of AA and aa. Such a genetic
model is called co-dominant. In statistical analysis the co-dominant model
will also be referred to as an additive or multiplicative model, depending
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on how effects are parameterized. To avoid making assumptions about the
nature of the relationship between genotype and phenotype two variables
can be used to describe the dependence instead of one. In this report the co-
dominant model will be assumed most of the time but the methods described
can be used for any genetic model.

3.2 Genetic association studies

This report covers some methods which are potentially of use for fine-mapping
and characterization of genetic factors. We focus on what are known as ge-
netic association studies. For a review of genetic association studies see
Hirschhorn, Lohmueller, Byrne & Hirschhorn (2002). We concentrate on
studies of unrelated individuals, but will discuss the use of related individu-
als in Section 3.3.1. We do not cover linkage analysis, which is more relevant
for mapping genes to larger regions of the genome. The aim of genetic as-
sociation studies is to find or characterize relationships between genes and
phenotypes. The analysis is carried out by comparing phenotype distribu-
tions between persons with different genotypes. Typically the exact location
of interest on the genome is not known and genetic markers, such as SNPs,
are measured instead of the gene of interest.

To interpret the results of an association study it is important to understand
which mechanisms can lead to association between marker and phenotype.
The most desired reason is that the marker is causally related to the phe-
notype. It is also possible that the marker is in linkage disequilibrium with
a causal gene. There may also be sources of bias in the data, population
stratification, which was mentioned in Section 3.1, is an example of this.
Comorbidity, which was discussed in Section 2.5 may also bias the analysis.
Some of the sources of bias in epidemiological studies, like recall bias, differ-
ential recollection of events in cases and controls, are however not an issue,
since genotype is constant over life and since measurement is not affected by
subjective judgement.

3.3 Study design of genetic association studies

In recent years the fast development in the technology for analyzing genetic
samples has created great optimism for finding and characterizing genetic
causes to diseases. Statistical power and precision of genetic studies of com-
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plex diseases in humans are however typically low, since the gene of interest
is only one of several possible reasons for getting the disease. Genetic factors
are likely to be individually of small importance and as a consequence it is
important that study designs are well thought through. In gene characteri-
zation estimates of gene effects are relevant and it may also be of importance
to disentangle the effect of related phenotypes and environmental factors to
understand the biological effect of the gene. If gene characterization is of
interest, the study should be designed with this in mind so that power is
calculated for realistic scenarios, all variables of interest are measured and
so that the structure of the data allows estimation of effects. How sampling
strategies can be used to increase power was described in Section 2.1 and
in Section 3.3.1 designs with unrelated individuals will be compared with
designs with related individuals.

3.3.1 Related or unrelated individuals?

The difficulty of gene characterization and identifying genetic association are
clearly apparent, as is pointed out by for example Terwilliger & K.M. (2003).
The structure of the data material will determine how well these difficulties
are dealt with, in particular it is important if the selected individuals are
known to be related to each other or if they are ’unrelated’ subjects from the
population.

If the studied population consists of more than one ethnical subgroup popu-
lation stratification may be a problem in unrelated individuals. Bias can be
introduced by population stratification if the subgroups differ in prevalence
of the studied disease and in allele frequency of the studied marker even
though the marker is not in linkage disequilibrium with the gene. In family
data population stratification will not pose a problem since the information
about association between gene and trait comes from within families.

Practical considerations will also often affect the choice of design. In fam-
ily based studies it is desirable to have multiple affected individuals in each
family. If the phenotype is complex with multiple measurements this is prac-
tically difficult to obtain. For late onset diseases it is also often hard to find
family data since the parents and siblings of the affected individual are un-
likely to be alive. On the other hand, relatives of persons affected by a disease
are often more willing to participate in a study than unrelated individuals.

In reality persons labelled as unrelated do have common ancestors, generally
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so many generations back that the nature of the kinship is not known. In
family data the shared regions in the genome will be large since few recombi-
nation events will have happened in closely related individuals while in unre-
lated individuals the shared regions will be small since many recombination
events will have occurred in the chromosomes since the common ancestors.
For that reason related individuals studies are used to search big areas for
a gene location while unrelated individuals are used for fine-mapping when
candidate areas are already identified.

In family studies effect estimates are generally not meaningful since subjects
are on purpose sampled in such a manner that individuals that are likely to
have a large gene effect are included in the study (Burton 2003). In unre-
lated individuals effect estimates can be computed but for multiple-testing
reasons there is reason to be cautious about the interpretation of the results
if combined with testing. If several studies investigate the same effect, the
studies that by random had the highest effect estimates are most likely to get
significant results. Given that almost only significant results get published
it is likely that size of the effects in published studies are somewhat inflated.

3.4 Statistical analysis of association studies

In this section some fundamentals of statistical methods used in the analysis
of association studies are briefly described. Let the probability of disease in a
case-control setting be πAA, πAa and πaa, given genotype (AA, Aa, aa). The
effect of the genotype on the risk of disease can for example be described
either with a relative risk or an odds ratio. For both measures a reference
group has to be chosen. If we let AA be the reference group the relative risk
for genotype kl compared with the reference is

RRkl =
πkl

πAA

(3.1)

for πkl = probability of disease given genotype kl. A multiplicative model in
terms of relative risks would mean RRaa = RR2

Aa The odds ratio, which was
mentioned in Section 2.3, is in similar notation as the relative risk

ORkl =
πkl

1−πkl

πAA

1−πAA

. (3.2)
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Asymptotic confidence intervals can be calculated for the odds ratios if a
normal distribution is assumed for the logarithm of the odds ratio (Balding,
Bishop & Cannings 2001). While relative risk is a somewhat more intuitive
measure, odds ratios are convenient since the estimate of the odds ratio will
be unbiased in a case-control setting, as described in Section 2.3. If the
disease is rare for all genotypes odds ratios in the sample will be give very
similar values to relative risks in the population (Balding et al. 2001).

Discrete phenotypes are often modelled with logistic regression. Most com-
monly a logistic link function is used but other link functions can be consid-
ered, for example if the outcome is a dichotomized normal variable a probit
link would be appropriate. The advantage of the logistic link in case-control
data was discussed in Section 2.3. When phenotypes are continuous stan-
dard statistical methods such as linear regression are often used, but since
these methods require ascertainment correction continuous phenotypes are
sometimes categorized to avoid this problem. This approach is however not
efficient, as was discussed in Section 2.4.

Another way of testing for association is to use a log likelihood ratio test
to test if a null hypothesis, such as H0 : βGPh = 0 where βGPh is the effect
of the gene of the phenotype, can be rejected in favor of some alternative
hypothesis, such as HA : βGPh 6= 0. The test statistic is of the usual form

2[lA − l0] (3.3)

where the log likelihoods lA and l0 are computed using the maximum likeli-
hood estimates of the parameters. In the alternative hypothesis all param-
eters are estimated while under the null the parameters hypothesized about
are fixed. The test statistic will be asymptotically chi-square distributed
with degrees of freedom equal to the number of parameters used to describe
the genetic effect (Balding et al. 2001).

3.5 Example of complex ascertainment in genetic as-
sociation studies of unrelated individuals

There are numerous examples of genetic association studies where a complex
ascertainment scheme has been used. Here one such study, concerning the
metabolic syndrome, will be described briefly. The work presented in this
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report is inspired by this data-set and the goal of the evaluation of the meth-
ods in Section 4 is to find ways in which this kind of data can be analyzed in
practice. The intention has been that the methods should be flexible enough
to handle both discrete and continuous variables, correction for confounding
and complex ascertainment.

The metabolic syndrome consists of a number of co-dependent phenotypes
like insulin production and sensitivity, glucose levels, cholesterol levels, BMI,
body fat distribution and hypertension. Diseases closely connected with these
phenotypes are for example diabetes and coronary heart disease. The depen-
dence between the phenotypes is complex and yet not fully disentangled, they
may both affect each other and they may have common causes. Common
causes could be for example fetal malnutrition or genetic effects (Stern 1995).
While some relationships between phenotypes are likely to be causal, like the
effect of BMI on diabetes, other are more controversial. Jarrett (1984) ar-
gue that while there is a statistical association between diabetes and risk for
coronary heart disease it is more likely that the two diseases have a common
cause than that diabetes affect the risk for coronary heart disease. Lifestyle
factors such as diet and exercise also have a big impact on the metabolic
syndrome. Since diabetes and coronary heart disease are common diseases
research about the metabolic syndrome is of high relevance to public health.

One study concerning the metabolic syndrome is the Stockholm Diabetes
Prevention Program (SDPP). For a more detailed description of the SDPP
see for example Agardh, Ahlbom, Andersson, Efendic, Grill, Hallqvist, Nor-
man & Ostenson (2003) or Gu, Abulaiti, Ostenson, Humphreys, Wahlestedt,
Brookes & Efendic (2004). A part of the SDPP is to study genes which are
believed to affect the metabolic syndrome and also to describe the effect of
the genes on the different phenotypes to increase understanding of the bi-
ological mechanisms. As indicated in Figure 3.1, ascertainment probability
depended on BMI, fasting glucose and 2 hour fasting glucose. The selection
on the two last variables was done in two stages, first persons with known
diabetes or impaired glucose tolerance were excluded since they were likely
to be on medication affecting these values, then a selection was made over-
sampling persons that qualify for a diabetes diagnosis or an impaired glucose
tolerance diagnosis based on measurements made in the study. Fasting glu-
cose and 2 hour fasting glucose are used to diagnose diabetes and impaired
glucose tolerance according to the WHO diagnostic criteria for diabetes, a
plasma glucose level of at least 7.8 or a 2 hour fasting glucose level of at
least 11.1 gives a diabetes diagnosis and while a fasting glucose level of less
than 7.8 combined with a 2 hour fasting glucose level between 7.8 and 11.1
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Figure 3.1: Study on the metabolic syndrome

gives an impaired glucose tolerance diagnosis. For controls there was an
over-sampling on persons with a low BMI. Using this ascertainment scheme
500 controls, 339 persons with impaired glucose tolerance and 106 persons
with diabetes were selected. Fasting plasma glucose level and 2 hour plasma
glucose level are measured by separating plasma from blood taken from a
fasting subject and then measuring the amount of glucose in the plasma,
and BMI is calculated by dividing body weight in kilo by the squared height
in meters. Other phenotypes, for example fasting insulin and 2 hour fasting
insulin were also of interest in the analysis.
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4 Estimation under complex ascertainment

schemes

In this section some methods that can be used for estimation of parameters in
statistical models, accounting for ascertainment, will be described. We will
here assume that the probability that a unit is ascertained is known given
phenotype, but typically this probability is estimated based on external in-
formation, for example registry data. As before, we use G to denote genotype
score, Ph to denote phenotype and A to represent an indicator variable sig-
nifying that ascertainment has/has not occurred. Ph can be multivariate.
We assume that the distribution of Ph conditional on G is parameterized
by θ and that the probability of ascertainment is independent of θ given
the observed data, that is P (A = 1|G,Ph, θ) = P (A = 1|G,Ph). Further-
more, we assume that ascertainment is independent of G conditional on Ph,
P (A = 1|G,Ph) = P (A = 1|Ph). The extension to let ascertainment de-
pend on G is straightforward. We represent the dependence graphically as
in Figure 4.1.

G Ph A

Figure 4.1: Data with ascertainment on phenotype

Where the likelihood of the data under non-random ascertainment is mod-
elled we will deal with the joint likelihood, (2.3), rather than the prospective
likelihood, (2.1). The methods described below are not restricted to the joint
likelihood but it is convenient to model the data jointly for treatment of miss-
ing data on G, via the EM algorithm (Dempster, Laird, & Rubin 1977). An
example of when this is of importance is in the estimation of haplotypes
(Excoffier & Slatkin 1995). The possibility to extend the methods to handle
haplotype estimation will however not be investigated in this report.

The joint likelihood of the data (G,Ph) that is ascertained is

L(θ) = f(G,Ph|θ, A = 1) =
P (A = 1|Ph)f(G,Ph|θ)

P (A = 1|θ) (4.1)
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which corresponds to the log likelihood

log(L) = log(P (A = 1|Ph)) + log(f(G, Ph|θ))− log(P (A = 1|θ)) (4.2)

where log(P (A = 1|Ph)) does not depend on the model parameters. The
complicated form of this likelihood makes standard likelihood-based estima-
tion difficult. The computational problem is essentially that P (A = 1|θ) =∫

P (A = 1|Ph)f(G, Ph|θ)dPh is typically intractable, which is for example
the case when Ph, conditional on G, is normally distributed.

One way to solve this problem is to use simulation based methods and it is
such methods that we concentrate on and describe in the sections following.
The methods described below all use simulation to correct for ascertainment
but they differ in the distribution, from which data is simulated. In what
we refer to as the stochastic EM-algorithm, (Section 4.3), the missing data
is simulated. In the data augmentation method due to Clayton (2003), (Sec-
tion 4.2), the ascertained data is simulated and in the importance sampler,
(Section 4.1), the data is simulated from the population distribution. A way
in which the stochastic EM-algorithm differs from the importance sampling
and Clayton’s method is that the stochastic EM-algorithm is an iterative
procedure while the other methods do not require to be iterated, even if it is
possible to do so.

4.1 Importance sampling

As mentioned above the difficulty in calculating the likelihood of the ascer-
tained data lies in the integration in

P (A = 1|θ) =
∫

P (A = 1|Ph)f(Ph,G|θ)dPh. (4.3)

Importance sampling (Hammersly & Handscomb 1964) is a Monte Carlo
method used for numerical integration. The basic idea is to sample from one
distribution to obtain the expectation of another. This is advantageous for

31



sampling efficiently but also when drawing samples from the target distribu-
tion is difficult. In general terms, for a random variable X which has density
f1(x), the expectation of some function of X, g(x), can be written as

µ = Ef1[g(x)] =
∫

g(x)f1dx

=
∫ f1

f2

g(x)f2dx = Ef2 [
f1

f2

g(x)] (4.4)

for f2 > 0 whenever g(x) × f1 > 0. This means that samples can be drawn
from f2 to obtain the expectation of g(x). Two possible estimates of the
expectation above are

µ̂ =

∑M
i wig(xi)∑M

i wi

(4.5)

and

µ̃ =

∑M
i wig(xi)

M
(4.6)

where w = f1

f2
and M is the number of simulated observations. For the

importance sampler to give a good approximation of f1, M should be large.
The estimate µ̂ is sometimes more effective than µ̃ but while µ̃ is unbiased
µ̂ has a bias of order 1/n, see for example Elston, Olson & Palmer (2002).
For other estimates of Ef1[g(x)] see Hesterberg (1995). The choice of f2 does
effect the efficiency of the estimates, for µ̃ the theoretically best distribution
of f2 is c|g(x)|f1 for some constant c, see for example Hesterberg (1995). If
f2 is badly chosen a large variance for the estimate may result. Ways of
choosing f2 efficiently have been proposed by for example Torrie & Valleu
(1977), Green (1992) and Geyer (1993).

We can apply the importance sampling technique to approximate P (A = 1|θ)
in (4.1). It may be advantageous if we choose a distribution to simulate from
which is close to the target distribution. One way to implement importance
sampling in this context is to draw observations from a distribution which
has the same parametric form as the target distribution f(y|θ), where Y =
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(G,Ph), but in the place of the unknown θ, use naive guesses of the values
of θ, which we call θ′. In this case P (A = 1|θ) is estimated by noting that

P (A = 1|θ) =
∫

P (A = 1|y)f(y|θ)dy =
∫

[P (A = 1|y, θ)
f(y|θ)
f(y|θ′) ]f(y|θ′)dy,

(4.7)

so that if we draw M observations from f(y|θ′) which we denote as y′1, . . . , y
′
m,

we can estimate P (A = 1|θ) using the estimator in (4.6). We then get

P̂ (A = 1|θ) =

∑M
j=1 P (A = 1|y′j)

f(y′j |θ)
f(y′j |θ′)

M
. (4.8)

As a consequence we can approximate the log likelihood contribution of in-
dividual i,

log(L) ∝ log(f(yi|θ))− log(P (A = 1|θ)), (4.9)

up to a constant, by replacing P (A = 1|θ) by (4.8), thereby obtaining

log(f(yi|θ))− log(
M∑

j=1

P (A = 1|y′j)
f(y′j|θ)
f(y′j|θ′)

). (4.10)

Since the approximation of the likelihood is expressed in terms of θ an ap-
proximation of the information matrix can be computed as minus the second
derivative of the log likelihood as usual.

It would also be possible to construct an importance sampler by drawing
from f(y|θ, A = 1) instead of f(y|θ), and basing estimation of P (A = 1|θ)
on noting that

P (A = 1|θ) =
∫

P (A = 1|y)f(y|θ)dy

=
∫

[P (A = 1|y)
f(y|θ)

f(y|A = 1, θ′)
]f(y|A = 1, θ′)dy. (4.11)
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but since the denominator, f(y|A = 1, θ′) = P (A=1|y)f(y|θ′)
P (A=1|θ′) , requires calcula-

tion of P (A = 1|θ′), it is not practical doing so. We mention this because
this is advocated as a possible approach by Clayton (2003) to correct for
ascertainment. Clayton introduces this approach in the framework described
in Geyer & Thompson (1992) where what is essentially importance sampling
is used in the approximation of exponential family likelihoods, although it is
described as Monte Carlo likelihood approximation. Clayton uses the nota-
tion from this paper and derives a likelihood that also incorporates correction
for ascertainment. In Clayton’s likelihood P (A = 1|θ) is written as

c(θ) = P (A = 1|θ) =
∫

y∈A
f(y|θ)dy =

∫

y∈A
[
f(y|θ)
f(y|θ′) ]f(y|θ′)dy (4.12)

which is the same as (4.11), when ascertainment probabilities are defined to
be 0/1 only, since

(4.11) =
∫

[P (A = 1|y)
f(y|θ)

f(y|A = 1, θ′)
]f(y|A = 1, θ′)dy

=
∫

[P (A = 1|y)
f(y|θ)

P (A=1|y)f(y|θ′)
P (A=1)

]
P (A = 1|y)f(y|θ′)

P (A = 1)
dy

=
∫

[P (A = 1|y)
f(y|θ)
f(y|θ′) ]f(y|θ′)dy =

∫

y∈A
[
f(y|θ)
f(y|θ′) ]f(y|θ′)dy = (4.12).

Based on this Clayton then uses

∑M
j=1

f(yj |θ)
f(yj |θ′)

M
(4.13)

as an estimator of P (A = 1|θ). This estimator does however not concur with
the estimator (4.6) since the sampling distribution f2 was f(y|A = 1, θ′)
and not f(yj|θ′), as suggested by using (4.13) as an estimator of (4.12).
Clayton’s data augmentation method will be used in this report (see Section
4.2), but we will use a matched case-control likelihood described in Section 3
of Clayton’s paper and not the likelihood resulting from the reasoning above.
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4.2 A data augmentation approach to the ascertain-
ment problem

Clayton (2003) derives an ascertainment corrected likelihood by using an
analogy to the conditional likelihood for matched case-control data. The
idea behind this approach is to simulate a number of pseudo-observations for
each real observation and use these in combination with the real data to build
the likelihood. As in the importance sampling the true parameter values θ
are unknown and are substituted by guesses, θ′. We will first review the
conditional likelihood for matched case-control data and then describe how
it applies to the ascertainment problem. For further description of the con-
ditional likelihood for matched case-control data see Clayton & Hills (1996).
The resulting likelihood resembles the importance sampling likelihood in Sec-
tion 4.1, but a major difference is that data is simulated from the population
distribution in the importance sampling but under the ascertainment scheme
in the likelihood, (4.17), below.

The conditional likelihood is commonly used in the analysis of data from
matched case-control studies. The data is matched based on characteristics
that are believed to be potential confounders, such as age and gender. In
each group there is a number of cases y1, . . . , yk = 1 and a number of controls
yk+1, . . . , yJ = 0. The notation Z =

∑J
1 yj = k will be used to indicate the

number of cases in the set of J observations. For simplicity we let k = 1. The
likelihood is based on the joint probability that y1 = 1 and y2, . . . , yJ = 0,
given that Z = 1

P (y1 = 1, y2, . . . , yJ = 0|Z = 1) =
P (y1 = 1, y2, . . . , yJ = 0)

P (Z = 1)

=
P (y1 = 1)P (y2, . . . , yJ = 0)

∑J
j=1 P (yj = 1)P (yl 6=j, . . . , yJ = 0)

=

P (y1=1)
P (y1=0)

P (y1 = 0)P (y2, . . . , yJ = 0)
∑J

j=1
P (yj=1)

P (yj=0)
P (yj = 0)P (yl 6=j, . . . , yJ = 0)

=

P (y1=1)
P (y1=0)

∑J
j=1

P (yj=1)

P (yj=0)

(4.14)

In Clayton’s model it is not probability of being a case but probability for
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the observations to be real that is modelled. We can evaluate this probability
using the same reasoning as that used in the case-control situation if we define
an indicator variable Rj where Rj = 1 if yj is a real observation, generated
from f(y|θ, A), and Rj = 0 if it is a pseudo-observation, generated from
f(y|θ′, A). Let y1 be the real observation. Then, for M pseudo-observations,

P (R1 = 1, R2, . . . , RM+1 = 0|Z = 1, y) =

P (R1=1|y1)
P (R1=0|y1)

∑M+1
j=1

P (Rj=1|yj)

P (Rj=0|yj)

=

f(y1|R1=1)P (R1=1)

f(y1)
f(y1|R1=0)P (R1=0)

f(y1)

∑M+1
j=1

f(yj |Rj=1)P (Rj=1)

f(yj)

f(yj |Rj=0)P (Rj=0)

f(yj)

=

f(y1|R1=1)P (R1=1)
f(y1|R1=0)P (R1=0)

∑M+1
j=1

f(yj |Rj=1)P (Rj=1)

f(yj |Rj=0)P (Rj=0)

= ∗ =

f(y1|R1=1)
f(y1|R1=0)

∑M+1
j=1

f(yj |Rj=1)

f(yj |Rj=0)

=

f(y1|θ)
f(y1|θ′)∑M+1

j=1
f(yj |θ)
f(yj |θ′)

.

(4.15)

∗ The probability of R = 1 for an observation in the set of m observations is a constant
(1/m) if no information is provided about the observation.

Given the pseudo-observations The log likelihood contribution of individual
i is

log(
f(yi|θ)
f(yi|θ′))− log(

M+1∑

j=1

f(yij|θ)
f(yij|θ′)) (4.16)

which, up to a constant, can be written as

log(f(yi|θ))− log(
M+1∑

j=1

f(yij|θ)
f(yij|θ′)). (4.17)

Since an expression for the likelihood is available parameter estimates can
be obtained using maximum likelihood. Variances of these estimates are
obtained as usual by calculating the information matrix from the likelihood
For details see Appendix B.

The likelihood (4.17) is similar to the likelihood approximated with the im-
portance sampler, (4.10), especially when ascertainment probabilities are 0/1.
The essential differences are that
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• Data is drawn under non-random ascertainment in (4.17), using Clay-
ton’s method, while it was drawn from the population distribution in
(4.10), using the importance sampler.

• The sum in the second term is over the pseudo-observations only in
(4.10) while the real observation are also included in (4.17).

• In (4.17) a separate estimate of P (A = 1) is calculated for each real
observation while in (4.10) P (A = 1) is calculated only once.

The last of these differences means that while M pseudo-observations are
produced in the importance sampler, for a sample size of n real observations,
M × n pseudo-observations are produced in Clayton’s method.

As Clayton suggests the data augmentation method can be iterated to refine
the values of θ′ in each step by using the parameter estimates from the previ-
ous iteration. There is however no guarantee that this will overcome problems
of convergence that result from poor choices of θ′, the point estimates may
diverge if θ′ is to far from θ in the first iteration.

As we will illustrate in Section 4.4 Clayton’s method suffers, not surprisingly,
from problems common to other simulation based methods, namely that a
poor choice of sampling distribution may result in large variability in the
estimates. Approaches that have been proposed in other contexts, such as
importance sampling, may be useful.

4.3 Other sampling based algorithms, missing data

Although it does not completely fit into the classical framework of missing
data problems (Little & Rubin 1987), non-random ascertainment can still
be viewed in terms of a missing data problem. In the classical framework of
a missing data problem there is a well-defined set of observations of which
some the values are not observed and the data is partitioned into observed
data, Y Obs, and missing data ,Y Miss. Usually there is partially complete
information on each sample unit. In the ascertainment problem the unob-
served observations are often of a different nature. If data is missing on an
individual it is usually missing altogether, and it is not always even obvious
how many individuals are unobserved. Nevertheless it is useful to consider
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algorithms used in missing data problems, such as the Estimation Maximiza-
tion (EM) algorithm (Dempster et al. 1977) and it’s extensions. We start
by briefly describing the EM-algorithm as a background. An algorithm sim-
ilar in spirit to the stochastic EM-algorithm is then described and is applied
it to the ascertainment problem. These methods are frequentist. Bayesian
approaches to the missing data problem will not be covered in this report.

The EM algorithm has been applied extensively to missing data problems.
The EM algorithm can be used to obtain maximum likelihood estimates using
a numerical technique. First starting values for the parameter estimates are
decided upon and then the following two steps are iterated: In the E-step the
expectation of the complete data is calculated using the parameter values, θ̂,
from the previous M-step. In the M-step the maximum likelihood estimates,
θ̂, from the complete data, created in the E-step, are calculated. It can
be shown that if the likelihood has a unique maximum the EM-algorithm
converges to that value (Wu 1983).

A problem that sometimes occurs when using the EM-algorithm is conver-
gence to local maxima, the algorithm is therefore sensitive to what starting
values are chosen. Another disadvantage of the EM-algorithm is that there
is no direct way to calculate standard errors. One way to tackle the problem
is to compute an asymptotic covariance matrix (Louis 1982). This approach
uses the property that

−l′′Obs(θ, y) = Eθ[−l′′C(θ, x)|y]− covθ[l
′
C(θ, x)|y]. (4.18)

The variance is obtained by taking the inverse of the observed information
matrix −l′′Obs(θ, y).

If calculating the expected value of the missing data requires computation-
ally demanding numerical integration one way to side-step the problem is to
simulate the missing data and to use the value the observed mean instead
of the calculated expectation. This is the Monte Carlo EM-algorithm (Wei
& Tanner 1990). The algorithm is performed in two steps, in the S-step the
missing data is simulated M times and in the M-step maximum likelihood
estimates θ̂ are calculated using the combined data set containing observed
and simulated data. Since the maximum likelihood estimates are calculated
using the combined data set, the likelihood for the full data is used.

The stochastic EM-algorithm (SEM) (Celeux & Diebolt 1985) is a special
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case of the Monte Carlo EM-algorithm with only one simulation step per
maximization step (McLachlan & Krishnan 1997). In iteration i the calcu-
lations are performed according to the following algorithm:

S-step: Simulate M = 1 set of the missing data Y Miss using current param-
eter estimates θ̂i−1.

↓

Construct the complete data likelihood using the observed data and the sim-
ulated data:

L(θ; Y Complete) = L(θ; Y Obs
∈A=1, Y

Miss
/∈A=1)

≈ L(θ; Y Obs
∈A=1, Y

Sim
/∈A=1)

=
∏

f(Y Obs
∈A=1, Y

Sim
/∈A=1|θ)

=
∏

Obs

f(Y Obs
∈A=1|θ)

∏

Sim

f(Y Sim
/∈A=1|θ) (4.19)

↓

M-step: Get new parameter estimates θ̂i from (4.19) using maximum like-
lihood.

↓

Repeat: Go to iteration i + 1 and repeat the steps above.

The stochastic EM will not converge to a single value but will have random
variation, induced by the simulated data, around the estimate, and the result
will be similar to that of a stationary Markov Chain Monte Carlo. See for
example Gilks, Richardson & Speigelhalter (1996) for a description of Markov
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Chain Monte Carlo. We will use the word convergence in a non-stringent
manner to denote the process of the estimates moving towards a distribution
around the correct value. In analogue with the terminology of Markov Chain
Monte Carlo we will use the word burn-in to refer to the initial iterations of
the chain that should be excluded from analysis in order to ensure that the
estimates are produced by the right distribution.

Missing data problems such as censored data sets are applications where the
stochastic EM-algorithm is useful (Ip 1994). Starting values are required for
the stochastic EM-algorithm but it is more robust to misspecified starting
values than the deterministic EM-algorithm (Gilks et al. 1996). One way of
estimating parameters in the stochastic EM algorithm is to choose the set of
parameter values in the iteration that gives the highest value of the likelihood
for the observed data. The likelihood for the observed data might however
be so complicated that this is unfeasible. A simpler way is to compute the
mean, θ̃, of the parameter values in the iterations after an appropriate burn-
in period. An approximation of the variance of θ̃ can according to Gilks et al.
(1996) be computed using the method for the EM-algorithm by Louis that is
described above. There are however some suspicions that this method may
underestimate the variance (Gilks et al. 1996). For further reading about the
stochastic EM-algorithm see for example Gilks et al. (1996) or McLachlan &
Krishnan (1997).

We can implement an algorithm similar in spirit to the stochastic EM algo-
rithm for the ascertainment problem. The non-ascertained data is considered
missing and is imputed in the S-step using the parameter estimates from the
previous M-step. Normally when the stochastic EM algorithm is used to fill
in missing data there is a fixed sample size and data is filled in for those
individuals where data is missing. Here we assume that the sample size of
the full data is not known but only the ascertainment probabilities condi-
tional on the data. This is however not a problem if the data is simulated
as described below. In the S-step the missing data is filled in by rejection
sampling (see for example Gilks et al. 1996), using a reverse ascertainment
scheme:

Simulate: Simulate data from the population distribution f(Y |θ̂) and sort
the observations into data that would have been ascertained, Y Sim

∈A=1, and data
that would not have been ascertained, Y Sim

/∈A=1. Stop when n observations from
Y Sim
∈A=1 have been obtained.
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↓

Reject: Throw out the observations in Y Sim
∈A=1 and keep those in Y Sim

/∈A=1.

The sample size, n, of the observed ascertained data, Y Obs
∈A=1, is a known

value but the size of the simulated data-set is random and will depend on
θ̂. If population size is known, data is instead simulated until the combined
data-set of Y Obs

∈A=1 and Y Sim
/∈A=1 has the appropriate sample size. In the M-

step maximum likelihood estimates are obtained from the likelihood of the
real ascertained data combined with the simulated non-ascertained data as
described above.

If Y Sim
/∈A=1 is large this algorithm will be slow. An alternative to sampling the

whole set of missing data is to simulate only a portion of the data and weigh
up the likelihood contribution of the simulated data. If a proportion of 1/k of
the missing data is desired, data is simulated as above until n/k observations
from Y Sim

∈A=1 have been produced. If n/k is not an integer randomization can
be used to determine if it should be rounded up or down. Alternatively n/k
can be fixed to an integer value and the value of k calculated. Small values
of n/k will cause large variability in the estimates so the choice of k is a bal-
ance between sample size and number of steps in the chain. Ripatti, Larsen
& Palmgren (2002) suggest a rule for increasing the number of samples in a
Monte Carlo EM-algorithm when approaching convergence. In this context
simulating a proportion of 1/k of the missing data would correspond to sim-
ulating 1/k samples. The basic idea of altering the number of samples when
approaching the estimate might however be used also in this context. If the
size of the missing data is small it is of course also possible to choose M > 1,
giving an algorithm similar to the Monte Carlo EM. In the simulations in
Section 4.4 M = 1 will be used.

4.4 Simulations

To illustrate how the different methods perform in our context some sim-
ulations are performed. A simple model with only one phenotype is first
investigated and then a few runs for a model with two co-dependent pheno-
types are made.
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The phenotypes are simulated to mimic two phenotypes in the metabolic
syndrome, BMI and fasting plasma glucose level. According to WHO a BMI
of at least 30 indicate obesity. About 10 percent of the Swedish population
in the ages of 25-64 have such a BMI according to the WHO MONICA
project (WHO 2000). A plasma glucose level of at least 7.8 or a 2 hour
fasting glucose level of at least 11.1 gives a diabetes diagnosis according to
the WHO diagnostic criteria for diabetes. We will use a BMI of 30 and a
plasma glucose level of 7.8 as cut-offs in the ascertainment schemes.

For each method a number of simulations are performed where a new data-
set is produced under the ascertainment scheme in each simulation, this is
our ’real’ data that is then analyzed. The sample-size in each data-set is 300
if another sample-size is not indicated. The parameter estimates presented
in Table 4.2-4.9 are the mean of the estimates in 100 simulations under the
same conditions and standard errors reported measure the variation between
parameter estimates in these simulations.

Starting values are required for the stochastic EM-algorithm and parameter
values for the simulated data have to be specified for the other methods.
Simulations are run both for correctly specified values and for misspecified
values to investigate how the methods perform both under ideal and not so
ideal conditions. For simplicity we will denote both the parameter values
for the sampling distributions in the importance sampler and in Clayton’s
method and the starting values in the SEM as θ′.

The number M has to be decided for Clayton’s method and the impor-
tance sampler, recall that in Clayton’s method M is the number of pseudo-
observations per ’real’ observation while in the importance sampler it is the
total number of pseudo-observations.

Clayton’s model and the importance sampler are run under some different
values of M for the simpler model to investigate the effect of M on the
variability of the estimates. In the comparison between methods M = 50
pseudo-observations are used for Clayton’s method and in the importance
sampler M = 30000 has been used.

In the analysis the phenotype and the genotype frequency are modelled with
a joint likelihood, as in (2.3). Genotype scores, here representing outcomes of

SNP’s, will be assumed to be binomially distributed G ∼ Bin(2, exp(β0G)
1+exp(β0G)

)
and phenotypes will be normally distributed.

The simulations are carried out using the software R (The-R-Development-
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BMI AG

Figure 4.2: Model i

Core-Team 2001). In all three methods the R optimizing algorithm ”op-
tim()” is used to calculate maximum likelihood estimates. The starting
values used in the algorithm is θ′ in the importance sampler and in Clayton’s
method. In the stochastic EM-algorithm the current value of θ̂i−1 is used.

4.4.1 Model i

In this model we have a genotype represented by a biallelic SNP with an
allele frequency of exp(β0G)

1+exp(β0G)
≈ 0.2, (β0G = −1.4), and the genotype score is

G ∼ Bin(2, exp(β0G)
1+exp(β0G)

). The genotype is assumed to have an additive effect
of βGPh = 4 per copy of the rare allele, on a normally distributed phenotype
(Ph), BMI, with standard deviation σPh =

√
2. The intercept, the mean

phenotype value for genotype AA, is β0Ph = 24. That is; Ph|G = g ∼
N(β0Ph + βGPh × g, σPh). The ascertainment is made on the phenotype. All
individuals with a BMI larger or equal to 30 are selected while individuals
with a lower BMI have an ascertainment probability of about 0.067. This
will give an approximately equal number of cases as controls. The model is
illustrated by the graph in Figure 4.2.

4.4.2 Model ii

The genotype in this model is also represented by a biallelic SNP, with the
same allele frequency as in model i. Instead of one phenotype as in model
i we here have two, Ph1 =BMI and Ph2 = plasma glucose level. BMI is
here a co-morbid disease of plasma glucose level, that is, BMI is affected
by the gene and will in turn affect the plasma glucose level. The genotype
is assumed to have an additive effect on both phenotypes, and Ph1 will
have an additive effect on Ph2. Given the genotype, Ph1 has distribution
N(β0Ph1 + βGPh1 × g, σPh1) where β0Ph1 = 24, βGPh1 = 4 and σPh1 =

√
2
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Figure 4.3: Model ii

while Ph2 will, given genotype score, G = g, and BMI value, Ph1 = ph1,
have distribution N(β0Ph2 +βGPh2×g+βPh1Ph2×ph1, σPh2), where β0Ph2 = 3,
βGPh2 = 1, βPh1Ph2 = 1/15 and σPh2 = 0.5. The ascertainment probability
is dependent upon both phenotypes, according to Table 4.1. Model ii is
illustrated by the graph in Figure 4.3.

Ph1 < 30 Ph1 ≥ 30
Ph2 < 7.8 0.1 0.3
Ph2 ≥ 7.8 0.3 1

Table 4.1: Ascertainment probabilities in model ii

4.5 Results of simulations

4.5.1 Results for model i

Clayton’s model and the importance sampler for different values
of M :

To investigate how the number of pseudo-observations affects the parameter
estimates in Clayton’s method and the importance sampler, these models
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were run for different values of M . The true parameter values θ were here
used as θ′. In the tables standard errors of the estimates are presented in
parentheses.

Clayton’s method was run for M =2, 5, 10 and 50 as seen in Table 4.2.
Since M pseudo-observations was produced for each real observation the total
number of pseudo-observations was M × n = 600, 1500, 3000 and 15000. As
Clayton (2003) points out, the information loss in the method seems to be
of the order of M/(M + 1).

True M=2 M=5 M=10 M=50

β̂0G -1.4 -1.388 -1.395 -1.408 -1.403
(0.096) (0.092) (0.073) (0.062)

β̂0Ph 24 23.999 23.995 24.009 24.007
(0.174) (0.141) (0.146) (0.110 )

β̂GPh 4 3.996 3.996 3.988 3.991
(0.152) (0.130) (0.117) (0.098 )

σ̂Ph

√
(2) ≈ 1.414 1.420 1.415 1.415 1.416

(0.072) (0.065) (0.060) (0.054)

Table 4.2: Clayton’s method run for different number of pseudo-observations,
n = 300

The importance sampler was also investigated with respect to M . For the
Importance sampler M is the total number of pseudo-observations so M =
600, 1500, 3000 and 15000 were chosen. Since the importance sampler seemed
to need a larger total number of pseudo-observations than Clayton’s method
the importance sample was also run for M = 30000.

In the analysis below M = 50 will be used in Clayton’s method and M =
30000 will be used in the importance sampler.

Comparison of models:

Results of the three simulations based methods, calculated where true pa-
rameter values were used as θ′, are presented in Table 4.4. Naive estimates,
calculated by optimizing the likelihood of the data without ascertainment
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True M=600 M=1500 M=3000 M=15000 M=30000

β̂0G -1.4 -1.359 -1.384 -1.399 -1.404 -1.394
( 0.146 ) ( 0.097 ) ( 0.090 ) ( 0.087 ) ( 0.075 )

β̂0Ph 24 24.031 24.025 24.022 24.022 23.996
( 0.200 ) ( 0.138 ) ( 0.131 ) ( 0.139 ) ( 0.131 )

β̂GPh 4 3.979 3.987 3.991 3.991 4.008
( 0.214 ) ( 0.159 ) ( 0.131 ) ( 0.115 ) ( 0.119 )

σ̂Ph

√
(2) ≈ 1.414 1.429 1.406 1.407 1.406 1.416

( 0.108 ) ( 0.071 ) ( 0.065 ) ( 0.050 ) ( 0.054 )

Table 4.3: Importance sampler run for different values of M , n = 300

correction, are also presented. Standard errors of the estimates are presented
in parenthesis.

True Naive Importance Clayton’s
values estimates sampling method SEM

β̂0G -1.4 -0.107 -1.394 -1.403 -1.400
(0.083 ) (0.075 ) (0.062 ) (0.068 )

β̂0Ph 24 24.409 23.996 24.007 23.988
(0.141 ) (0.131) (0.110 ) (0.100 )

β̂GPh 4 4.152 4.008 3.991 4.006
(0.105 ) (0.119) (0.098 ) (0.106 )

σ̂Ph

√
(2) ≈ 1.414 1.589 1.416 1.416 1.408

(0.059 ) (0.054) (0.054) (0.055)

Table 4.4: Comparison of models when θ′ = θ. n = 300

Any observed differences in variances of estimates between models in Table
4.4 should be interpreted with caution since the variance of an estimate based
on Clayton’s method and the importance sampler depends on M , and the
variance of an estimate based on using the SEM depends on chain length.
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Analysis with misspecified θ′

In Table 4.5 parameter estimates and standard errors of estimates for the
importance sampler are presented for β′GPh = 4, 2 and 0, the correct value
of βGPh is 4. For the other parameters θ′ = θ was used. In Table 4.6 cor-
responding results are presented for Clayton’s model. Misspecified θ′ affect
the standard errors of the estimates in both importance sampling and in
Clayton’s model; the effect seems to be more pronounced in the importance
sampler than in Clayton’s model. The effect of the misspecification on the
standard errors is not linear. It is worth noting that the standard error of
β̂GPh in the importance sampler actually seems to be larger for slightly mis-
specified β′GPh than for more severely misspecified β′GPh, as can be seen in
Table 4.5, Table 4.7 or Table 4.8. The effect estimates seem however to be
biased for misspecified parameter values so the standard errors may not be
a satisfying tool for comparison of the methods.

Since the importance sampler estimator is claimed to be unbiased it may
seem surprising that the parameter estimates are biased. As stated in Section
4.1, a condition for the importance sampler is that the sampling distribution
f2 should be positive whenever g(x) × f1 > 0. This condition is fulfilled
in the simulations above, but when θ′ is misspecified f2 may be so small for
some g(x)×f1, that no observations are actually sampled from these regions.
Further investigation is however required determine if this is the cause of the
bias in the parameter estimates.

True β′GPh = βGPh = 4 β′GPh = 2 β′GPh = 0

β̂0G -1.4 -1.394 -1.189 3.213
(0.075 ) (0.310 ) (2.081 )

β̂0Ph 24 23.996 23.850 26.342
(0.131) (0.212 ) (1.833 )

β̂GPh 4 4.008 4.292 4.687
(0.119) (0.352 ) (0.304 )

σ̂Ph

√
(2) ≈ 1.414 1.416 1.401 2.001

(0.054) (0.156) (0.370)

Table 4.5: Misspecified θ′ in importance sampling. n = 300 M=30000
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True β′GPh = βGPh = 4 β′GPh = 2 β′GPh = 0

β̂0G -1.4 -1.403 -1.409 -1.316
(0.062) (0.098) (0.344)

β̂0Ph 24 24.007 24.000 23.991
(0.110) (0.130) (0.133)

β̂GPh 4 3.991 3.984 4.094
(0.098) (0.136) (0.414)

σ̂Ph

√
(2) ≈ 1.414 1.416 1.392 1.434

(0.054) (0.070) (0.093)

Table 4.6: Misspecified θ′ in Clayton’s model. n = 300 M = 50

For the SEM misspecified θ′ does not have the effect of inflated standard
errors of the estimates. If the SEM converges to a distribution around the
parameter estimates the standard errors of the estimates after the conver-
gence will be the same as for correctly specified starting values. The running
time of the SEM will be longer when θ′ is misspecified to allow for convergence
and similar as to in Marcov Chain Monte Carlo simulations an appropriate
burn in period has to be identified. There is a risk that the parameter esti-
mates in the SEM will diverge when θ′ is misspecified, this did however not
happen in any of our simulations.

To illustrate the behavior of the SEM under misspecified starting values a
chain was run under β′0G = 0, β′0Ph = β0Ph, β′GPh = 0 and σ′Ph = σPh

and the parameter estimates plotted in Figure 4.4. The values of θ′ chosen
here are meant to resemble a situation where there is some knowledge of
the distribution of the phenotype in the population but no knowledge of the
allele frequency or the gene’s effect on the phenotype.

If Clayton’s method is run for the same values of θ′ as the SEM the estimates
seem to be unbiased but with large variances while the Importance sampling
did not give useful estimates at these values of θ′. A possible way to obtain
better starting values is to use the naive parameter estimates as θ′. Running
Clayton’s method from naive estimates did however still give large variances.

For Clayton’s model theoretical variance estimates were also calculated, for
technical details see Appendix B. The theoretical variances seemed to concur
with the observed variances and will therefore not be reported separately. If
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θ′ is severely misspecified so that the variances of the estimates are very
large the information matrix needed for the theoretical variance estimates
will sometimes be singular.

The importance sampler for different sample sizes:

It would be of interest to see if the effect of misspecification of θ′ is dependent
upon the sample-size, n, of the data. To investigate this the importance
sampler with misspecified β′GPh was run for n = 600, and n = 1200. The
results are presented in Table 4.7 and 4.8.

As can be seen by comparing Table 4.7 and 4.8 with Table 4.5, where n = 300,
the standard errors seem to be of similar size regardless of sample-size when
β′GPh = 0. When β′GPh is not misspecified the standard errors decrease with
sample-size in the usual rate. An interpretation of the results is that the
variability resulting from misspecification dominates over the variability from
the data when β′GPh = 0, so that the decrease of the standard deviation due
to the increase in sample-size, n, is harder to detect.

True β′GPh = βGPh = 4 β′GPh = 2 β′GPh = 0

β̂0G -1.4 -1.399 -1.197 3.039
( 0.050 ) ( 0.301 ) ( 1.676 )

β̂0Ph 24 24.003 23.862 26.459
(0.095 ) (0.204 ) ( 1.929 )

β̂GPh 4 3.999 4.239 4.705
(0.079 ) ( 0.372 ) ( 0.278 )

σ̂Ph

√
(2) ≈ 1.414 1.414 1.389 2.083

( 0.039) ( 0.156) ( 0.386 )

Table 4.7: Misspecified θ′ in importance sampling. n = 600 M = 30000

4.5.2 Results for model ii

When using θ′ = θ in model ii both the importance sampler, Clayton’s
method and the SEM gave reasonable estimates . The SEM was somewhat
time-consuming to run in for this model.
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True β′GPh = βGPh = 4 β′GPh = 2 β′GPh = 0

β̂0G -1.4 ] -1.395 -1.186 2.968
(0.045 ) (0.286 ) ( 1.657 )

β̂0Ph 24 24.000 23.837 26.482
( 0.055 ) (0.194 ) ( 3.050 )

β̂GPh 4 3.997 4.261 4.661
(0.049 ) (0.373 ) ( 0.272 )

σ̂Ph

√
(2) ≈ 1.414 1.415 1.390 2.068

( 0.026) ( 0.124) ( 0.445 )

Table 4.8: Misspecified θ′ in importance sampling. n = 1200 M = 30000

Model ii was also run for misspecified θ′, the values of θ′ were β0G = 0 β′0Ph1
=

β0Ph1 , β′GPh1
= 0, σ′Ph1

= σPh1 , β′0Ph2
= β0Ph2 , β′GPh2

= 0, β′Ph1Ph2
= 0, and

σ′Ph2
= σPh2 . As in model i these values were chosen as if some knowledge

was available about the distribution of the phenotypes while no knowledge
was available about the allele frequency or the effect of the gene. The effect
of BMI on plasma glucose level was also assumed unknown. As can be seen in
Table 4.9 these values of θ′ do not give adequate parameter values in neither
Clayton’s method nor the importance sampler. The SEM does converge but
does take longer to converge than in model i, a run of the SEM is shown in
Figure 4.5.
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Figure 4.5: The first 400 iterations in SEM model ii for misspecified θ′, True
parameter values as solid line. n = 300
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True θ θ′ Clayton Importance sampling

β̂0G -1.4 0 -0.376 -1.001
(1.049 ) (0.935 )

β̂0Ph1 24 24 23.654 24.371
(1.094 ) (0.898 )

β̂GPh1 4 0 0.304 0.584
(0.432 ) (1.015 )

σ̂Ph1

√
(2) ≈ 1.414

√
(2) 1.719 1.704

(0.200 ) (0.382 )

β̂0Ph2 3 3 4.825 4.977
(0.325 ) (0.515 )

β̂GPh2 1 0 0.557 0.645
(0.191 ) (0.390 )

β̂Ph1Ph2 1/15 ≈ 0.067 0 0.061 0.015
(0.028 ) (0.020 )

σ̂Ph2 0.5 0.5 0.064 0.002
(0.077) (0.040)

Table 4.9: Clayton’s method and importance sampling for model ii under
misspecified θ′. n = 300

-
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5 Discussion

The Stochastic EM algorithm converges in the tested examples. If the start-
ing values are misspecified we have to run the algorithm for a longer time
to allow it to converge but the starting values will not affect the estimates
once convergence is achieved. If the model is complex the Stochastic EM
algorithm therefore seems to be preferable to Clayton’s method and the im-
portance sampler since both of these methods seem prone to break down
when θ′ is misspecified. The importance sampler seems to be more sensitive
to misspecified θ′ than Clayton’s method but it is not investigated here how
much of that difference that is due to the choices of the size, M , of the sim-
ulated data. It would be interesting to investigate if a larger M would give
adequate estimates in model ii with misspecified θ′, where poor estimates
were obtained in the simulations in Section 4.5.2. The importance sampler
may perform better if another importance sampling estimate than (4.6) is
used. Hesterberg (1995) describes such alternatives and argues that (4.6)
is unreliable since the weights, wi, do not sum to one. Hesterberg (1995)
also points out that a mixture of sampling distributions can be used in im-
portance sampling for better coverage of the sample space. This approach
may be beneficial in the ascertainment problem since the choice of sampling
distribution turned out to be a major difficulty. Using a similar approach in
Clayton’s method may also be considered.

Another possible strategy to avoid the effects of seriously misspecified θ′ in
Clayton’s method and the importance sampler is to iterate the procedure
using the estimates from the previous step as θ′. This however demands
that the parameter estimates from the first step are somehow reasonable,
otherwise the iterative procedure could diverge.

Both the importance sampler, Clayton’s method and the Stochastic EM al-
gorithm demands prior knowledge of sampling probabilities given the data.
These probabilities are often not known and approximations may have to
be made using for example registry data or prior knowledge about disease
occurrence. If the sampling probabilities are known the complexity of as-
certainment scheme does however hardly affect the complexity of the calcu-
lations. In Clayton’s method and the SEM the ascertainment probabilities
are used only when simulating data, and not in the likelihood, while in the
importance sampler the sampling probabilities are used in the estimator of
P (A = 1|θ) in a computationally simple manner. Another advantage of the
three simulation based methods is that they are not restricted to any specific
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kind of model while some of the traditional methods handle only specific
kinds of data.

The results of the simulation based methods described here will be sensitive
to distributional assumptions. Phenotypes are here assumed to be normally
distributed given genotype scores but in real data they are often not, so
nonparametric extensions of the models would be of interest. It is not possible
to check distributional assumptions using standard procedures such as normal
QQ-plots since the ascertained data is not assumed to follow the distribution
in the population. When missing data is filled in, as in the SEM, checks
of distributional assumptions can be misleading since the combined data
is a mixture of data from the population distribution and data simulated
according to the distributional assumptions. If distributional assumptions
are to be checked custom made checks have to be constructed.

Another useful extension would be to incorporate analysis of ambiguous hap-
lotypes in the models.
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A Power calculations for dichotomized data

Description of the power calculations presented in Section 2.4:

The log likelihood ratio is computed, but instead of real data the expected
data under the ascertainment scheme is used, as described below. The pro-
cedure has been described for generalized linear models by Self, Mauritsen,
& Ohara (1992) and applied to binary case-control data by Longmate (2001)
who calls it the exemplary data method.

Under the null hypothesis the log likelihood ratio statistic T 2 is asymptot-
ically χ2 distributed and the null hypothesis is rejected when T 2 > q ∼
χ2(df, 1−α) where df is the discrepancy in parameters between the alterna-
tive and the null hypothesis and α is the intended significance level.

The power is calculated by observing how large proportion of samples would
be larger than q under the alternative hypothesis. The distribution of T 2

under the alternative hypothesis is asymptotically non-central χ2. T 2 is also
called the non-centrality parameter. The expectation of T 2 is obtained by
calculating T 2 using the expected data. The power is calculated using the
noncentral χ2 probability function Fχ2(q, df, ν) where ν is the expected value
of T 2 under the alternative. The non-central χ2 distribution is available in for
example the statistical software R (The-R-Development-Core-Team 2001).

Calculation of T 2:

The power calculation are performed by computing the expected value of the
log likelihood ratio statistic testing if βGPh = 0

T 2 = 2[lA − l0] (A.1)

where l is the log likelihood. In the alternative hypothesis the parameters
β0Ph and βGPh are estimated using maximum likelihood while under the
null only β0Ph is estimated. The test statistic will be asymptotically chi-
square distributed with one degree of freedom. The expected value of the
test statistic is

E(2[lA − l0]) = 2[E(lA)− E(l0)]. (A.2)
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For continuous data ascertainment correction has to be made and the likeli-
hood for a single observation is thus

LA = f(Ph, G|A, θ̂) =
P (A|G,Ph, θ̂)f(Ph|G, θ̂)P (G|θ̂)

P (A|θ̂)
L0 = f(Ph, G|A, θ0) =

P (A|G,Ph, θ0)f(Ph|G, θ0)P (G|θ0)

P (A|θ0)
(A.3)

where θ̂ = θ for the exemplary data. The parameter values depend on
the hypothesis in L but not in the other parts of (A.6). The expressions
P (A|G,Ph) and P (G) do not depend on the parameter values at all and will
be the same for both hypothesis.

The ascertainment probability A is calculated as

P (A) =
∫

Ph
P (A|Ph)f(Ph)dy =

∑

G

P (G)
∫

Ph
P (A|Ph)f(Ph|G)dy

=
∑

G

P (G)[P (A|Ph < c)
∫ c

−∞
f(Ph|G)dy + P (A|Ph ≥ c)

∫ ∞

c
f(Ph|G)dy].

(A.4)

Some numerical integration will have to be made to obtain P (A).

For simplicity the dichotomized data is here assumed to fit a logistic regres-
sion model with a logistic link even though a probit link would be more
appropriate since the outcome data is generated by a normal distribution.
Using the logistic link function ascertainment correction does not have to be
made, as argued in Section 2.3, and the likelihood will be

l ∝ exp(θ)

1 + exp(θ)
. (A.5)

Note however that β̂0Ph is affected by the ascertainment scheme and has to
be calculated with this in mind.

The expectation of the log likelihoods are also calculated under the ascertain-
ment scheme. Here the true value of θ should be used, even when calculation
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the expectation of l0.

E[l] =
∑

G

∫

Ph
log(L)

P (A|G,Ph, θ)f(Ph|G, θ)P (G, θ)

P (A|θ) dy

=
1

P (A|θ)
∑

G

P (G)
∫

Ph
log(L)P (A|Ph, θ)P (Ph|G, θ)dy

=
1

P (A|θ)
∑

G

P (G|θ)P (A|Ph < c, θ)
∫ c

−∞
log(L)P (Ph|G, θ)dy

+
1

P (A|θ)
∑

G

P (G|θ)P (A|Ph ≥ c, θ)
∫ ∞

c
log(L)P (Ph|G, θ)dy (A.6)

Since the observations are iid the expected log likelihood of the whole data
set obtained by multiplying the log likelihood with n.

B Information matrix in Clayton’s method

The contribution of the ith individual to the information matrix is according
to Clayton (2003)

w∗
i.

wi + w∗
i.

(Ii− Ī∗i ) +
1

wi + w∗
i.

(
w∗

i.

wi + w∗
i.

wi(ui− ū∗i )
2 +

m∑

j=1

w∗
ij(u

∗
ij − ū∗i )

2) (B.1)

where ∗ indicates simulated data
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wi =
f(yi; θ)

f(yi; θ′)

w∗
ij =

f(y∗ij; θ)

f(y∗ij; θ′)

w∗
i. =

m∑

j=1

w∗
ij

ui =
δ log f(yi; θ)

δθ

u∗ij =
δ log f(y∗ij; θ)

δθ

and

w∗
i.

wi + w∗
i.

(Ii − Ī∗i ) = 0.

If θ is a vector of parameters θ = (β0G, β0Ph, βGPh, σ) then for row vectors u,
(ui−ū∗i )

2 is replaced by (ui−ū∗i )
T (ui−ū∗i ) and (u∗ij−ū∗i )

2 by (u∗ij−ū∗i )
T (u∗ij−ū∗i )

in the expression above.

The derivatives of log(f(Ph|θ)) = − log(
√

2π)− log(σ)− (y−(β0Ph+βGPhg))2

2σ2 +

g log( exp(β0G)
1+exp(β0G)

) + (2− g) log(1− exp(β0G)
1+exp(β0G)

) denoted

uθ = (uβ0G
, uβ0Ph

, uβGPh
, uσ) are

uβ0G
=

δ log(f)

δβ0G

=
(g exp(−β0G)− 2 + g)

(exp(−β0G) + 1)

uβ0Ph
=

δ log(f)

δβ0Ph

=
(ph− (β0Ph + βGPhg))

σ2

uβGPh
=

δ log(f)

δβGPh

=
g(ph− (β0Ph + βGPhg))

σ2

and uσ =
δ log(f)

δσ
= − 1

σ
+

(ph− (β0Ph + βGPhg))2

σ3
.
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