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Abstract. Different extensions of the Kalman filter idea for improved treatment of non-
linearities with application to meteorological data assimilation are investigated in this
thesis. Five different approaches have been applied for meteorological data assimilation
within the framework of a simplistic model, a one-dimensional shallow water model,
under the perfect model assumption. The observations were simulated by linear as well
as non-linear observation operators.

The forecast provided by the bias corrected Kalman filter turned out to be closer to
the ”true” state with respect to spatial average squared error compared with the forecast
provided by the standard extended Kalman filter due to a reduced bias of the innovation
vector, in the case of a non-linear observation operator. Among the methods considered
in the report, the time-window smoother provides the best filtering of observation errors,
if the amount of assimilated observations is large. Under the perfect model assumption,
if the amount of assimilated data is large, the time development of the posterior mode
of the model state estimated by the time-window smoother is the best estimate of the
”true” model state with respect to the spatial average squared error. The dynamical
updating of the initial forecast error covariance matrix at the beginning of each assimi-
lation window improves the characteristics of the analysed state. The ensemble Kalman
filter is a very attractive method because it is very cheap from a computational point
of view, and it still provides a comparably good estimate of the ”true” state. However,
the data assimilation must be performed with a relatively large ensemble size. The en-
semble Kalman filter constructs the analysed state with use of an implicit linearisation
of the observation operator, while it preserves the non-linear dynamics. The importance
sampling uses the results provided by the time-window smoother (the posterior mode
and the curvature around it) and gives wide possibilities for probabilistic inference about
smaller dimensional non-linear transforms of the model state variable. The estimate of
the posterior predictive mean of the model state variable by the importance sampling
appears to be a less efficient estimate of the ”true” model state than the posterior mode
propagated in time.
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1. Introduction

The aim of the meteorological data assimilation procedure is to determine initial data
fields for numerical weather prediction. In general, this task coincides with the problem
of a model state observer (model state estimator through feedback control) for the non-
linear system, governing the development of the atmosphere. However, several specific
problems make the task quite challenging.

First of all, the number of observations is several orders smaller than the dimension of
the state variable. Prior information about the model state variable must be involved in
the construction of a state observer and a merging of this prior information and observed
data must be performed, taking observation errors into account. This prior information is
usually introduced in the form of a short-range forecast (a model state prediction), often
called the first-guess, statistical knowledge about the errors (the deviations from the true
atmospheric state) and physical balances between different components of the model state
variable, which help to overcome the strong lack of statistical knowledge.

Secondly, the model state variable is just a discrete approximation of the continuous
atmospheric fields and its evolution is governed by discrete approximations of continuous
physical laws. The discrete approximations of the balances as well as the variances of short
range forecast errors strongly depend on the spatial and temporal scales of motion. So, the
observed information must be assimilated taking into account the scale of the phenomena
of interest avoiding misinterpretation of unresolved small scale variations. Besides that,
observed quantities are often related to the model variable through complicated non-linear
dependencies, and the observations are irregularly distributed both in space and time.

The method to merge a first-guess field and observed quantities in a way consistent with
the estimated accuracy of each type of information was introduced by Eliasen (1954)
and Gandin (1963) and within the meteorological community this is called the optimum
interpolation method. The main idea of this method is that the deviations of an analysed
state (an estimator of the initial model state) from a first-guess can be given by a weighted
sum of the innovations (the deviations of the observed data from the first-guess). The
weights are determined to achieve the minimum of the estimated mean square error of
the analysed state. In other words, the analysed state (the ”best” estimate of the initial
state) is constructed like an optimal (minimal variance) linear combination of a first-guess
field and observed data. The solution to this problem is the well known linear regression.
The first-guess and the observed data compete by their accuracy and the distance to the
analysed point (in the sense of a spatial auto-correlation of the model state variable). The
method was extended to three-dimensional multivariate analysis (Lorenc, 1981) and for
a long time it was successfully used for the operational numerical weather prediction by
many weather services. Like all linear regression techniques, the method does not require
any strong assumptions on the distribution of the random variables, besides existence of
second moments. The method has the disadvantage of being able to treat in a proper
way only observed data that are linearly related to the model state variable.

An important step forward in numerical weather prediction was the development of three-
dimensional variational data assimilation (Parrish and Derber, 1992) and its extension to
four dimensions (Le Demit and Talagrand, 1987, Courtier et al., 1994). The analysed
state is determined through the posterior mode. It provides the optimal analysis for lin-
ear (Gaussian) dynamical systems, but allows for non-linear observation operators, which
transform the model state variable into observed quantities. The core of the variational
data assimilation is an iterative searching of the model state, closest to the first-guess field
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which fits the observations in the best way. In the four-dimensional variational data assim-
ilation, the forecast model enters as a strong constraint over an assimilation time window.
The valid physical balance relationships between different model state variable compo-
nents explicitly enters into the data assimilation procedure through the estimated (or
more precisely constructed) forecast error covariance matrix of the model state variable.
The utilisation of the physical balances increases weights of data - observed quantities
analysed together have more value than individually analysed quantities. The serious
disadvantage of the three-dimensional scheme is the stationary forecast error covariance
matrix. In the four-dimensional scheme the time evolution of the forecast error covariance
is implicitly taken care of.

Theoretically, the time evolution of the probability distribution function describing the
forecast error population development in time can be obtained using Kolmogorov’s forward
equation (more known the as Fokker-Plank equation). However, for practical implemen-
tation this is an unfeasible task due to the huge dimension of the model state variable.
The large dimension does not allow estimation of the forecast error covariance matrix sta-
tistically, so in most operational assimilation schemes it is mainly deduced analytically.
This deduction is based on very crude simplifications of the forecast error structure. Sec-
ondly, the stationary forecast error covariance matrix does not reflect information about
the accuracy of already assimilated observations, which of course influence the accuracy
of the first-guess.

The recently implemented four-dimensional variational data assimilation scheme partly
solves these problems. The data assimilation procedure is applied over a time window.
The observation operator includes a propagation of the model state in time, such that it
provides an implicit time evolution of the forecast error covariance matrix during the pe-
riod of the assimilation time window, and it retains all advantages of the three-dimensional
variational data assimilation scheme in treating non-linear relations between the model
state and observed quantities. The implicit time evolution of the covariance matrix by
the model equations should ideally improve the assumed structure of the forecast errors.
This means that sequential observations combined with the implicit knowledge about the
time evolution of the error covariance will give much better information about model
dynamical balances, and the sequential observations will be given more proper weights in
accordance with this.

As it is well known, having linear dynamics and a linear observational operator for a
Gaussian system, the optimal discrete sequential estimation is the Kalman (1960) filter.
However, the numerical equations propagating the development of the atmosphere are
non-linear, so the assimilation based on the Kalman filter does not give the optimal results.
The possibility to use some generalisations and extensions of the Kalman filter idea for
the purpose of meteorological data assimilation is the topic of the present report. Four
different approaches, namely (1) the bias-corrected Kalman filter, (2) the time-window
smoother, (3) the ensemble Kalman filter and (4) the importance sampling estimate of the
posterior mean will be compared with the widely used so-called extended Kalman filter in
the sense of both data assimilation and future forecasting performance. It is impossible
to judge the results of the data assimilation procedure without taking into account the
usefulness of the constructed initial state for the purposes of future prediction.

The data assimilation experiment will be carried out within the framework of a one-
dimensional shallow water model on a β-plane. Such a simplified atmospheric model can
simulate some important characteristics of large-scale atmospheric flow. The model is
governed by a system of equations ”very close” to linear ones, with non-linearity repre-
sented only in the form of advection with an ageostrophic wind component, having very
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small amplitude. So this model can be supposed to be treated well enough by the Kalman
filter. The different extensions of the Kalman filter will be validated by their abilities to
handle both linear and non-linear observation operators.

The shallow water model and the numerical methods applied are described and discussed
in section 2 of this report. Forecast error covariance matrices modelled from prior physical
knowledge of the atmosphere are also introduced in section 2. The basic Kalman filter and
the fixed interval smoother techniques are then introduced in section 3. Section 4, the core
section of the report, provides descriptions and discussions about the different extensions
of the Kalman filter idea. Section 5 presents results from a comparison between the
different extensions, both with respect to validation of the estimation of the ”true” model
state and with respect to forecasting abilities. Section 6, finally, provides a summary and
some concluding remarks.

2. The one-dimensional shallow water model

2.1. Analytical model formulation. A shallow water model is a simplified model of a
rotating atmosphere. The model represents the flow of a rotating homogeneous incom-
pressible fluid of depth h with a free upper surface. The dynamics of the particles are
described in a three-dimensional co-ordinate system (x, y, z). Here z the is height of the
location of the particle above the zero level, the x direction is taken along the latitude and
y is taken along the longitude. The Coriolis force, which appears when an inertial motion
is viewed from a rotating system, acts perpendicular to the velocity vector, and has in
general three orthogonal components, namely in the vertical direction(the z axis), in the
north-south direction (the y axis) and in the east-west direction (the x axis), producing
the corresponding accelerations

(
dv

dt
)Co = −2Ω sin(ψ)u,

(
dw

dt
)Co = 2Ω cos(ψ)u

and

(
du

dt
)Co = 2Ω sin(ψ)v − 2Ω cos(ψ)w ≈ 2Ω sin(ψ)v,

(ψ - the latitude, Ω - the angular speed of the rotation of the Earth, (u, v, w) designates the
eastward, northward and upward velocity components respectively, subscript Co indicates
that this is the acceleration due to the Coriolis force only). The influence of the Coriolis
force in the vertical direction is much smaller than the one from the gravity force, so
for synoptic scale studies usually only the north-south and the east-west components of
the Coriolis force are considered. The velocity component in the vertical direction w has
usually a much smaller amplitude in comparison with the horizontal ones, u and v, and
this allows simplification of the expression for the Coriolis acceleration in the east-west
direction.

In our case, for simplicity, the Coriolis parameter f(ψ) = 2Ω sin ψ, where (dv
dt

)Co =
−f(ψ)u, is assumed to follow a so-called β-plane approximation. This means that it
can be well approximated by a linear function in y. Let the origin of the co-ordinate
system y0 = 0 be located at a point with the latitude ψ0. Then the displacement y in the
north-south direction is approximately equal y = a ∗ (ψ − ψ0), where a is the radius of
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the Earth. The Coriolis parameter can then be approximated through a Taylor expansion
around the origin

f(ψ) = f(ψ(y)) = f(ψ0) +
df

dy
|ψ=ψ0 y + . . . = f0 + βy + . . .

In fact, if ∆ψ = ψ − ψ0 is small enough, then

f(ψ)− f(ψ0) =2Ω(sin ψ − sin ψ0)

=2Ω(2 sin(
∆ψ

2
) cos(ψ0 +

∆ψ

2
))

≈ 2Ω cos ψ0∆ψ =
2Ω cos ψ0

a
y

= βy

In order to simplify the calculation algorithm and to reduce the dimensionality of the
model variables as much as possible we will assume homogeneity in the y-direction.

Before the elimination of the y direction, the model is governed by the following equations

(1)
du

dt
− fv +

∂φ

∂x
= 0

(2)
dv

dt
+ fu +

∂φ

∂y
= 0

(3)
dφ

dt
+ φ(

∂u

∂x
+

∂v

∂y
) = 0

(4) φ = gh

(5) f = f0 + βy

where g is the gravitational acceleration, u and v are the motion speed components (wind)
in x- and y-directions, respectively. The first two equations represent the motion and the
third equation represents mass continuity.

The elimination of the y-direction is done by the perturbation method, which is widely
applied for qualitative analysis of the nature of atmospheric motions. All meteorological
field variables are divided into two parts, a basic state which is assumed to be independent
of time and longitude, and a perturbation which represents the local deviation of the field
from the basic state.

The one-dimensional shallow water model for mid-latitude synoptic systems is constructed
from the following assumptions
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u = u + u′(x, t)

v = v′(x, t)

φ = φ(y) + φ′(x, t)

(6)

(7) f0u = −∂φ

dy

For mid-latitude systems (far away from the equator) the Coriolis parameter f is different

from zero. The mean zonal wind u and the mean zonal geopotential gradient ∂φ
dy

are

assumed to be in exact linear geostrophic balance (equation (7)).

The governing system of partial differential equations for the one-dimensional shallow
water model, after reformulation through divergence δ = ∂u

∂x
+ ∂v

∂y
and vorticity ξ = ∂v

∂x
− ∂u

∂y
,

has the form

∂δ

∂t
+

∂

∂x
(uδ)− f0ξ + βu′ +

∂2φ

∂x2
= 0

∂ξ

∂t
+

∂

∂x
(uξ) + f0δ + βv′ = 0

∂φ

∂t
+

∂

∂x
(uφ′)− f0uv′ + φδ = 0

(8)

We will use a spectral representation with cyclic boundary conditions in the x-direction at
x = 0 and x = L. Non-linear terms will be calculated by the Fourier transform method.
Let k denote the wave number in the x-direction, and the non-linear model for the spectral
coefficients is given by

dûk

dt
= (−iku + i

β

k
)ûk + f0v̂k − ikφ̂k −Fk(F−1(û)F−1(ilû))(9)

dv̂k

dt
= −f0ûk + (−iku + i

β

k
)v̂k −Fk(F−1(û)F−1(ilv̂))

dφ̂k

dt
= −φkiûk + f0uv̂k − ikuφ̂k −ikFk(F−1(û)F−1(φ̂))

for −M ≤ k ≤ M , k 6= 0, k = 2∗π∗k
L

and

dû0

dt
= f0v̂0 −F0(F−1(û)F−1(ilû))

dv̂0

dt
= −f0û0 −F0(F−1(û)F−1(ilv̂))

dφ̂0

dt
= +f0uv̂0

Here û = F(
−→
u′ ), v̂ = F(

−→
v′ ), φ̂ = F(

−→
φ′ ). The notations (ilû) and (ilv̂) are used for

spectral representation of the partial derivatives (with respect to x) of the u′-, and v′-
wind fields, respectively. F and F−1 are the Fourier and the inverse Fourier transforms,
respectively.
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Discrete Fourier and Inverse discrete Fourier transforms for a field−→a = (a(xj), 1 ≤ j ≤ N)
and a vector of spectral components â = (âk, −M ≤ k ≤ M) are defined in the following
way

âk = Fk(
−→a ) =

1

N

N∑
j=1

a(xj) exp(−ikxj)

a(xj) = F−1(â) =
M∑

k=−M

âk exp(ikxj)

where N ≥ 3M + 1, 0 = x0 < x1 < . . . < xN = L, N is the dimension in grid-point space,
M is the dimension in spectral space. The assumed cyclic boundary conditions mean
a(x0) = a(xN). Since all fields in grid-point space are real-valued, we will have â−k = â∗k
(complex conjugate).

The relationship N ≥ 3M + 1 is used instead of the usual N ≥ 2M + 1 to permit
aliasing-free computations of quadratic terms (Eliassen et al., 1970, Orszag, 1971). The
non-linear wave interaction instantaneously creates high-frequency waves. In a finite
spectral representation unrealistic energy will concentrate on small scale waves, which
will propagate and corrupt the solution. The neglecting of small scale waves preserves the
solution with little loss of total field energy.

The calculation of spectral components ĉ for a non-linear term in the form of a product of

two fields −→c = −→a ∗−→b by the transform method means that instead of a direct derivation

of ĉ from â, b̂ we first obtain fields −→a ,
−→
b by the discrete inverse Fourier transform, then

we calculate −→c = −→a ∗ −→b in grid point space and at the end we obtain ĉ from −→c by
the discrete Fourier transform. This procedure simplifies derivations of the algorithm for
integration of the model.

2.2. The semi-implicit Eulerian time stepping scheme. Let X̂k(t), 0 < k < M,
denote the model state variable at time t.

X̂k(t) =




ûk(t)
v̂k(t)

φ̂k(t)




The dynamics of the one-dimensional shallow-water model can be written in vector nota-
tion

(10)
dX̂k(t)

dt
= ~CkX̂k(t) + Bk(t)

where the matrix ~Ck has the form



(−iku + iβ

k
) f0 −ik

−f0 (−iku + iβ

k
) 0

−φik +f0u −iku




and the vector Bk(t) represents the non-linear terms
9






−Fk(F−1(û(t))F−1(ilû(t)))
−Fk(F−1(û(t))F−1(ilv̂(t)))

−ikFk(F−1(û(t))F−1(φ̂(t)))




Due to the non-linearity of the differential equations, it does not seem to be possible to
obtain an analytic solution to the equations. A numerical semi-implicit Eulerian time
stepping scheme (Kwizak and Robert, 1971) is used for the time integration. This scheme
provides an implicit treatment of the pressure gradient and divergence-convergence terms
of the governing equations (10), which will allow us to use a longer time-step for the
discrete time integration of the model. The main effect of the implicit treatment is to
retard the speed of the gravity waves (see next section).

The non-linear discrete propagator for the shallow water model has the following form

(11)

(
X̂k(t + 1)

X̂k(t)

)
=

(
~Csi

1,k
~Csi

2,k

I 0

)(
X̂k(t)

X̂k(t− 1)

)
+

(
Bsi

k (t)
0

)

for t ≥ 2. Xk(0), Xk(1) are assumed to be known. Here and in the following we use index
t− 1 to denote time t−∆t and index t + 1 to denote time t + ∆t.

Furthermore

~Csi
1,k = ~C−1

0,k
~C1,k, ~Csi

2,k = ~C−1
0,k

~C2,k, Bsi
k = ~C−1

0,kBk(t)

where

~C1,k =




(−iku + iβ

k
) f0 0

−f0 (−iku + iβ

k
) 0

0 +f0u −iku


 , ~C1,0 =




0 f0 0
−f0 0 0
0 +f0u 0




~C2,k =




1
2∆t

0 −ik
2

0 1
2∆t

0
−ikφ

2
0 1

2∆t




~C−1
0,k =




2∆t

1+2φk
2
∆t2

0 −i2k∆t2

1+2φk
2
∆t2

0 2∆t 0
−i2φk∆t2

1+2φk
2
∆t2

0 2∆t

1+2φk
2
∆t2




This system does not provide an accurate time evolution of the complete solution, but
it provides the evolution of the main phenomena of interest, the Rossby waves, and it
guarantees a much better computational stability. The time integration step ∆t for the
scheme is limited by the speed of the fastest Rossby wave, which is much slower than the
speed of the fastest gravity waves.

2.3. The time filter. Being a three time level scheme, the semi-implicit Eulerian scheme
provides a solution for every time integration as a combination of physical and compu-
tational modes. This problem is caused by the fact that a three time level scheme needs
additional computational initial condition Xk(1), besides a physical one Xk(0). The effect
of the computational mode can be noticed from a two time-step noisy solution. In our
time integration scheme, an Eulerian forward time stepping is used to obtain the first
computational initial condition X∗

k(1).
10



(12) X̂∗
k(1) = (I + ∆t1 ~Ck) X̂k(0) + ∆t1Bk(0)

using a much smaller time step than the chosen one for the time integration, for example
∆t1 = ∆t

4
. To obtain the final computational condition Xk(1), the semi-implicit Eulerian

scheme is used repeatedly increasing ∆t1 up to the chosen time-step ∆t. The existence of
a computational mode depends on the skill in choosing the computational initial condition
Xk(1). For a simple linear oscillation equation, the analytical requirements for the careful
choice of the computational initial condition can be derived, and the negative influence
of the existence of the computational mode can almost be eliminated. For a complicated
non-linear model it does not seem to be possible. During a long time of integration the
existence of the computational mode completely corrupts the solution and it must be
treated in some way. One possible way to handle the problem is to apply a time filter
(Asselin, 1972). A time filter damps the high-frequency noise by a value proportional

to the simplest approximation of the second derivative in time of X̂k(t). The second
derivative is negative at the maximum of a function and is positive at the minimum
of a function. After the solution X̂k(t + 1) at time (t + 1)∆t has been obtained from

(X̂k(t), X̂k(t− 1)) by (11), the solution at time step t can be corrected

X̂f
k (t) = X̂k(t) + S(X̂k(t + 1) + X̂k(t− 1)− 2X̂k(t))

where S is the smoothing parameter (S ≈ 0.003) of the time filter.

We will then have

X̂f
k (t) = ~Cf

1,kX̂k(t) + ~Cf
2,kX̂k(t− 1) + SBsi

k (t)

~Cf
1,k = (1− 2S)I + S ~Csi

1,k(13)

~Cf
2,k = S(~Csi

2,k + I)

2.4. The complete discrete one time-step model state propagator. Thus, the
complete model state propagator Fk from time moment t to time moment (t + 1) will
have form

(14)

(
X̂k(t + 1)

X̂k(t)

)
= Fk

(
X̂(t)

X̂(t− 1)

)
=

(
C11

k C12
k

C21
k C22

k

)(
X̂k(t)

X̂k(t− 1)

)
+

(
B1

k

B2
k

)
(t)

(
C11

k C12
k

C21
k C22

k

)
=

(
~Csi

1,k
~Csi

2,k

~Cf
1,k

~Cf
2,k

)

(
B1

k

B2
k

)
(t) =

(
Bsi

k (t)
SBsi

k (t)

)

for t ≥ 2, with X̂k(1) obtained as it is described in the previous section:

(
X̂k(1)

X̂k(0)

)
= F ∗

k (X̂(0))

11



2.5. The state space model. In the state space model approach it is assumed that
the development of the system over time is determined by an unobserved series of p× 1-
dimensional vectors X̂(t0), X̂(t1), . . . , X̂(tNass), the inference about which must be ob-
tained from a series of observable q× 1 dimensional quantities y1, . . . , yNass . The relation-
ship between the unobservable vectors is determined through the composite model state
propagator F i−1, approximating the dynamical evolution of the system over the period
(ti−1, ti), 1 ≤ i ≤ Nass of the observation time window.

(15) X̂(ti) = F i−1(X̂(ti−1)) + Ri−1ηi−1, 1 ≤ i ≤ Nass

The relationship between X̂(ti) and yi is determined as well and is called the observation
operator Z

(16) yi = Z(X̂(ti)) + εi, 1 ≤ i ≤ Nass.

The error terms εi and ηi are assumed to be serially independent, to be independent of
each other at every time step and to obey some known probability distributions. They are
assumed to be independent of the initial state vector X̂(0) as well. The p× p∗ operators
Ri, 0 ≤ i ≤ Nass allow us to reduce the dimension and to simplify the structure of the
model errors. If the error terms in the dynamics (15) are omitted, namely ηi ≡ 0, 0 ≤ i ≤
Nass − 1, the dynamical model is said to be perfect.

In the present study, the composite propagator F i−1 from time ti−1 to time ti is determined
through a sequence of the one time-step propagators (14).

Experiments are performed both with linear and non-linear observation operators. Non-
linear observation operators are introduced to illustrate the effects of non-symmetric pos-
terior distributions.

The linear observation operator denoted Zl is defined in the following way. Every row of
the q × p dimensional matrix Z consists of a discrete inverse Fourier transform from the
spectral representation to the grid-point space of a certain meteorological field (u-wind
component, v-wind component or geopotential) observed at a certain position.

The non-linear observation operators consist of triples. The observation operator denoted
nlZ1 gives values of

0.5 ∗ log((ū + uj)
2 + v2

j ), arctan
vj

ū + uj

, log(1. +
10 ∗ φj

φ̄
),

the non-linear observational operator denoted nlZ2 gives values of

0.5 ∗ log((ū + uj)
2 + v2

j ), arctan
vj

ū + uj

, log(
φ̄

50
+ φj),

and the third one denoted nlZ3 gives values of

0.5 ∗ log((ū + uj)
2 + v2

j ), arctan
vj

ū + uj

,
φj

1. +
20.∗φj

φ̄

,

obtained at the grid-point position xj.

The non-linear transformation of the geopotential field by the observation operator nlZ2

yields after data assimilation a skewed distribution with one heavy tail for the geopotential
12



field, and the one by the observation operator nlZ3 results after data assimilation in a
lighter-tail distribution for the geopotential field.

In our study, the observation error terms εi, 1 ≤ i ≤ Nass are assumed to have a Gaussian
distribution with zero mean and a known stationary diagonal covariance matrix H.

(17) εi ∼ N (0, H)

The dynamical evolution model is deterministic, and we use a perfect model assumption.
The initial state vector X̂t0 , often called the first-guess field and usually denoted X̂fg

0 is
assumed to have a Gaussian distribution as well, namely

(18) X̂fg
0 − X̄t0 ∼ N (0, B0)

where X̄t0 is a projection of the true continuous meteorological field on the discrete model
space valid at time moment t0. In our study we use only simulated observations. The
discrete model state X̄t0 (including its dynamical forward propagation) is assumed to be
”the truth” for our simulation studies. Observations are constructed by transforming X̄t0

including model forward propagation with the chosen observation operator and by adding
normally distributed errors with the desired precision.

The initial model state forecast error covariance matrix B0 is designed to represent the
valid physical relationship between the different components of the model state variable.
The atmosphere is a chaotic system. Some perturbations grow rapidly, a much larger
amount of them are damped. Like it has been outlined (Leith, 1980), the atmospheric
state is attracted toward a slow manifold, with a flow which can be approximated by
a near geostrophic balance. This property of the atmosphere must be reflected in the
data assimilation scheme, and usually it is imposed explicitly by designing the forecast
error covariance matrix with the linear geostrophic balance as a starting point. Because
the balance is close to linear, the forecast errors, like any small deviations from the true
atmospheric state, must also approximately follow the geostrophic balance, and forecast
errors of the ageostophic wind need to have a much smaller variance than the geostrophic
ones. The non-linear normal mode initialisation procedure is used later (see below) to
improve the structure of the forecast error covariance matrix designed in this way.

2.6. The design of the initial forecast error covariance matrix. The design of the
initial forecast error covariance matrix B0 is done in two steps. First the covariance ma-
trix B∗

0 , based on the assumptions of linear geostrophic balance and spatial homogeneity
of the meteorological fields (u−, v− wind components and geopotential), is constructed.
Secondly, the tangent linear operator of the non-linear normal mode initialisation proce-
dure is used to improve the oversimplified structure of B∗

0 to obtain the initial forecast
error covariance matrix B0.

As a starting point we assume spatial homogeneity of all three meteorological fields. This
means, that the variance of the u-wind component, the variance of the v-wind component
and the variance of the geopotential are all constant in grid-point space. The tangent-
linear normal mode initialisation improves the covariance matrix. The non-homogeneous
variance of all three fields obtained after the initialisation procedure is illustrated in Fig-
ure 1. The non-homogeneity in the variance appears due to the cross-correlation between
spectral components corresponding to different wave numbers established by the initiali-
sation procedure. The v-wind component remains almost homogeneous. Due to the small
horizontal scales compared to the Rossby radius of deformation in our model, the tan-
gent linear normal mode initialisation procedure provides to a large extent a geostrophic
adjustment of the geopotential field to the v-wind component.

The assumed spatial homogeneity of the random field a(x), namely
13
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Figure 1. Non-homogeneous variance obtained after a tangent-linear nor-
mal mode initialisation procedure for the u- and v- wind components and
geopotential starting from the initial homogeneity assumptions.

E(a(x)) = const = a0,

V ar(a(x)) = const = σ2
a,

Cov(a(x1), a(x2)) = ρa(x1 − x2)

(19)

results in a diagonal covariance matrix for the spectral components â. Indeed, with the
assumptions above and a diagonal covariance matrix of the spectral components, for every
grid-point xj

E(a(xj)) =E(
k=M∑

k=−M

âke
2π
L

ikxj) =

=
k=M∑

k=−M

E(âk)e
2π
L

ikxj =

=const = a0

(20)

Due to the uniqueness of the Fourier transform, this implies

E(â0) = a0,

E(âk) = 0, 1 ≤ k ≤ M

E(â−k) = conj(E(âk)) = 0

(21)
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Without loss of generality we can assume a0 = 0. Then, for every grid-point xj

V ar(a(xj)) =V ar(
M∑

k=−M

âke
2π
L

ikxj) =

=
M∑

k=−M

M∑

l=−M

E(âkâl)e
2π
L

i(k+l)xj =

=
2M∑

m=−2M

vme
2π
L

imxj

(22)

where

(23) vm =
M∑

k=−M

E(âkâm−k)I{−M≤m−k≤M}

If the spectral components are uncorrelated,

E(âkâl) = 0, k 6= −l

E(âkâ−k) = V ar(âk) = σ2
k,

(24)

the variance will be constant at every grid-point

v0 =
M∑

k=−M

E(âkâ−k) =
M∑

k=−M

σ2
k = σ2

a

vm = v−m = 0, 1 ≤ m ≤ M

(25)
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Figure 2. Spatial auto-correlation for wind and geopotential
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In Figure 2 we have illustrated the spatial auto-correlation of the wind field and the
geopotential field, as we initially have assumed it in our model. The auto-correlation

is assumed Gaussian for both fields ρ(r) = e−
r2

σ , with a coefficient for the geopotential
σφ = 2500 and with a coefficient for both wind field components σu = σv = 25. This
is our initial ad-hoc assumption about how the auto-correlation for both fields should
look like. We use this assumption for construction of the initial forecast error covariance
matrix B∗

0 . The auto-correlation based on this assumption is improved by the tangent-
linear normal mode initialisation procedure and it will no longer remain homogeneous.
The auto-correlation of the wind field is assumed to decrease faster with distance than the
auto-correlation of the geopotential field because the wind field is in an approximate linear
geostrophic balance with the gradient of the geopotential field, v ≈ 1

f0

∂φ
∂x

, and therefore

has a larger amount of energy in short waves.

Besides that, in the case of homogeneity, the variances of the spectral components σ2
k are

uniquely determined through the specification of the spatial auto-correlation ρ(r) of the
field a(x).

This is given by the inverse cosine transform

Cov(a(xi), a(xj)) =E(a(xi)a(xj)) =

=
M∑

k=−M

M∑

l=−M

E(âkâl)e
2π
L

i(kxi+lxj) =

=
M∑

k=−M

E(âkâ−k)e
2π
L

ik(xi−xj) =

=σ2
0 + 2

M∑

k=1

σ2
k cos(

2π

L
k(xi − xj)) = ρ(xi − xj)

(26)

We can see in Figure 3 that the normal mode initialisation procedure (more precisely the
tangent linear version of it) puts very small amount of energy in the ageostrophic wind
component. The u-wind component in our model is purely ageostrophic. The spectral
covariance of the u-wind component after tangent linear normal mode initialisation has
been multiplied by a factor 100 in Figure 3. The covariance spectrum of the v-wind
component attains a particular form with a maximum in the inner part of the spectrum
(around 2/3) after the tangent-linear normal mode initialisation. This is again due to fact
that the initialisation procedure puts the v-wind component and the geopotential in an
approximate linear geostrophic balance. In spectral space this balance has the following
form vk ∝ kφk, k = 0,M .

The v-wind spectral components are assumed to be sums of two uncorrelated random
fields, the geostrophic and the ageostrophic ones. The geostrophic wind is almost a
linear function of the geopotential, and for the one dimensional shallow water model the
covariance between the spectral components of the geopotential φk and the north-south
wind component vk can be approximated by the following expression:

(27) cov(vk, φk) ≈ 2πki

Lf
var(φk)

The variances of the spectral components of the north-south wind vk are taken to be given
by

16



0 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

wave number

u−wind component

0 5 10
0

1

2

3

4

5

6

7

8

wave number

v−wind component

0 5 10
0

1000

2000

3000

4000

5000

6000

7000

8000

wave number

geopotential
Covariance spectrum  m**2

u−wind comonent after TLNMI is scaled by 100.

assumed
after TLNMI
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the normal mode initialisation procedure for the three meteorological fields:
u-wind component, v-wind component and geopotential.

(28) var(vk) ≈ 4π2k2

L2f 2
var(φk) + σag

k

where k is a wave number in the spectral representation, f is the Coriolis parameter
and L is the length of the grid-point area in the east-west direction. The east-west
wind components uk are purely ageostrophic and assumed to be uncorrelated with the
geopotential and the north-south wind component at the first step in the design of the
forecast error covariance matrix.

(29) var(uk) ≈ σag
k

The basic theory of linear geostrophic balance, the necessity for improvement of this
simplified balance as well as the normal mode initialisation procedure, as one of the
possible methods to improve the balance, are the issues to be discussed in the rest of this
section.

2.7. Approximation of physical balances. Outside the tropical areas, the geopoten-
tial and the wind fields are approximately related through the non-linear balance equation

in the real atmosphere. Let
−→
V = (u, v) denote the wind velocity vector. Any velocity field
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can be divided into two parts: the non-divergent
−→
V ψ, associated with rotational motion,

and the irrotational
−→
V e, associated with divergent motion.

(30)
−→
V =

−→
V ψ +

−→
V e

The horizontal divergent motion can also be considered as horizontally propagating os-
cillations, also known as shallow water gravity waves. The restoring force for such waves
is in the vertical direction, and it is transverse to the direction of propagation. One can
notice from the dynamical equations describing the shallow water model (equations (1)
and (2)), that as soon as an unbalanced horizontal geopotential gradient exists (in this
case this is the same as a disturbance, for example depression, in the geopotential field),
an acceleration toward the origin of the disturbance will appear. This means that the fluid
will converge toward the origin of the disturbance. Since the fluid is incompressible, the
convergence must be compensated by divergence on both sides of the original disturbance.
So depressions will appear from both sides of the original disturbance. Again, the unbal-
anced horizontal geopotential gradient will cause accelerations into the depressions and,
as a result, the outward propagation of the disturbance will continue in the form of wave
motion. In the real atmosphere, the shallow water waves have very small amplitude, i.e.
the divergent motion is small relative to the rotational motion. In other words, starting
from a state close to a balanced one, the time tendencies of the divergent motion must
remain close to zero. Let δ = ∂u

∂x
+ ∂v

∂y
denote the divergence of the wind field. Then, the

condition for the filtering out of the gravity waves can be expressed

(31)
∂δ

∂t
= 0

Taking into account the identity

u
∂u

∂x
=

∂

∂x
(
u2 + v2

2
)− v

∂v

∂x

and noticing that for the one-dimensional shallow water model, vorticity ξ = ∂v
∂x
− ∂u

∂y

simplifies to ξ = ∂v
∂x

, one can rewrite the dynamical equations (equations (1) and (2)) in
the following way

∂u

∂t
+ ∂

∂x
(u2+v2

2
)− v(f + ξ) + ∂φ

∂x
= 0

∂v

∂t
+u(f + ξ) + ∂φ

∂y
= 0

Then

∂δ

∂t
=

∂

∂x
(
∂u

∂t
) +

∂

∂y
(
∂v

∂t
)

− ∂2

∂x2
(
u2 + v2

2
+ φ) +

∂

∂x
(v(f + ξ))+

− ∂2φ

∂y2
− ∂

∂y
(u(f + ξ))
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Thus, to satisfy condition (31), the following differential equation must hold

(32)
∂2

∂x2
(
u2 + v2

2
+ φ) +

∂2φ

∂y2
=

∂

∂x
(v(f + ξ))− ∂

∂y
(u(f + ξ))

In fact, in the real atmosphere, condition (31) never holds precisely, because gravity waves
exists and are important and essential for the dynamics (for example, physical processes
like heating by the sun create in-balances, the balancing of which is handled by gravity
waves). It is for the non-divergent wind component, that the relationship stated above
between wind and geopotential (equation (32), also known as the non-linear balance
equation) must hold. Usually, the non-divergent part of the wind field is expressed in the
terms of the stream-function ψ. In a Cartesian coordinate system we will have

uψ = −∂ψ

∂y
, vψ =

∂ψ

∂x
.

For the one-dimensional shallow water model the u-wind component is completely asso-
ciated with divergent motion and the stream-function is determined simply through the
following differential equation

vψ =
∂ψ

∂x
.

Taking into account that

ξψ =
∂vψ

∂x
=

∂2ψ

∂x2

the non-linear balance equation can be expressed in terms of the geopotential and the
stream-function only

(33)
∂2

∂x2
(φ +

1

2
(
∂ψ

∂x
)2) =

∂

∂x
(
∂ψ

∂x
(f +

∂2ψ

∂x2
))

However, as a first order linear approximation (neglecting non-linear terms) for mid-
latitude synoptic scale motion (the Coriolis parameter f does not approach 0), assuming
a β plane, the geopotential field is approximately related to the stream-function through
the linear balance equation

(34)
∂2

∂x2
(φ) = f0

∂2

∂x2
(ψ)

However, it must always be taken into account that the linear balance equation describes
only a crude static dependence between the wind field and the geopotential, in comparison
with the non-linear balance equation which represents the dynamical balance, valid for
the model, imposing certain conditions on the tendencies.

The approximate linear relationship between the geopotential and the wind fields (i.e.
the non-divergent part of the wind field) is known as the linear geostrophic balance and
it takes the following form for the one-dimensional shallow water model on a β-plane

(35) vψ =
1

f0

∂φ

∂x
19



and in general on the sphere

uψ = − 1

f

∂φ

∂y
, vψ =

1

f

∂φ

∂x
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Figure 4. Analysis increments after assimilation by means of the extended
Kalman filter of two geopotential observations in a ”single” observation ex-
periment (the first assimilation term). The observations were simulated by
a linear observation operator. Two observations of geopotential of different
precision were introduced. The locations of the observations are marked by
∗

To understand better the effect of an approximate linear geostrophic balance, we have
carried out so called ”single” observation experiments. For the first experiment, we have
introduced two observations of the geopotential field, marked with * in Figure 4. The
observations were assimilated after 6 hours of time integrations of the model was per-
formed. The first observation to the left has a lower precision (larger error variance)
than the second one, and therefore a weaker influence on the geopotential field. In Fig-
ure 4 we can see the analysis increments, namely the differences between the analysed
and the forecast field, for the u-, v-wind components and the geopotential. Even if we
have introduced observations of the geopotential only, all three analysed field are affected,
due to the cross-correlation between spectral components of the different meteorological
fields. As a starting point in the construction of the forecast error covariance matrix,
we have assumed that the u-wind component field is uncorrelated with the geopotential
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field, and with the v-wind component as well. The effect of these unrealistic assumptions
is partly improved by the normal mode initialisation procedure, and partly a more re-
alistic structure is developed during the dynamical model integration. The fields are in
an approximate geostrophic balance. Because the balance is close to a linear one, the
increments must be in an approximate linear geostrophic balance as well. The influence
of each observation on the analysed geopotential field is strongest at the position where
each observation was inserted, and the influence decreases symmetrically with distance
according to the assumed spatial correlation of the field. The inserted observations of
geopotential create changes to the analysed v-wind field, as geostrophic balance requires.
In case of the linear geostrophic approximation, the v-wind component must be equal to
the spatial derivative in the x-direction of the geopotential. At the positions where obser-
vations are inserted and the geopotential increment has extremes, the v-wind increment
is approximately equal zero. The v-wind component decreases to the left of the positions
where the observations were inserted and increases to the right of these positions, with
the largest influence attained at a distance pre-supposed by the structure of the spatial
cross-correlation between the v-wind and the geopotential. Further away, the influence of
observations on v-wind analysis field decreases. The balance imposed by the forecast error
covariance structure is closer to the linear geostophic balance than a realistic dynamical
balance should require. The normal mode initialisation procedure improves this crude
approximation toward a more realistic one and forces the increment fields away from the
exact linear geostrophic balance.

For the second single observation experiment, illustrated in Figure 5, we have introduced
two v- wind observations. The observations were introduced after 6 hours of time inte-
gration of the model was performed. Again, the first observation has a lower precision
and has therefore a weaker influence on the analysed fields. When the observations of the
v-wind components were inserted and the v-wind field was adjusted to the observations,
the corresponding changes of the geopotential were created as well. The observation to
the right indicates that the ”true” wind in the south-north direction has a lower speed
than the forecast wind. The change of the geopotential field is zero at the the position
of the v-wind observation, but the increment field here has its largest negative spatial
derivative in the x-direction. In accordance with the form of the analysed v-wind field,
the geopotential increases to the left of the observation point and decreases to the right
of the observation point. The changes are largest at a certain distance from the observa-
tion point and reduces further away. This distance depends on the assumed geopotential
correlation structure.

The figures above were prepared with data assimilation by means of the extended Kalman
filter. Besides the adjustment to the observations, a secondary influence can be noticed.
Noisy disturbances created by assimilating single erroneous observations may have nothing
to do with the features of the ”true” process that the analysed state should estimate. The
adjustment to different erroneous observations at a certain time reduces the amplitude of
the real disturbance. However, by assimilating several observations at a time, the analysed
field may receive more energy in short scale motion or may receive larger amplitudes of
higher frequency waves as compared to the ”true” model state. We can notice this because,
in order to demonstrate the effect of the assimilated observations, we have assumed the
relative precision of the observations to be better than the one of the background state.
Therefore, the influence of the observations on the analysed state becomes quite strong.
We can see in Figure 6 how the analysed state looks like after assimilation of a group of 9
observations. We have marked the locations of the observations with the * symbol. The
mutual adjustment of the fields after insertion of different erroneous observations at a
time results in a quite noisy analysed v-wind component field, for example. The influence

21



0 2 4 6 8 10 12 14

x 10
5

−0.05

0

0.05
u−wind incrementAnalyzed − forecast

analyzed
after NLNMI

0 2 4 6 8 10 12 14

x 10
5

−2

0

2
v−wind increment

0 2 4 6 8 10 12 14

x 10
5

−20

0

20
geopotential increment

0 2 4 6 8 10 12 14

x 10
5

−50

0

50
v−wind. forecast and analyzed field

"true"
forecast
analyzed after NLNMI

Figure 5. Analysis increments after assimilation by means of the extended
Kalman filter of two v-wind component observations in a ”single” obser-
vation experiment (the first assimilation term). The observations were
simulated by a linear observation operator. Two observations of v-wind
component of different precision were introduced. The locations of the ob-
servations are marked by ∗

of this mutual adjustment can be better seen in Figure 7 where the analysis increments for
different fields are shown. The observations of the u-wind component and the geopotential
are located at the same positions. These positions are marked with dotted lines. The
observations of v-wind component are located at separate positions, marked with dashed
lines.

The result of the assimilation of two observations of the u-wind component are illustrated
in Figure 8. The covariance spectrum of the u-wind component decreases very quickly
with the wave number. Consequently, the field has a very small amount of energy in short
waves, and we can notice a large scale correlation pattern. The u-wind component in the
one-dimensional shallow water model represents a purely ageostrophic wind and is in fact
a deduced quantity. Even if the u-wind component has a very small amplitude, it is of
very great importance. It represents the instantaneous speed of the wave propagation in
east-west direction. As we can notice, the v-wind component and the geopotential are
changed as well after insertion of the observations. These changes are (approximately)
in accordance with the linear geostrophic balance. The correlation between the u-wind
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Figure 6. The analysed fields after assimilation by means of the extended
Kalman filter of a group of 9 observations at a time (the first assimilation
term).The observations were simulated by a linear observation operator.
The location of observations are marked by ∗

component, the v-wind component and the geopotential are established by the mechanism
of geostrophic adjustment, which we will describe and discuss below.

Like it was discussed above (with reference to Leith, 1980), the atmospheric state is
attracted toward a slow manifold, with a flow which can be approximated by the lin-
ear geostrophic balance. This means, that perturbations disturbing the balance will be
damped and the state will attain balance again by a process of mutual adjustment. How-
ever, if the unbalanced perturbations are unrealistically large, the governing system of
the shallow water equations will not be able to describe a realistic time evolution of such
a state and the numerical integration becomes meaningless.

2.8. The process of the geostrophic adjustment. The application of the linear
geostrophic balance for the design of the initial forecast error covariance matrix has two se-
rious limitations with regard to a representation of a realistic structure of the atmosphere.
First of all, as it was already mentioned, the linear geostrophic balance mainly describes a
static relationship between the geostrophic wind and the geopotential instead of a dynam-
ical balance valid for the system. Secondly, the ageostrophic and the geostrophic winds
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Figure 7. The analysis increments after assimilation by means of the ex-
tended Kalman filter of a group of 9 observations at a time (the first as-
similation term). The observations were simulated by a linear observation
operator. Vertical dotted lines mark positions of geopotential and u-wind
component observations and dashed vertical lines mark positions of v-wind
component observations. The location of observations are marked by ∗ in
Figure 6.

are strongly correlated as well, and this is completely not reflected by the linear balance
equation.

The absolute motion of a particle in the x-direction, along the ψ latitude circle, is simply
a rotational motion, with a total angular speed

ω = Ω +
u

Rψ

where Ω is the angular speed of the Earth, u is the speed of the particle in the x-direction
relative to the ground and Rψ = a cos ψ is the radius of the latitude circle. Here a is the
radius of the Earth.
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Figure 8. Analysis increments after assimilation by means of the extended
Kalman filter of two u-wind components observations in a ”single” obser-
vation experiment (the first assimilation term). The observations were
simulated by a linear observation operator. Two observations of u-wind
component of different precision were introduced. The locations of the ob-
servations are marked by ∗

The angular momentum of the particle is equal

(36) Mω = ωR2
ψ = (Ω +

u

Rψ

)R2
ψ

The spatial variations of geopotential in the x-direction create the geostrophic north-south
wind component, forcing the particle to move across the latitude circles, and after a time
period ∆t the particle will be on the ψ+∆ψ latitude circle with radius Rψ+∆ψ = Rψ+∆Rψ.
Obviously, the speed of the particle in the x-direction must change as well from u to u+∆u
in order to maintain conservation of angular momentum. So, the following non-linear
relationship must be satisfied

(37) (Ω +
u

Rψ

)R2
ψ = (Ω +

u + ∆u

Rψ + ∆Rψ

)(Rψ + ∆Rψ)2
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While the v-wind component is positive, the particle is moving to the north, and the radius
of the particle rotation decreases ∆Rψ < 0. Then in order to maintain the relationship
(37) the u-wind component must increase, i.e. ∆u > 0.

This is the main mechanism that establishes the correlation between the ageostrophic
and the geostrophic wind in general, and between the u- and v- wind components in
our model. The geostrophic adjustment relates changes of u-wind component in this
special dependence to changes of v-wind component and geopotential. We can see this
pattern of dependency in the all figures we have discussed in the previous subsection.
But we must remember, that this pattern of spatial dependence between the u- and the
v-wind components (and the geopotential) connects the fields statically. The geostrophic
adjustment establishes a dynamical dependence which forces the fields to propagate in
time in such a way that this static dependence is always maintained.

The normal mode initialisation procedure is one possibility to improve the statistical
structure of the forecast error, defined through the designed covariance matrix, and to
make it more realistic.

2.9. Normal mode decomposition and the non-linear normal mode initialisa-
tion. The dynamics of the one-dimensional shallow water model can be written in vector
notation

(38)
dX̂k(t)

dt
= ~CkX̂k(t) + Bk(t)

where the vector X̂k = (ûk, v̂k, φ̂k)
′, the matrix ~Ck has form




(−iku + iβ

k
) f0 −ik

−f0 (−iku + iβ

k
) 0

−φik +f0u −iku




and the vector Bk(t) represent the non-linear part



−Fk(F−1( ˆu(t))F−1(il ˆu(t)))

−Fk(F−1( ˆu(t))F−1(il ˆv(t)))

−ikFk(F−1( ˆu(t))F−1( ˆφ(t)))




For every spectral component (k > 0), ~Ck has 3 distinct eigenvalues iωl
k, l = 1, 2, 3, with

(ω1
· > ω2

· > ω3
· ) and 3 almost orthogonal eigenvectors ~γl

k, l = 1, 2, 3. Let the matrix
~Γk = (~γ1

k, ~γ
2
k, ~γ

3
k). The model state variable X̂k can be projected onto these three almost

orthogonal waves, also called normal modes.

(39) X̂k =
3∑

l=1

βl
k~γ

l
k

where

βk = ~Γ−1
k X̂k,

and

βk = (β1
k , β

2
k , β

3
k)
′.

In other words, the model state solution can be decomposed into three different waves
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(40) X̂k(t) = G1k~γ
1
k + G2k~γ

2
k + Rk~γ

3
k

The components G1k, G2k correspond to a pair of fastly propagating gravity waves, mov-
ing in the opposite direction to one another and Rk corresponds to a slowly propagating
Rossby wave. The gravity waves are associated with divergent motion and the Rossby
wave is associated with rotational motion. As soon as unbalanced horizontal pressure
gradients exist, fastly propagating gravity waves are created. Indeed, gravity waves will
be created even from a linearly balanced initial state due to the non-linear interaction
between wave components.

The speed cg of the gravity wave propagation can be simplified by the following approxi-
mate expression

(41) cg = ū±
√

φ̄.

The quantity
√

φ̄ is called the shallow water wave speed. For synoptic scale motion,
in the real atmosphere, the valid assumption of the fastest gravity wave speed is ≈√

10 m/s2 ∗ 9000 m ≈ 300 m/s, so gravity waves propagate with a huge speed. We
have chosen φ̄ = 10 m/s2 ∗ 5000 m. Thus in our model the fastest gravity waves
propagates with ≈ 224 m/s.

The Rossby waves Rk are of most importance for large scale meteorological processes.
Rossby waves owe their existence to the variation of the Coriolis force with latitude. The
Coriolis force is the main internal force of non-inertial rotational systems such as the Earth.
This is the force, which maintains the preservation of the angular momentum on the Earth.
Rossby waves propagate westerly relative to the mean zonal flow ū with an approximate
speed cr

k = ū − β

k
2 , which depends on the wave number(k = 2∗pi∗k

L
, −M ≤ k ≤ M). For

synoptic scale motion, Rossby waves are quite slow and have a speed comparable with
the mean flow speed. In our case with M = 10 the wave number dependent part of the
Rossby wave speed ranges from 0.2 m/s to 0.002 m/s while ū = 40 m/s.

The non-linear normal-mode initialisation (Machenhauer, 1977) is a slightly intuitive but
powerful technique to force a generated model state into an approximate non-linear bal-
ance, established by the physical constraints of the model. Even without any initialisation
procedure, the model would reach a balanced state due to the mutual adjustment of the
wind and the geopotential, provided that the generated model state represents a realis-
tic meteorological state, having a small amount of energy in the ageostophic part of the
motion.

An introduction of new data certainly disturbs the relationship between the model state
variables. This imbalance creates unrealistically large amplitudes for the gravity waves
and moves the analysed state away from a realistic development. The intuitive idea of
non-linear mode initialisation lies in the fact (as observed by Machenhauer (1977) from
experimental simulation data) that the linear tendencies for the gravity waves are balanced
by their non-linear counterparts.

The model equations in normal mode space take the form

Ġ1k = iω1
kG1k + BG1

Ġ2k = iω2
kG2k + BG2(42)

Ṙk = iω3
kRk + BR
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Figure 9. The analysis increment after 8 assimilation terms of the data
assimilation by means of the bias corrected Kalman filter of 9 observations
non-linearly related to the model state variable. The observations were
simulated by the non-linear observation operator nlZ1.

A balanced state is obtained through an iterative procedure to obtain the balance condi-
tions

(43) Ġ1k = Ġ2k = 0

During the normal-mode initialisation procedure, the gravity wave tendencies are simply
forced to approach 0. During each step of iteration, the correction to the model state is
be obtained by

δXk = ~Γk




i
ω1

k
Ġ1k

i
ω2

k
Ġ2k

0




where Ġ1k and Ġ2k are calculated by the dynamical model equations.

After the initialisation procedure the gravity waves have small amplitudes and they con-
tain a small part of the total wave energy, which is a characteristic of a realistic flow.

In Figure 9 we can see the analysed increments obtained after 8 cycles of data assimilation
of a set of 9 observations non-linearly related to the model state variable. For simulating
the observations we have used the observational operator nlZ1, as we have defined it in
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section 2.5. The observations of the same type the assumed to have the same observation
error variance. The variance of the observation errors Hi = var(εi) is 4 times smaller
than the initial variance of the model state variable, projected on the observations space
tlZ1B0(tlZ1)

T and averaged over all grid points. The tangent linear observation operator
tlZ1 is defined later in the introduction to section 4. The normal mode initialisation
procedure, applied to the analysis increment, makes more essential corrections in the
case of a non-linear observation operator. The reason is that the analysis increment has
a non-linear relationship to the forecast of the model state variable. This non-linear
transform of the balanced forecast state can result in an increment which is moved away
from geostrophic balance. Due to this, the projection of the analysis increment on the
”balanced” space is important in order to obtain an analysed state, which has properties
of the real atmosphere.

3. The Kalman filter and the fixed interval smoother techniques

3.1. The second-order regression. We consider prediction of X on v, where X and
the q-dimensional vector v have a known joint distribution. Without loss of generality,
let E(v) = 0. The linear function X̂ = α̂ + β̂T v, with

α̂ = E(X)(44)

β̂ = var(v)−1cov(v, X)(45)

will give the best linear prediction of X on v in the sense of the mean square error
E(X − X̂)2. X̂ is often called a second-order regression function of X on v. For this

particular choice of parameters the residual term ε = X − X̂ is uncorrelated with the
explanatory variable v, has a zero mean and a variance equal

var(ε) = var(X)− β̂T var(v)β̂ =

= var(X)− cov(X, v)var(v)−1cov(v, X)
(46)

If the linear model for the X and v dependency works indeed, the best linear prediction
X̂ will be the best prediction with respect to the mean squared error, and therefore equal
to the conditional mean E(X | v). Without any assumption on distribution, besides
the existence of the second moment, the analytical expressions for the conditional mean
E(X | v) and the conditional variance var(X | v) can be obtained by

E(X | v) = X̂ = E(X) + cov(X, v)var(v)−1v,(47)

var(X | v) = var(ε) = var(X)− cov(X, v)var(v)−1cov(v, X)

If the dependence of X on v is not linear, we have the more general formulas

E(X | v) = X̂ + E(ε | v),(48)

E(var(X | v)) = E(var(ε | v)) = var(ε)− var(E(ε | v))

Hence, on the average, var(ε) = var(X) − cov(X, v)var(v)−1cov(v, X) will overestimate
the conditional variance var(X | v).

However, if the conditions
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E(ε | v) = 0(49)

var(ε | v) = const (i.e. = var(ε))

hold at least approximately, the conditional mean E(X | v) and the conditional variance
var(X | v) can be approximated by (47).

The extension to the multivariate case is straightforward.

3.2. The standard Kalman filter. The standard Kalman filter (Kalman, 1960) was
derived for a general Gaussian state space linear model, which can be written in the
following form

(50) yt = ZtXt + εt,

(51) Xt = Tt−1Xt−1 + Rt−1ηt−1

which has some similarities with a formulation of linear regression of yt on Zt (50) with
extra variability in the unobservable parameters Xt, t ≥ 1 (51).

In the usual notations, yt is a q × 1-dimensional vector of observations and Xt is an
unobserved p× 1-dimensional state vector, the inference about which we want to obtain.
Usually, the probability density of the initial state vector X0 is assumed to be known, and
the error terms εt and ηt are assumed to be serially independent, mutually independent
at every time step and independent of the initial state vector.

The idea of filtering is to provide a sequential updating of our knowledge about the system
Xt each time new observations are available. If we denote Yt = {y1, . . . , yt}, the whole
set of history of observations available up to time moment t, the aim of filtering is to
determine the density p(Xt | Yt) recursively through the density p(Xt−1 | Yt−1).

Applying the definition of conditional probability,

p(Xt | Yt) ∝ p(Xt,Yt) ∝ p(Xt, yt | Yt−1),

the probability multiplication rule

p(Xt, yt | Yt−1) = p(yt | Xt,Yt−1)p(Xt | Yt−1),

and factorisation of the predictive posterior density p(Xt | Yt−1) over the parameter Xt−1

p(Xt | Yt−1) =

∫
p(Xt, Xt−1 | Yt−1)dXt−1 =

∫
p(Xt | Xt−1,Yt−1)p(Xt−1 | Yt−1)dXt−1.

Finally, by taking into account the Markovian properties of the state space model,

p(yt | Xt,Yt−1) = p(yt | Xt),

p(Xt | Xt−1,Yt−1) = p(Xt | Xt−1),

the recursive formula for conditional updating of the posterior distribution can be obtained
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(52) p(Xt | Yt) ∝ p(yt | Xt)

∫
p(Xt | Xt−1)p(Xt−1 | Yt−1)dXt−1

with p(X0 | Y0) ≡ p(X0).

Under the perfect model assumption, which means that the time evolution of the under-
lying system is deterministic, Xt = Tt−1Xt−1, the posterior distribution equation (52) is
significantly simplified

(53) p(Xt | Yt) ∝ p(yt | Xt)p(Xt | Yt−1).

All the unobservable variables Xt, t ≥ 1 are just deterministic functions of the random
variable X0, the posterior pdf of which is to be obtained from the prior assumption on
X0 and from the observations yt, t ≥ 1.

For a standard Kalman filter, the state space model is assumed linear and Gaussian,

X0 ∼ N (a0, B0),(54)

εt ∼ N (0, Ht), t = 1, . . . n

ηt ∼ N (0, Qt), t = 0, . . . n− 1

All probability densities involved in the expression above will be Gaussian and hence
are completely determined by their mean and variance. Let us denote p(Xt−1 | Yt−1) =
N (at−1, Bt−1). Applying the model equations, it is straightforward to obtain the analytical
expressions for both the likelihood and the updated prior for the t-th sequential analysis
cycle

p(yt | Xt) = N (ZtXt, Ht),

p(Xt | Yt−1) = N (af
t , B

f
t ),

with

af
t = Tt−1at−1,(55)

Bf
t = Tt−1Bt−1T

T
t−1 + Rt−1Qt−1R

T
t−1.

The posterior density p(Xt | Yt) is proportional to the likelihood p(yt | Xt) multiplied by
the prior density p(Xt | Yt−1)

p(Xt | Yt) ∝ exp{(yt − ZtXt)
T H−1

t (yt − ZtXt) + (Xt − af
t )

T (Bf
t )−1(Xt − af

t )}
and it is Gaussian as well. Collecting all the terms and completing the square around Xt,
we obtain the recursive update formulas for at and Bt

(56) p(Xt | Yt) = N (at, Bt),

with
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B−1
t = ZT

t H−1
t Zt + (Bf

t )−1,(57)

at = Bt(Z
T
t H−1

t yt + (Bf
t )−1af

t ).

These formulas can be simplified and rewritten in a form which is much easier to apply for
practical calculations. First, applying the Binomial inverse theorem (Woodbury(1950)),
namely

(58) (A + UBV )−1 = A−1 − A−1UB(B + BV A−1UB)−1BV A−1,

equations (57) can be rewritten into a more known form, which avoids the necessity for

inversion of the large dimensional matrix Bf
t .

Bt = Bf
t −Bf

t ZT
t H−1

t (H−1
t + H−1

t ZtB
f
t ZT

t H−1
t )−1H−1

t ZtB
f
t ,

at = af
t −Bf

t ZT
t (Ht + ZtB

f
t ZT

t )−1Zta
f
t + Bf

t ZT
t (I − (H + ZtB

f
t ZT

t )−1ZtB
f
t ZT

t )H−1
t yt.

Secondly, we take the following identity into account

I − (Ht + ZtB
f
t ZT

t )−1ZtB
f
t ZT

t = (Ht + ZtB
f
t ZT

t )−1Ht.

The Kalman filter recursive formulas can be summarised by following filtering equations.

at = af
t + Kt(yt − Zta

f
t )

Bt = Bf
t −Bf

t ZT
t (H + ZtB

f
t ZT

t )−1ZtB
f
t

Ft = H + ZtB
f
t ZT

t

Kt = Bf
t ZT

t F−1
t(59)

af
t = Tt−1at−1

Bf
t = Tt−1Bt−1T

T
t−1 + Rt−1Qt−1R

T
t−1

This system of equations together with the assumptions (54) defines the Kalman filter.
The system of equations describes not only the time evolution of the mean and the variance
of the unobservable model state variable X, it describes much more. At the end of the
analysis sequence we obtain the posterior distribution p(Xn | Yn), the most that we can
say about the unobservable variable Xn based on the observations y1, . . . , yn and the prior
information about the initial state and the model errors.

Some basic features of Kalman filtering are illustrated in Figure 10, where the symbols on
the x-axes denote location of observations. The group of 9 observations relates, in fact,
non-linearly to the unobservable model state variable and are assimilated by means of the
extension of the standard Kalman filter, the bias corrected Kalman filter. However, the
basic principles of data handling remain essentially the same and here we will illustrate
one of the basic ones. In the case of a perfect model assumption, after several data
assimilation cycles, the lower precision data create stronger influence on the analysed
field and produce larger analysis increments. Indeed, in the Kalman filter framework the
weights of the observations reflect the relative precision of the observations compared to
the precision of the unobservable model state. The precision is expressed in the terms of
variances. Every time observations with a lower precision are assimilated, the posterior
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Figure 10. The analysis increments after 8 terms of assimilation by means
of the bias corrected Kalman filter of two groups of 9 observations with
different precision. The dashed line denotes the analysis increment corre-
sponding to the ”high” precision observations, the solid line denotes the
analysis increments for the ”low” precision data. The observation were
simulated by the non-linear observation operator nlZ3. The position of the
observations are marked on the x-axes by o for geopotential observations,
by ∗ for u-wind component observations and by x for v-wind component
observations.

variance of the unobservable model state variable var(X̂t | Yt) remains larger than the
one obtained by assimilating observations with higher precision, what can be seen from
(57). Thus, the relative precision of observations with a larger variance of observation
errors becomes higher than the relative precision of observations with a small variance
of observational errors. Therefore, the impact of data with lower precision seems to be
larger after several assimilation terms. Even if the observations are the main sources
of information from the ”true” model state, the high weights of the observations can
make harm by letting the observation errors themselves influence the construction of the
analysed state too much, and in such a way they can move the analysed state away from
the ”true” state.

When high precision observations were assimilated, the analysed state comes closer to
observations from the start of the data assimilation. At the same time the analysed state
comes closer to the ”true” model state, as it is reflected in smaller analysis error variance.
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A little impact of the later introduced observations is needed in order to improve the
analysed state which is already close to the ”true” state.
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Figure 11. The analysed fields after assimilation of a group of 9 obser-
vations non-linearly related to the model state variable. Assimilation was
performed by the bias corrected Kalman filter. Results shown here are af-
ter 4 assimilation terms. The observations were simulated by the non-linear
observation operator nlZ3 and they are of ”high” precision. The positions
of the observations are marked on Figure 12.

In Figures 11 and Figure 12 we present the result of 4 cycles of the application of the
bias corrected Kalman filter for the assimilation of a group of 9 observations non-linearly
related to the model state variable. For simulation of the observations we have chosen
the observation operator tlZ3 (see section 2.5). The variance of the observation error Hi

is the same for the same type of observation located at different position and is 4 times
smaller than the initial forecast error variance of the model state, projected to the space
of observations (tlZ3B0(tlZ3)

T )i and averaged over all grid-points. The symbols on the
”x”-axes denote the locations of observations. Like in the case with a linear observation
operator, the analysis increment of the meteorological fields, as well as the meteorological
fields themselves, are in good accordance with the geostrophic adjustment process. Again,
while the v-wind component is negative, i.e. an air mass particle is displaced southward,
the radius of the particle rotation is increasing. The u-wind component is then decreasing
in order to maintain the conservation of angular momentum. The v-wind component is
approximately equal to the spatial derivative of the geopotential, thus the analyses state is
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in a balance well approximated by the geostrophic one. It is interesting to notice that the
geopotential adjusts to the v-wind component field in the case of non-linear observations
as well. Like we already have mentioned, the model has smaller spatial scales compared
to the Rossby radius of deformation, and according to theory the geopotential field is
adjusted to the v-wind component. The two observations located closely to one another
produce a more noisy analysis field but help to filter out the observation errors.

The time evolution of the posterior mean and the posterior variance of the variable holds
under much weaker assumptions than the usual ones assumed for a linear Gaussian state
space model. As we will show below, it can be derived from the approach based on the
best linear prediction (section 3.1) which is free from any assumptions about the form of
the distributions. The only requirement for the validity of the formulas is the linearity
of the state space model, that is, both the model propagator T and the observation
operator Z must be linear. The state variable Xt is regressed on the innovation vector
vt = yt−E(yt | Yt−1), a linear function of the newly obtained observations, given the whole
previous history of observations Yt−1. The innovation vector has zero mean, E(vt) =
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Figure 12. The analysis increments after assimilation of a group of 9
observations non-linearly related to the model state variable. Assimilation
was performed by the bias corrected Kalman filter. Results are shown after
4 assimilation terms. The observations were simulated by the non-linear
observation operator nlZ3 and they are of ”high” precision. The positions
of the observations are marked on the x-axes in the same way as in Figure
10
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E [E(vt | Yt−1)] = 0. E(Xt | yt,Yt−1) is the best linear predictor of Xt, and when the
observation operator is linear, this predictor is linear in yt( or vt). Taking (47) into
account and the fact that for a linear Gaussian state space model the innovation vector
vt is independent of the history of observations Yt−1, we will have

E(Xt | yt,Yt−1) = E(Xt | Yt−1) + cov(Xt, vt | Yt−1)var(vt)
−1vt(60)

V ar(Xt | yt,Yt−1) = var(Xt | Yt−1)− cov(Xt, vt | Yt−1)var(vt)
−1cov(vt, Xt | Yt−1).

As it already was mentioned, the observation error terms are assumed to be mutually un-
correlated, E(εt1 , εt2) = 0 if t1 6= t2, and uncorrelated with the state variable E(εt, Xj) = 0
for j ≤ t.

vt = yt − E(yt | Yt−1)

= Zt(Xt − E(Xt | Yt−1)) + εt

= yt − Zta
f
t .

(61)

Then

var(vt) = Ft = = E
[
E(vtv

T | Yt−1)
]

= E
[
E(Zt(Xt − E(Xt | Yt−1))((Xt − E(Xt | Yt−1)

T ZT
t | Yt−1)

]
+ var(εt)

= E
[
Ztvar(Xt | Yt−1)Z

T
t

]
+ var(εt) = E

[
ZtB

f
t ZT

t

]
+ Ht

= ZtB
f
t ZT

t + Ht

(62)

and

cov(Xt, vt | Yt−1) = E
[
E{(Xt − E(Xt | Yt−1))((Zt(Xt − E(Xt | Yt−1)) + εt)

T | Yt−1}
]

= E
[
var(Xt | Yt−1)Z

T
t

]
+ cov(Xt, εt)

= Bf
t ZT

t

(63)

Inserting equations (61)-(63) into (60) we will obtain the same system of filtering equa-
tions.

Whatever linear model we have, the recursions above give the time evolution of the
best predictor of the unobservable model state with knowledge improvement based on
the increasing sequence of observations available up to time t. If the linear model is
Gaussian, the recursions give the complete information about the time development and
the improvement of the predictive posterior distribution p(Xt | Yt) as well. The recursion
at = Tt−1at−1 + Kt(yt − ZtTt−1at−1) gives the evolution of the posterior mode and the
recursion on Bt gives the evolution of the curvature around the mode for the Gaussian
pdf.

3.3. The classical fixed interval smoother. A smoothing is an alternative to filtering
in the conditional inference about unobservable variables of interest, based on the observed

36



data. Smoothing deals with the conditional pdf for {X0, X1, . . . , Xn}, given the whole set
of observations Y = {y1, . . . , yn}. This can be written

p(X0, . . . , Xn | Y) ∝ p(X0, . . . , Xn,Y)

= p(X0)
n∏

t=1

p(Xt, yt | Xt−1, . . . , X0, yt−1, . . . , y1)

= p(X0)
n∏

t=1

p(yt | Xt)p(Xt | Xt−1)

(64)

The last equation holds due to the Markovian properties of the state space system. For
Gaussian linear systems, all the pdfs involved in (64), are Gaussian. This mean that the
pdf p(X0, . . . , Xn | Y) is Gaussian as well. For a Gaussian distribution the mode is equal
to the posterior mean E(X | Y) = (E(X1 | Y , . . . , E(Xn | Y)), and for linear state space
models it is also equal to the best mean square error estimator of the state variable, given
the whole set of observations Y . In particular, E(X0 | Y) is the best linear predictor of
the initial variable X0, which could give rise to the observed data Y .

In our study a perfect model is assumed, which means that all Xt, t ≥ 1 are determin-
istic function of a random initial state X0. At the end of the filtering procedure (see
section above), in the case of a linear model, an analytic expression for the time evolu-
tion of the posterior mode is obtained, because a posterior mode is invariant under linear
transformations.

Tn−1 · · ·T0E(X0 | Y) = E(Tn−1 · · ·T0X0 | Y) = E(Xn | Y) =

= af
n + Kn(yn − Zna

f
n)

(65)

If the matrix Tn−1 · · ·T0 would be invertible, we would immediately obtain an expression
for E(X0 | Y) in the case of a perfect model by multiplying both sides of the equation
with the matrix inverse. The tangent-linear approximation of the model dynamics is
singular in the meteorological models. Singularity means that the solution develops in
some subspace only, determined by the approximation of the valid physical balance, for
example. In other words, there exits a subspace where the solution will never appear.
With the singular matrix Tn−1 · · ·T0, we cannot obtain a unique solution to equation (65)
by means of matrix inversion, but we can construct a pseudo-inverse by means of back-
tracking. Certainly, it is possible to express E(X0 | Y) as a weighted average of the prior
mean and the observations, but, like in case of the Kalman filter derivation, it is much
simpler to use recursive formulas to obtain E(X0 | Y).

Let us denote α̂t = E(Xt | Y) and Vt = var(Xt | Y). Then, obviously,

α̂n = an = E(Xn | Y),(66)

Vn = Bn = var(Xn | Y),

α̂t = Tt−1α̂t−1,

Vt = Tt−1Vt−1T
T
t−1, 1 ≤ t ≤ n

It is straightforward to obtain analytical expressions for α̂n−1, Vn−1, using the Kalman
filter forecasting formulas (59) with Qt ≡ 0, t ≥ 0 and Bf

n = Tn−1Bn−1T
T
n−1
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α̂n = an = af
n + Bf

nZT
n F−1

n vn

= Tn−1an−1 + Tn−1Bn−1T
T
n−1Z

T
n F−1

n vn

= Tn−1(an−1 + Bn−1(ZnTn−1)
T F−1

n vn) = Tn−1α̂n−1,

Vn = Bn = Bf
n −Bf

nZT
n F−1

n ZnBf
n

= Tn−1Bn−1T
T
n−1 − Tn−1Bn−1T

T
n−1Z

T
n F−1

n ZnTn−1Bn−1T
T
n−1

= Tn−1(Bn−1 −Bn−1(ZnTn−1)
T F−1

n (Zn ∗ Tn−1)Bn−1)T
T
n−1 = Tn−1Vn−1T

T
n−1

Let us denote rn = (ZnTn−1)
T F−1

n vn and Nn = (ZnTn−1)
T F−1

n (ZnTn−1). Then

α̂n−1 = an−1 + Bn−1rn,

Vn−1 = Bn−1 −Bn−1NnBn−1
(67)

In fact for all α̂t, Vt, 0 ≤ t ≤ n− 1, similar expressions hold.

To obtain the result it is convenient to use the following backwards recursive formulas
valid for the filtering covariance matrices. First,

Bt = Bf
t −Bf

t ZT
t F−1

t ZtB
f
t

= Tt−1Bt−1T
T
t−1 − Tt−1Bt−1T

T
t−1Z

T
t F−1

t ZtTt−1Bt−1T
T
t−1

= Tt−1(Bt−1 −Bt−1(ZtTt−1)
T F−1

t (ZtTt−1)Bt−1)T
T
t−1

(68)

Secondly,

Bt = Bf
t −Bf

t ZT
t F−1

t ZtB
f
t

= Bf
t (I − ZT

t KT
t ) = Tt−1Bt−1T

T
t−1(I − (KtZt)

T )

= Tt−1Bt−1((I − (KtZt)
T )T Tt−1)

T

= Tt−1Bt−1(Tt−1 − Tt−1KtZt)
T =

= Tt−1Bt−1L
T
t

(69)

with the notation Lt = Tt−1 −KtZtTt−1.

Inserting (68) and (69) in the recursive Kalman filter formulas (59), it is easy to obtain
an analytic expression for α̂n−2

α̂n−1 = an−1 + Bn−1rn = af
n−1 + Bf

n−1Z
T
n−1F

−1
n−1vn−1 + Bn−1rn

= Tn−2(an−2 + Bn−2((Zn−1Tn−2)
T F−1

n−1vn−1 + LT
n−1rn)) = Tn−2α̂n−2.

Thus, we can express α̂n−2 as

(70) α̂n−2 = an−2 + Bn−2rn−1

where rn−1 = (Zn−1Tn−2)
T F−1

n−1vn−1 + LT
n−1rn.

It is easy to see that for all 0 ≤ t ≤ n− 1
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(71) α̂t = at + Btrt+1

where rt is obtained through backwards recursion

rt = (ZtTt−1)
T F−1

t vt + LT
t rt+1

with rn = (ZnTn−1)
T F−1

n vn

By inserting the recursive expression of Bn−1 (68) and (69) into (67), we obtain a recursive
expression for Vn−2

Vn−1 = Bn−1 −Bn−1NnBn−1

= Tn−2

[
Bn−2 −Bn−2((Zn−1Tn−2)

T F−1
n−1(Zn−1Tn−2) + LT

n−1NnLn−1)Bn−2

]
T T

n−2

= Tn−2Vn−2T
T
n−2

Thus, we can express Vn−2 as

(72) Vn−2 = Bn−2 −Bn−2Nn−1Bn−2

where

Nn−1 = (Zn−1Tn−2)
T F−1

n−1(Zn−1Tn−2) + LT
n−1NnLn−1

with Nn = (ZnTn−1)
T F−1

n (ZnTn−1).

In fact, for all Vt, 0 ≤ t ≤ n− 1 a similar expression holds, namely

(73) Vt = Bt −BtNt+1Bt,

where a backwards recursion for Nt, 1 ≤ t ≤ n− 1 is defined as follows

Nt = (ZtTt−1)
T F−1

t (ZtTt−1) + LT
t Nt+1Lt

We may summarise the results in the following backwards recursion formulas.

rt = (ZtTt−1)
T F−1

t vt + LT
t rt+1

Nt = (ZtTt−1)
T F−1

t (ZtTt−1) + LT
t Nt+1Lt

(74)

with

Lt = Tt−1 − Tt−1KtZt, t = 1, . . . , n− 1,

rn = (ZnTn−1)
T F−1

n vn,

Nn = (ZnTn−1)
T F−1

n (ZnTn−1)

This formulation provides possibility to calculate the best predictor of the initial state
E(X0 | Y) given the whole sequence of observations.
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E(X0 | Y) = α̂0 = a0 + B0r1

var(X0 | Y) = V0 = B0 −B0N1B0

where a0, B0 are the prior mean and the prior variance of the initial state X0.

From the same recursion we can obtain the time evolution of the best predictor as well

E(Xt | Y) = α̂t = at + Btrt+1, t = 1, . . . , n− 1

var(Xt | Y) = Vt = Bt −BtNt+1Bt, t = 1, . . . , n− 1

with α̂n = an, Vn = Bn.

Certainly, in the case with a perfect model assumption, we can obtain the time evolution
of the best predictor simply by integrating the predictor over time as well

E(Xt | Y) = Tt−1 · · ·T0α̂0

var(Xt | Y) = Tt−1 · · ·T0V0(Tt−1 · · ·T0)
T , t = 1, . . . , n

Because the posterior distribution is Gaussian, the smoother gives not only the time
evolution of the best predictor of the initial state, which coincides in this case with the
evolution of the posterior predictive mode, but completely defines the evolution over time
of the whole posterior distribution.

We would like to stress that this derivation of the posterior mode and the posterior
variance evolution is valid only under a perfect model assumption, even if very similar
results can be obtained under a general formulation, which assumes extra variability in the
dynamical development of the model state. The general classical fixed interval smoother
was presented by Anderson and Moore (1979).

4. The application of the Kalman filter and the classical fixed interval
smoother in the case of non-linear dynamics

In section 2.5 we have formulated the data assimilation problem in the form of a state
space model. The numerical approximation of the time evolution of the atmospheric state
results in series of unobservable p× 1- dimensional vectors X̂(t0), X̂(t1), . . . , X̂(tNass), the
inference about which must be obtained from a series of observable q × 1 dimensional
quantities y1, . . . , yNass . The relationship in time between the unobservable vectors X̂(ti−1)

and X̂(ti) is determined through the composite model state propagator F i−1, presented
in section 2.5 (equation (15)), approximating the dynamical evolution of the system over
the observation time window (ti−1, ti), 1 ≤ i ≤ Nass

(75) X̂(ti) = F i−1(X̂(ti−1)), 1 ≤ i ≤ Nass

with all uncertainty concentrated in the initial state construction X̂t0 = X̂0 ∼ N (a0, B0).

The relationship between the X̂(ti)’s and yi’s is determined as well and is called the
observation operator Z.
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(76) yi = Z(X̂(ti)) + εi, 1 ≤ i ≤ Nass

The numerical propagator F i−1(·), approximating the dynamical equations governing the
atmospheric development, is non-linear and the observation operator is usually non-linear
as well. Even in the case of a linear observation operator, the initially Gaussian pdf will
develop to a non-Gaussian one, and will not be defined by the mean and the variance only.
As it was already mentioned in the introduction, the numerical integration of the non-
linear differential equations determining the time evolution of the pdf is not feasible. There
is no possibility to calculate the exact dynamical time evolution of the moments involved
in the Kalman filter derivation. Thus, from a theoretical point of view the Kalman filter
and the fixed interval smoother cannot be used. However, different approximations can be
applied. The analysis, of course, will not be optimal in this case. We will try to implement
four different approximations to the standard Kalman filter, each of them utilises different
optimality features of the Kalman filter. We will compare them by the quality of ”the
analysed state” itself and by the quality of the forecast constructed from the analysed
state. In the rest of this section we will give descriptions of these different approaches
and we will emphasize the optimal features of the Kalman filter and the smoother that
they will utilise.

In fact the numerical propagator F i−1(·) is able to describe only the time evolution of
nearly balanced model states. We have discussed valid physical balances in section 2.7,
i.e. how realistic atmospheric fields should look like. When new observations are assim-
ilated, unrealistically large disturbances destroying the balance are created due to the
imperfections of the observations. The differential equations, used in the shallow wa-
ter model, are not able to provide a realistic dynamical evolution from such unbalanced
initial states. Every time new observations are introduced, we therefore use the normal
mode initialisation procedure, which helps to obtain a balanced state that can be gov-
erned by the propagator. The complete propagator used in the assimilation scheme is
F̄ i−1(·) = F i−1 · fnmi = (O I)F · F · . . . · FF ∗ · fnmi(·), where fnmi(·) denotes the
iterative non-linear normal mode initialisation procedure. For the ”true” model state X̄
(the projection of the atmospheric state on the discrete model space, in general, and the
one which was used to simulate observations, in our case) the results obtained with and
without the normal mode initialisation procedure will be very similar, because the normal
mode initialisation procedure will only marginally influence an already ”balanced” state.
The tangent-linear normal mode initialisation operator is a projection operator which has
eigenvalues being equal to 1’s and 0’s. The application of the initialisation operator is one
of the reasons why the dynamical propagator is singular for the one dimensional shallow
water model.

If a propagator is non-linear, it is impossible to obtain the true deterministic evolution
of moments. But the evolution of the moments can be approximated, using a linearisa-
tion of the dynamics. Certainly, the degree of approximation will depend on the chosen
linearisation.

Let f(·) denote a non-linear function. With the first-order of linearisation

(77) X̂(t) = f(X̂(t0)) ≈ f(â) +
∂f

∂X̂
(â)(X̂(t0)− â)
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where â is some chosen point on the definition interval of the function. The functional
∂f

∂X̂
(â) is called a tangent linear operator at point â. Then, with the first-order of lineari-

sation

E(X̂(t)) ≈ f(â) +
∂f

∂X̂
(â)(E(X̂(t0))− â)

V ar(X̂(t)) = E(X̂(t)− E(X̂(t)))2 ≈ ∂f

∂X̂
(â)var(X̂(t0))(

∂f

∂X̂
(â))T

If we choose a = E(X̂(t0)), the formula for evolution of the mean simplifies to E(X̂(t)) ≈
f(â) = f(E(X̂(t0))). For the variance, the formula of the approximate evolution remains
essentially the same, with the tangent linear operator evaluated at a particular point.

In the remaining part of this subsection we will discuss the tangent linear operators that
we will use, namely the tangent linear operator of the dynamical propagator and the
tangent linear observation operator.

For the composite dynamical propagator

F̄ i−1(·) = F i−1 · fnmi = (O I) · F · F · . . . · F · F ∗ · fnmi(·)

the tangent linear operator consists of s = ti − ti−1 + 1 matrix multiplications

T̄ i−1(â) = (O I) · T (âs−1) · . . . · T (â1) · T ∗(â0) · Tnmi(â),

where â0 = fnmi(â) ,â1 = (O I)F ∗(â0), , â2 = (O I)F (â1) ,. . . , âs−1 = (O I)F (âs−2)
is a trajectory of the model state evolution by the non-linear operator F̄ i−1(·).
For a non-linear operator f(X̂) = CX̂ +B(X̂), the corresponding tangent linear operator
evaluated at point â is given by

T (â) = C +
∂B

∂X̂
(â)

The non-linear operators F (·), F ∗(·), fnmi(·) contain the non-linear parts in form of a
linear function of the non-linear vector B(â)

B(X̂) =




Bu
k , −M ≤ k ≤ M

Bv
k , −M ≤ k ≤ M

Bφ
k , −M ≤ k ≤ M


 =




−Fk(F−1(û)F−1(ilû)), −M ≤ k ≤ M
−Fk(F−1(û)F−1(ilv̂)), −M ≤ k ≤ M

−ikFk(F−1(û)F−1(φ̂)), −M ≤ k ≤ M


 =



− 1

N

∑N
j=1(

∑M
l=−M ûle

il̂xj
∑M

m=−M im̂ûmeim̂xj)e−ik̂xj , −M ≤ k ≤ M

− 1
N

∑N
j=1(

∑M
l=−M ûle

il̂xj
∑M

m=−M im̂v̂meim̂xj)e−ik̂xj , −M ≤ k ≤ M

− 1
N

∑N
j=1(

∑M
l=−M ûle

il̂xj
∑M

m=−M φ̂meim̂xj)ik̂e−ik̂xj , −M ≤ k ≤ M




(78)

Let the state â be defined as a vector (ûk, v̂k, φ̂k), −M ≤ k ≤ M . The tangent-linear
operator ∂B

∂X̂
(â) is then a 3 ∗ (2M + 1)-dimensional square matrix with coefficients
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∂Bu
k

∂ul
(a), 0, 0

∂Bv
k

∂ul
(a),

∂Bv
k

∂vl
(a), 0

∂Bφ
k

∂ul
(a), 0,

∂Bφ
k

∂φl
(a)




where

∂Bu
k

∂ul

= − 1

N

N∑
j=1

(
∂u

∂x
(xj) + il̂u′(xj))e

i(l̂−k̂)xj

∂Bv
k

∂ul

= − 1

N

N∑
j=1

(
∂v

∂x
(xj))e

i(l̂−k̂)xj

∂Bv
k

∂vl

= − 1

N

N∑
j=1

il̂u′(xj)e
i(l̂−k̂)xj

∂Bφ
k

∂ul

= − 1

N

N∑
j=1

ik̂φ′(xj)e
i(l̂−k̂)xj

∂Bφ
k

∂φl

= − 1

N

N∑
j=1

ik̂u′(xj)e
i(l̂−k̂)xj

(79)

k = −M, . . . ,M and l = −M, . . . , M . xj, j = 1, . . . , N are the grid point positions.

l̂ = 2π
L

l, k̂ = 2π
L

k, ∂u
∂x

(xj) =
∑M

k=−M ik̂ûke
ik̂xj and ∂v

∂x
(xj) is defined in a similar way.

It is straightforward to obtain the explicit expression for the tangent-linear dynamical
propagator T̄ i−1(â) from the given formulation of the non-linear propagator F̄ i−1(·) and
from ∂B

∂X̂
(â) defined above. We will not give it in full details to avoid too complex notations.

It is important to notice that the tangent-linear normal mode initialisation operator
Tnmi(â) is a projection operator, with eigen-values equal 1 or 0. The tangent-linear normal
mode initialisation approximates a slow manifold, in which the solution of the differen-
tial equations develops in a smaller dimensional linear subspace along the trajectory of a
chosen model state a. Even the non-singular covariance matrix B0 becomes singular after
the transformation. All the covariance matrices Bt, Vt, t ≥ 1, as well as V0 involved in
Kalman filter and in the classical fixed interval smoother formulation, with exception for
the initial B0, are singular in our model. It means that the whole cloud of the posterior
and the posterior predictive distributions are located in a smaller dimensional subspace.
This is probably a too restrictive requirement. The space of the non-linear model state
development is just close to a singular one.

We have defined three non-linear observation operators nlZ1, nlZ2, nlZ3 in section 2.5.
The tangent linear operators tlZ1, tlZ2, tlZ3 are 3∗3×3∗ (2M +1)-dimensional matrices
with the same structure of triples




∂nlZ1

∂uk
, ∂nlZ1

∂vk
, 0

∂nlZ2

∂uk
, ∂nlZ2

∂vk
, 0

0, 0, ∂nlZ3

∂φk
,


 , k = −M, . . . , M
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For all three non-linear operators the two first functions of triples are the same, so the
tangent-linear operators of two first functions in a triple are the same as well.

∂nlZ1

∂uk

=
ū + uj

(ū + uj)2 + v2
j

eik̂xj

∂nlZ1

∂vk

=
vj

(ū + uj)2 + v2
j

eik̂xj

∂nlZ1

∂φk

= 0

(80)

∂nlZ2

∂uk

= − vj

(ū + uj)2 + v2
j

eik̂xj

∂nlZ2

∂vk

=
uj + ū

(ū + uj)2 + v2
j

eik̂xj

∂nlZ2

∂φk

= 0

(81)

The third function of a triple is different for every observation operator, with the tangent-
linear operators having the following expressions

(82)
∂nlZ3

1

∂uk

= 0,
∂nlZ3

1

∂vk

= 0,
∂nlZ3

1

∂φk

=
1

φ̄
10.

+ φj

eik̂xj

(83)
∂nlZ3

2

∂uk

= 0,
∂nlZ3

2

∂vk

= 0,
∂nlZ3

2

∂φk

=
1

φ̄
50.

+ φj

eik̂xj

(84)
∂nlZ3

3

∂uk

= 0,
∂nlZ3

3

∂vk

= 0,
∂nlZ3

3

∂φk

=
1

(1 + 20.
φ̄

φj)2
eik̂xj

With uj, vj, φj we have denoted fields evaluated at a particular grid-point xj, j = 1, . . . , N

The linear observation operators can be expressed in matrix form. Then the tangent
linear and the linear operators are the same, with a triple having the form

(85) Z =




eik̂xj , 0, 0

0, eik̂xj , 0

0, 0, eik̂xj




with a dummy index k corresponding to wave-number.

4.1. The extended Kalman filter. Let denote as a forecast af
i the time evolution

of the ”best” possible estimation of the ”true” state up to time ti, af
i = F̄ i−1(ai−1),

i = 1, . . . , Nass. If the time evolution of the forecast error δX̂(t) = X̄(t) − af
t is close to

linear, then the distribution of the forecast errors, initially assumed to be Gaussian, must
stay close to a Gaussian one.
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The dynamics of the forecast errors can be approximated by the linear development
through the tangent linear operator T̄ i−1(ai−1) around the non-linear trajectory of the
”best” estimate ai−1 obtained after the i− 1 assimilation terms.

δX̂(ti) = X̄(ti)− af
i = F̄ i−1(X̄(ti−1))− F̄ i−1(ai−1) ≈ T̄ i−1(ai−1)δX̂(ti−1)

In the extended Kalman filter approach, instead of using the non-linear model (75), de-
scribing the ”true” state evolution, the tangent-linear model, which describes the evolution
of the forecast errors approximately, is considered.

yi = Z(af
i ) + tlZ(af

i )δX̂(ti) + εi, i = 1, . . . , Nass(86)

δX̂(ti) = T̄ i−1(ai)δX̂(ti−1),(87)

Under such dynamics δX̂(ti) has a Gaussian distribution with the zero mean and the
covariance matrix Bi obtained from the recursive equations given below. The estimation
of the ”true” state is equal the sum of the non-linear evolution of the ”best” state obtained
after the previous loop of data assimilation and the influence from the innovation vector

E(X̂(ti) | Yi−1) = F̄ i−1(ai−1)

E(X̂(ti) | Yi) = ai = af
i + Kivi

Here we summarise the recursive equations for the extended Kalman filter

ai =af
i + Kivi,

Bi =Bf
i −Bf

i tlZT KT
i ,

vi =yi − Z(af
i ),

Ki =Bf
i tlZT F−1

i ,

Fi =tlZBf
i tlZT + H,

af
i =F̄ i−1(ai−1)

Bt
i =T̄ i−1(ai−1)Bi−1(T̄

i−1(ai−1))
T , i = 1, . . . , Nass

(88)

Due to the non-linear dynamics and possibly to non-linear observation operators, an
analysed field cannot be expressed as a linear function of the assimilated observations.
The extended Kalman filter construct an analysed field E(X̂(ti) | Yi) at time ti as a linear

function of newly incoming observations yi and the forecast E(X̂(ti) | Yi−1). This forecast
is a non-linear function of already assimilated observations Yi−1 and an initial forecast
a0. In Figure 13 we will illustrate some results of a data assimilation process, where we
have inserted a set of 9 observations at 8 time instants. The sequence of observations
inserted at each time instant consists of the following observations yi = {y(i, j), j =
1, . . . , 9} = {u1,i, v1,i, φ1,i, u2,i, v2,i, φ2,i, u3,i, v3,i, φ3,i}, located at positions x11, x21, x31 for
the u-wind and the geopotential observations and at positions x12, x22, x32 for the v-wind
components, respectively. For the sake of simplicity of representation, we will show the
influence of the observations on the analysed field value for a certain grid-point x0(here,
x0 = x16).
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Let us decompose the Kalman gain matrix K3(2M+1)×9 in three gain sub-matrices, cor-
responding to the influence of the 9 observed quantities on the model state spectral u-,
v-wind components and geopotential, respectively :

K3(2M+1)×9 = (Ku
(2M+1)×9, K

v
(2M+1)×9, K

φ
(2M+1)×9)

Then the analysed fields ua
i (x

0), va
i (x

0), φa
i (x

0) at the position x0 for the time instant ti
can be expressed as a sum

ua
i (x

0) = wu(af
i ) +

3∑
j=1

(wu
j1,iuj,i + wu

j2,ivj,i + wu
j3,iφj,i)(89)

va
i (x

0) = wv(af
i ) +

3∑
j=1

(wv
j1,iuj,i + wv

j2,ivj,i + wv
j3,iφj,i)

φa
i (x

0) = wφ(af
i ) +

3∑
j=1

(wφ
j1,iuj,i + wφ

j2,ivj,i + wφ
j3,iφj,i)

(90)

The part of the sum originating from the forecast itself has the following expression

wu(af
i ) =

M∑

k=−M

uf
ke

ik̂x0 −
M∑

k=−M

(
9∑

j=1

Ku
k,jZ

j(af
i ))e

ik̂x0

wv(af
i ) =

M∑

k=−M

vf
keik̂x0 −

M∑

k=−M

(
9∑

j=1

Kv
k,jZ

j(af
i ))e

ik̂x0

wφ(af
i ) =

M∑

k=−M

φf
ke

ik̂x0 −
M∑

k=−M

(
9∑

j=1

Kφ
k,jZ

j(af
i ))e

ik̂x0

(91)

Here we have denoted by Zj(af
i ) the j-th, 1 ≤ j ≤ 9, projection of the model state on the

observation space by the observation operator.

The weights of the observations in the expression of the analysed u-wind component field
at the point x0 can be obtained by the following expressions

wu
11,i =

M∑

k=−M

(Ku
k,1)e

ik̂x0

, wu
21,i =

M∑

k=−M

(Ku
k,4)e

ik̂x0

, wu
31,i =

M∑

k=−M

(Ku
k,7)e

ik̂x0

,

wu
12,i =

M∑

k=−M

(Ku
k,2)e

ik̂x0

, wu
22,i =

M∑

k=−M

(Ku
k,5)e

ik̂x0

, wu
32,i =

M∑

k=−M

(Ku
k,8)e

ik̂x0

,(92)

wu
13,i =

M∑

k=−M

(Ku
k,3)e

ik̂x0

, wu
23,i =

M∑

k=−M

(Ku
k,6)e

ik̂x0

, wu
33,i =

M∑

k=−M

(Ku
k,9)e

ik̂x0

,
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The weights for the observations in the expression for the v-wind and the geopotential
analysed fields can be expressed in an analogous way by using Kv and Kφ, respectively,
instead of Ku.

In Figure 13 we illustrate the result of a data assimilation procedure by the extended
Kalman filter. The sequence of 9 observations described above was assimilated at 8
time instants. The upper pair of diagrams show the impact of the observations and the
forecast itself on the analysed u-wind field and the lower pair of diagrams show the impact
on the analysed v-wind field. The upper parts of the diagrams present weights of the 9
observations

w11,i, w12,i, w13,i, w21,i, w22,i, w23,i, w31,i, w32,i, w33,i

every time ti, i = 1, . . . , 8 observations were assimilated. The lower parts of each pair of
diagrams present the impact of the forecast itself w(af

i ) and the impact of the observations,
which is equal to a multiplication of an observation value with its weight.

w11,iu1,i, w12,iv1,i, w13,iφ1,i, w21,iu2,i, w22,iv2,i, w23,iφ2,i, w31,iu3,i, w32,iv3,i, w33,iφ3,i

Initially we have assumed that the observations have a precision comparable with, and
for some observations even higher than, the precision of the background field. Due to
this, the weights of the observations are quite high in the beginning of data assimilation
process. The observations located closer to the point of interest have higher weights than
the observations located further away. The largest impact have observations of the v-
wind component for the construction of the analysed fields of both wind components.
As we already have discussed, for the shallow water model with the parameters that we
have assumed, the two other fields adjust in a broad sense to the v-wind component.
But geostrophic adjustment is always a process of mutual adjustment and all types of
observations bring important information. For the construction of the analysed state of
the u-wind component, the direct observations of the field are also important, even if the
u-wind is a deduced quantity for the model. Every data assimilation term improves the
precision of an analysed field, reducing its error variance. The dynamical propagator is
not completely realistic in our model since it does not conserve total energy. The minor
dissipation of energy on small scales by the time filter and by the horizontal diffusion can
noticeably reduce the total energy after a long time integration. Probably, a probabilistic
model state would collapse into a single solution after an infinite time integration. The
model state becomes non-homogeneous in grid-point space after a time integration, and
the initialisation procedure and the variance become dependent on position and time. In
general, every time observations are assimilated, weights of newly incoming observations
reduce. Small deviations from this pattern are caused by the non-homogeneity of the
model state.

However, if we investigate the impact that different observations have on the analysed
fields, we find that the largest impact comes from the geopotential observations, due to
the large amount of energy contained in the geopotential field.

As we can see from Figure 14, the important information for the construction of the
analysed field can be extracted from all kinds of observations. In the figure to the left,
u-wind observations are assumed to have very high precision compared to the other types
of observations. They are given very high weights even if the amount of a total energy
contained in the field is very small. The impact of the u-wind observations on the analysed
geopotential field is noticeable even after several cycles of data assimilation procedure.
Again, even if the geopotential observations are erroneous, they have a large impact on
the analysed field due the large amount of energy in the geopotential field. The figure
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Figure 13. The impact of observations and the forecast itself on the anal-
ysed field for the u-wind (the upper diagrams) and the v-wind (the lower
diagrams) components, obtained as a result of data assimilation with the
extended Kalman filter. Observations weights (upper part of the diagrams)
and observations impacts (lower part of the diagrams) are illustrated. Re-
sults are given for each assimilation term (i = 1, . . . , 8 on the x-axis) and
for each observed quantity by a vertical bar. In the lower part of the di-
agrams the impact of the forecast itself is also given (the position of the
vertical bars are marked on the x-axis). The values of analysed state after
each assimilation term are given by dashed lines.

to the right illustrates the construction of the analysed geopotential field by assimilating
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Figure 14. The impact of observations and the forecast itself on the anal-
ysed field for the geopotential obtained as a result of data assimilation with
the extended Kalman filter. In the figure to the left, the u-wind observa-
tions have the highest precision, and in the figure to the right the v-wind
components have the highest precision. For the detailed figures explanation
see Figure 13 and text.

more realistic observations. Both the v-wind and the geopotential observations have quite
high precision, comparable with the variance of initial background state. The results for
both data assimilation procedures are quite close. In the beginning of data assimilation
procedure, when the impact of observations is strong, comparable to the impact of the
forecast itself, some observations seems to have contradicting influence. But, indeed, this
is a positive aspect of filtering. Different observations neutralise disturbances that single
observations and observation error create.

The original non-linear model is approximated by a sequence of tangent linear models.
The evolution of the pdf is approximated by a sequence of Gaussian distributions. The
optimality of the obtained analysed state will depend on how well the pdf is approximated
by the Gaussian at every particular moment. If the distribution is skewed, the mean
of the distribution can be located far away from the mode toward the heavy tail. The
approximate optimality in the sense of the mean square error can be very poor. If the prior
distribution is assumed to be Gaussian, quite strong evidence from the data is required
to move substantially the mode of the posterior distribution. The method outlined above
can give a quite good approximation of the posterior mode.

The filtering equation, summarised above, provides not only the time evolution of the
moments or the time evolution of the mode, but the approximate evolution of the whole
pdf.

4.2. The bias corrected Kalman filter. For any model, governed by non-linear dy-
namics, the time evolution of the mean of the population is not given by the propagator
itself.

E(X̂(ti) | Yi−1) = E(F̄ i−1(X̂(ti−1)) | Yi−1) 6= F̄ i−1(E(X̂(ti−1) | Yi−1))
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A better approximation of the time evolution of the mean can be obtained by using a
higher-order Taylor expansion around the mean.

With the definition of the tangent linear (77) and the Hessian (vector of matrixes)

(93) H = Hijk =
∂2F̄ i(X̂)

∂X̂jX̂k

= ∇∇F̄ i(X̂)

the propagator can be approximated by a quadratic function in δX̂m(t) = X̂(t)−E(X̂(t) |
Yi−1) for t ≥ ti−1. Denoting the non-linear one time-step propagator F (·), the second
order Taylor expansion around the mean is

F (X̂(t)) ≈ F (am
t ) +

∂F

∂X̂
(am

t )δX̂m(t) +
1

2
(δX̂m(t))THδX̂m(t)

where am
t = E(X̂(t) | Yi−1). Then the bias corrected time development of the mean can

be obtained by

am
t+1 = E(F (X̂(t)) | Yi−1) =

≈ F (am
t ) +

∂F

∂X̂
(am

t )E(δX̂m(t) | Yi−1) +
1

2
E((δX̂m(t))THδX̂m(t) | Yi−1)

≈ F (am
t ) + 0 +

1

2

M∑
j=−M

M∑

k=−M

(Bm
jk,tHj,k)

(94)

Here Bm
t = V ar(X̂(t) | Yi−1). The notation Bm

jk,t denote the element of the covariance
matrix Bm

t corresponding to the covariance of jth and kth spectral components of the
model state variable. Up to the first-order approximation, the time evolution of the poste-
rior variance-covariance matrix is described by the tangent-linear of the model dynamics
taken around the conditional mean.

(95) Bm
t+1 ≈

∂F

∂X̂
(am

t )Bm
t (

∂F

∂X̂
(am

t ))T

The shallow water model is, in fact, a quadratic function in X̂, because it contains only
linear and quadratic terms. The Hessian for the shallow water dynamical propagator is
constant. We will not give the explicit expression for the Hessian itself, but present the
whole correction term

∑M
j=−M

∑M
k=−M(Bm

jk,tHj,k), which is a linear function of Bnlcorr

Bnlcorr =




Bu
nlcorr,k

Bv
nlcorr,k

Bφ
nlcorr,k


 =




E(
∑M

l=−M

∑M
m=−M

∂2F uk

∂ul∂um
δûm

l δûm
m)

E(2
∑M

l=−M

∑M
m=−M

∂2F vk

∂ul∂vm
δûm

l δv̂m
m)

E(2
∑M

l=−M

∑M
m=−M

∂2F φk

∂ul∂φm
δûm

l δφ̂m
m)




Here
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F uk =
1

N

N∑
j=1

(
M∑

m1=−M

ûm1e
im̂1xj

M∑
m2=−M

im̂2ûm2e
im̂2xj)e−ik̂xj

F vk =
1

N

N∑
j=1

(
M∑

m1=−M

ûm1e
im̂1xj

M∑
m2=−M

im̂2v̂m2e
im̂2xj)e−ik̂xj

F φk =
1

N

N∑
j=1

(ik̂
M∑

m1=−M

ûm1e
im̂1xj

M∑
m2=−M

φ̂m2e
im̂2xj)e−ik̂xj

(96)

Then, after performing partial differentiation

Bu
nlcorr,k = E(

M∑

l=−M

M∑
m=−M

1

N

N∑
j=1

(eim̂xj il̂eil̂xj + eil̂xj im̂eim̂xj)e−ik̂xjδûm
l δûm

m)

= E(
M∑

l=−M

M∑
m=−M

i(l̂ + m̂)
1

N

N∑
j=1

ei(l̂+m̂−k̂)xjδûm
l δûm

m)

= E(
M∑

l=−M

ik̂I{−M≤k̂−l̂≤M}δû
m
l δûm

k−l) =

=
M∑

l=−M

ik̂I{−M≤k̂−l̂≤M}cov(δûlδûk−l),

I{A} =

{
1 , if A is true

0 , if A is false

because for a discrete Fourier transform with period L , x0 ≤ . . . ≤ xj . . . ≤ xN = L

(97)
1

N

N∑
j=1

ei(l̂+m̂−k̂)xj =

{
1 , if 1̂ + m̂ = k̂,

0 , if l̂ + m̂− k̂ 6= 0

In a completely analogous way we can obtain Bv
nlcorr,k, B

φ
nlcorr,k.

Bv
nlcorr,k = 2E(

M∑

l=−M

M∑
m=−M

1

N

N∑
j=1

(eil̂xj im̂eim̂xj)e−ik̂xjδûm
l δv̂m

m)

= 2E(
M∑

l=−M

M∑
m=−M

im̂
1

N

N∑
j=1

ei(l̂+m̂−k̂)xjδûm
l δv̂m

m)

= 2
M∑

l=−M

i(k̂ − l̂)I{−M≤k̂−l̂≤M}cov(δûlδv̂k−l)

(98)
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Bφ
nlcorr,k = 2E(

M∑

l=−M

M∑
m=−M

1

N

N∑
j=1

(eil̂xj ik̂eim̂xj)e−ik̂xjδûm
l δφ̂m

m)

= 2E(
M∑

l=−M

M∑
m=−M

ik̂
1

N

N∑
j=1

ei(l̂+m̂−k̂)xjδûm
l δφ̂m

m)

= 2
M∑

l=−M

ik̂I{−M≤k̂−l̂≤M}cov(δûlδφ̂k−l)

(99)

In the case of a linear observation operator, the bias corrected Kalman filter is described
by the original system of equations

yi =ZX̂(ti) + εi, i = 1, . . . , Nass

X̂(ti) = F̄ i−1(X̂(ti−1)), X̂(t0) ∼ N (a0, B0)

with a second order approximation of the dynamical evolution for the mean, namely

am(t) = E(X̂(t) | Yi) =F (am
t−1) +

1

2

M∑
j=−M

M∑

k=−M

(Bm
jk(t− 1)Hj,k),

Bm(t) = V ar(X̂(t) | Yi) = T (am(t− 1))Bm(t− 1)T T (am(t− 1)), t > ti−1;

(100)

am
i = am(ti), Bm

i = Bm(ti). where F (·) denotes the one step time propagator, and
T (am

t−1) denotes the tangent linear for F (·) around the mean evolution from the previous

analysed state ai−1 = E(X̂(ti−1) | Yi−1), Bjk,i−1 = Cov(X̂j(ti−1), X̂k(ti−1) | Yi−1).

If the relationship between the model state and observations is linear, the analysed state
can be constructed based on the principles of the second-order linear regression, which
is free from any assumptions on the distribution function except for the existence of the
second moment. If we would know exactly the time evolution of E(X̂(t) | Yi−1) and

V ar(X̂(t) | Yi−1), ti−1 < t ≤ ti, the obtained analysed state would be equal to the mean

E(X̂(ti) | Yi) and would be optimal in the sense of the mean square error. However, we do
not know exactly the time development of the statistical moments, but we can only make
an approximation. Thus the bias corrected Kalman filter recursion formulas summarised
below provide the analysed state which is close to the optimal one.

ai =am
i + Kiv

m
i ,

Bi =Bm
i −Bm

i ZT KT
i ,

vm
i =yi − Zam

i ,

Ki =Bm
i ZT F−1

i ,

Fi =ZBm
i ZT + H

(101)

with the dynamical update given in (100).

In the case of a non-linear observation operator, the relationship between the model state
X̂(ti) and the innovation vector
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vi = yi − E(nlZ(X̂(ti)) | Yi−1) = nlZ(X̂(ti)) + εi − E(nlZ(X̂(ti)) | Yi−1)

is no longer linear, but this need not prevent us from using the best linear predictor, given
the history of observations Yi−1. For a single innovation vi and in a sense of the least
posterior squared mean, the best linear predictor is

(102)
¯̂
X(ti)(Yi−1, vi) = α̂ + β̂vi = E(X̂(ti) | Yi−1) + cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))

−1vi

and minimises E((X̂(ti)− ¯̂
X(ti))

2 | Yi−1).

The regression residual θi is dependent of vi. The regression residual has the following
form

(103) θi = X̂(ti)− E(X̂(ti) | Yi−1) + cov(X̂(ti), vi | Yi−1)(var(viYi−1))
−1vi

Regression residual θi, given the history of observations Yi−1, has zero expectation, is
uncorrelated with the innovation vi, and has a constant variance.

var(θi | Yi−1) = var(X̂(ti) | Yi−1)

+cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))
−1var(vi | Yi−1)(var(vi | Yi−1))

−1(cov(X̂(ti), vi | Yi−1))
T−

−2cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))
−1(cov(X̂(ti), vi | Yi−1))

T

=var(X̂(ti) | Yi−1)− cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))
−1(cov(X̂(ti), vi | Yi−1))

T

In fact, the posterior mean E(X̂(ti) | Yi) is not equal to the best linear predictor (102)

E(X̂(ti) | Yi) = E(X̂(ti) | Yi−1) + cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))
−1vi + E(θi | Yi)

But if E(θi | Yi) is close to zero, the posterior mean recursion will hold approximately, and
we will use this approximation to determine the posterior mean evolution, considering

E(X̂(ti) | Yi) =E(X̂(ti) | Yi−1)+

+cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))
−1vi

(104)

Notice that var(X̂(ti) | Yi) = var(θi | Yi) and

var(θi | Yi−1) = E(var(θi | Yi) | Yi−1) + var(E(θi | Yi) | Yi−1)

≈ E(var(θi | Yi) | Yi−1),

if E(θi | Yi) is close to the zero. Then the recursive formulas for the posterior variance
can be justified in the form

E(var(X̂(ti) | Yi) | Yi−1) =var(X̂(ti) | Yi−1)−
−cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))

−1(cov(X̂(ti), vi | Yi−1))
T
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However, the usual Kalman filter recursion for the posterior variances, which relates
variances themselves, can hold only if E(var(θi | Yi) | Yi−1) ≈ var(θi | Yi), and this can
occur only if θi is independent of vi.

Despite of what was said, we will use the following formula to approximate the posterior
variance development

var(X̂(ti) | Yi) = var(Xti | Yi−1)−cov(X̂(ti), vi | Yi−1)(var(vi | Yi−1))
−1(cov(X̂(ti), vi | Yi−1))

T

The reason why all these simplifications can be accepted is that we have chosen a linear
regression as the statistical model, and this means that we assume that the relationship
between regressors and regressand to be close to a linear one.

Treating a non-linearity in the innovation vector, we will use the second order closure and
expand nlZ(·) around the posterior predictive mean

nlZ(X̂(ti)) ≈nlZ(E(X̂(ti) | Yi−1)) + tlZ (X̂(ti)− E(X̂(ti) | Yi−1))+

+
1

2

M∑
j=−M

M∑

k=−M

((X̂j(ti)− E(X̂j(ti) | Yi−1))(X̂−k(ti)− E(X̂−k(ti) | Yi−1))Hjk,nlZ)

where HnlZ denotes the Hessian of the non-linear observation operator and tlZ denotes
the tangent linear observation operator evaluated at E(X̂(ti) | Yi−1). Then the statistical
moments used in the expression (104) can be approximated by

E(nlZ(X̂(ti)) | Yi−1) ≈nlZ(am
i ) +

1

2

M∑
j=−M

M∑

k=−M

(Bm
jk,iHjk,nlZ),

cov(X̂(ti), vi | Yi−1) ≈Bm
i tlZT

var(vi | Yi−1) ≈tlZ Bm
i tlZT + H

(105)

where the tangent linear observation operator is evaluated at am
i = E(X̂(ti) | Yi−1).

We would like to stress that a number of those limitations in the application of the bias
corrected Kalman filter which occur in the case of a non-linear observation operator are
common for the whole framework of Kalman filtering. First of all, as it follows from
the properties of the second order regression (48), the expectation of the posterior vari-

ance E(var(X̂(ti) | Yi)), which takes into account all possible outcomes of observations,

is estimated instead of the desirable var(X̂(ti) | Yi), which depends on the particular
realisation of the observation sampling only. In fact, the posterior variance is indepen-
dent of the observations only in the case of a linear observation operator, which implies
E(var(X̂(ti) | Yi)) = var(X̂(ti) | Yi). In the case of a non-linear observation operator, the
expectation of the posterior variance and the actual realisation of the posterior variance
can differ substantially. The approximation of the posterior variance (105) that we are us-
ing in the Kalman filter framework estimates the expectation of the posterior variance and
not the posterior variance itself, and does not give an opinion about the precision of the
unobservable model state variable. The weak dependence of the estimate on the observa-
tions enters through the evaluation of the tangent linear observation operator tlZ, because
the point of linearization itself depends on the observations. Secondly, the second order
closure in the estimate of the posterior variance-covariance of the model state variable
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can lead to an underestimation of the actual value of the posterior variance-covariance,
and it can produce extra non-homogenous variance. The overestimated/underestimated
posterior predictive variance results in too high/too low weights of the observations. This
is why, for example, the observations taken at the two first positions from the left in
Figure 12 have larger impact on the analysed field.

Here we summarise the recursion formulas that we will use in the bias-corrected Kalman
filter formulation, in the case of a non-linear observation operator

ai =am
i + Kiv

m
i ,

Bi =Bm
i −Bm

i tlZT (Fi)
−1 tlZ Bm

i ,

vm
i =yi − nlZ(am

i )− 1

2

M∑
j=−M

M∑

k=−M

(Bm
jk,iHjk,nlZ),

Ki =Bm
i tlZT F−1

i ,

Fi =tlZ Bm
i tlZT + H

(106)

which relates the predictive statistical moments am
i = E(X̂(ti) | Yi−1), B

m
i = var(X̂(ti) |

Yi−1) that are obtained in the same way as (100), with posterior moments ai = E(X̂(ti) |
Yi), Bi = var(X̂(ti) | Yi). The tangent-linear observation operator is evaluated at am

i

under the i-th assimilation term.

Here we will give the explicit expressions for the second-order correction∑M
j=−M

∑M
k=−M(Bm

jk,iHjk,nlZ) in the calculation of the innovations, depending on the type

of the non-linear observation operator we use (see section 2.5). For all these observation
operators, the second-order correction vector has the same structure of triples




BZ1

nlcorr

BZ2

nlcorr

BZ3

nlcorr


 =




∑M
k=−M

∑M
l=−M

∂2nlZ1

∂uk∂ul
Bm

i (ûk, ûl) + ∂2nlZ1

∂uk∂vl
Bm

i (ûk, v̂l) + ∂2nlZ1

∂vk∂ul
Bm

i (v̂k, ûl) + ∂2nlZ1

∂vk∂ul
Bm

i (v̂k, ûl)∑M
k=−M

∑M
l=−M

∂2nlZ2

∂uk∂ul
Bm

i (ûk, ûl) + ∂2nlZ2

∂uk∂vl
Bm

i (ûk, v̂l) + ∂2nlZ2

∂vk∂ul
Bm

i (v̂k, ûl) + ∂2nlZ2

∂vk∂ul
Bm

i (v̂k, ûl)∑M
k=−M

∑M
l=−M

∂2nlZ3

∂φk∂φl
Bm

i (φ̂k, φ̂l)




Here

∂2nlZ1

∂uk∂ul
=

v2
j−(ū+uj)

2

(ū+uj)2+v2
j
ei(k̂+l̂)xj , ∂2nlZ1

∂vk∂vl
=

(ū+uj)
2−v2

j

(ū+uj)2+v2
j
ei(k̂+l̂)xj , ∂2nlZ1

∂uk∂vl
=

−2vj(ū+uj)

(ū+uj)2+v2
j
ei(k̂+l̂)xj ,

∂2nlZ2

∂uk∂ul
=

2v2
j (ū+uj)

(ū+uj)2+v2
j
ei(k̂+l̂)xj , ∂2nlZ2

∂vk∂vl
=

−2(ū+uj)v
2
j

(ū+uj)2+v2
j
ei(k̂+l̂)xj , ∂2nlZ2

∂uk∂vl
=

v2
j−(ū+uj)

2

(ū+uj)2+v2
j
ei(k̂+l̂)xj

The two first correction vector components in a triple BZ1

nlcorr, B
Z2

nlcorr are the same for all
three observation operators we have defined and are given by
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BZ1

nlcorr =
(ū + uj)

2 − v2
j

(ū + uj)2 + v2
j

(var(vj | Yi−1)− var(uj | Yi−1))− 4
vj(ū + uj)

(ū + uj)2 + v2
j

cov(uj, vj | Yi−1)

BZ2

nlcorr = 2
(ū + uj)vj

(ū + uj)2 + v2
j

(var(uj | Yi−1)− var(vj | Yi−1)) + 2
v2

j − (ū + uj)
2

(ū + uj)2 + v2
j

cov(uj, vj | Yi−1)

where var(uj), var(vj), cov(uj, vj) denote the corresponding variances and covariances of
the u- and v- wind components in grid-point space at the xj positions.

For the derivation of the formula above, we have used the relationship between the co-
variance matrices in spectral and grid-point spaces.

M∑

k=−M

M∑

l=−M

ei(k̂+l̂)xjcov(âk, b̂l) = cov(aj, bj)

The third component in a triple of the correction term is different for all three non-linear
observation operators and is given by

B
Z3

1
nlcorr = −var(φj | Yi−1)

(φ̄/10 + φj)2
(107)

B
Z3

2
nlcorr = −var(φj | Yi−1)

(φ̄/50 + φj)2
(108)

B
Z3

3
nlcorr = −40

φ̄

var(φj | Yi−1)

(1 + 20
φ̄
φj)3

(109)

for the first, the second and the third observation operator, respectively.

The higher order closure (equation (100) for the dynamics and equation (104) for the
non-linear observation operator) should improve the results of the dynamical evolution of
the statistics and also provide more proper values of the innovation vectors in comparison
with the extended Kalman filter, for which the non-linearities are approximated up to
the first-order only. A better estimation of an innovation vector will improve the relative
influence of observations in the construction of the analysed state.

The improvement achieved by the application of the bias corrected Kalman filter versus
the extended Kalman filter, treating the observations non-linearly in relation to the model
state variable is presented in Figure 15. The distance between the estimate of the unob-
servable model state and the ”true” model state state is measured by the spatial average
squared error SEKF for the extended Kalman filter (88)

SEKF (i−) =
M∑

k=−M

(af
k,i − X̄k(ti))(a

f
−k,i − X̄−k(ti)) =

1

N

N∑
j=1

(
M∑

k=−M

(af
k,i − X̄k(ti))e

ik̂xj)2

SEKF (i) =
M∑

k=−M

(ak,i − X̄k(ti))(a−k,i − X̄−k(ti))

(110)

Here we denote by af
k,i the k-th spectral component of the model state af

i . For the

bias corrected Kalman filter SEBC(i−) and SEBC(i), 1 ≤ i ≤ Nass are calculated in

an analogous way replacing af
i by am

i (101). In the left part of Figure 15 are shown
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Figure 15. The reduction of the spatial averaged squared error of the
model state variable estimate by application of the bias corrected Kalman
filter. The full line represents assimilation of the ”low” precision data. The
dashed line on the left figure corresponds to the high precision data. The
dashed line on the right figure represents improvement by implementing
the bias correction for dynamical evolution of posterior mean only. The
observations are simulated by the non-linear observation operator nlZ3

(SEKF (i−, i)− SEBC(i−, i)), i.e. reduction in the spatial average squared errors by the
bias corrected Kalman filter in comparison with the extended Kalman filter, obtained
by assimilating data sets with different precisions. Assimilating data with ”high” preci-
sion, the posterior variance of the unobservable model state decreases quickly reflecting
increasing confidence in the unobservable model state variable. Assimilating ”low” preci-
sion data we get the opposite effect. The bias corrections for both the dynamical evolution
of the posterior predictive mean and for the expectation of the observations E(yi | Yi−1)
to be treated below are certainly functions of the posterior predictive variance-covariance
matrix var(X̂(ti) | Yi−1). Therefore, the improvement in the estimate of the unobserv-
able model state by the bias corrected Kalman filter versus the extended Kalman filter
is larger for the low precision data. The improvement provided by the application of
the bias corrected Kalman filter is quite small, around 5 percent on the average, and it
depends strongly on the non-linearity of a observation operator. Simulating the data for
the experiment above we have used the observation operator nlZ3, as we have defined it
in section 2.5. As we can see from the right part of the Figure 15, the major part of the
improvement is due to the implementation for the bias correction of the expectation of
the observations. If we apply the bias correction for the dynamics and keep the approxi-
mation E(nkZ(X̂(ti)) | Yi−1) ≈ nlZ(E(X̂(ti) | Yi−1)) used in the extended Kalman filter,
the improvement of the estimate becomes very small. (See the dashed line in the right
part of Figure 15). The main reason is that the non-linearity of the dynamical evolution
is very weak for the one dimensional shallow water model.

The basic idea of bias corrected Kalman filter was to estimate the development of the
posterior expectation and the posterior variance, putting as small as possible requirements
on the statistical distribution of the population of the unobservable model states. We do
not claim that the bias corrected Kalman filter has implemented the idea perfectly. It
provides a refinement of the extended Kalman filter in treating non-linearities of both
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the dynamics and the observation operator. On the other hand, it provides a smaller
amount of information about the unobservable state than the standard Kalman filter
does, because it estimates only the expected value and the expected squared distance to
the mean. Another problem is that for a population varying in the non-linear subspace, it
is not necessary that the mean of the population belongs to the subspace. In this chapter
we have discussed those non-linear conditions that the real atmosphere must satisfy. The
shallow-water model differential equations describe only the time evolution of existing
states, which means states satisfying the conditions of the physical balance. If we want to
use the obtained estimation of the mean as a point estimate of the unobservable state to
provide a deterministic future forecast, the mean must be an existing state itself. Because
the balance is close to the linear one, it is hoped that a mean, being a linear function of
existing states, must be close to some existing state as well.

4.3. The time-window smoother. For the derivation of the time-window smoother,
let Y = {y1, . . . , yNass} denote a subset of observations, which have fallen in the time-
window t0 < t ≤ tNass . Assuming a perfect dynamical model (75), the initial state is the
only unobservable model variable, the inference about we want to obtain, based on the
observed data Y .

p(X̂(t0), X̂(t1), . . . , X̂(tNass) | Y) = p(X̂(t0) | Y) ∝ p(X̂(t0),Y)

Assuming a Gaussian pdf for the initial state p(X̂(t0)) ∼ N (a0, B0) and independent

Gaussian observation errors, the joint distribution p(X̂(t0),Y) will be Gaussian as well.

p(X̂(t0),Y) = p(X̂(t0))
Nass∏
j=1

p(εj) ∝

∝ exp

(
−0.5

[
(X̂(t0)− a0)

T B−1
0 (X̂(t0)− a0) +

Nass∑
j=1

{yj − Z(X̂(tj))}T H−1{yj − Z(X̂(tj))}
])

(111)

where X̂(tj) are deterministically determined from X̂(t0) by the model dynamics X̂(tj) =

F tj(X̂(t0)), and Z(·) denotes an observation operator, being a linear or a non-linear one.

The posterior mode X̂(t0) is the solution of the vector equation

∂ log p(X̂(t0) | Y)

∂X̂(t0)
=

∂ log p(X̂(t0),Y)

∂X̂(t0)
= 0

In the case of our model, the posterior mode can be determined as a solution to the
following non-linear equation

(112)

B−1
0 (X̂(t0)− a0) +

Nass∑
j=1

(
∂F tj(X̂(t0))

∂X̂(t0)
)T (

∂Z(F tj(X̂(t0)))

∂F tj
)T H−1{yj − Z(F tj(X̂(t0)))} = 0

or the system of non-linear equations
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B−1
0 (X̂(t0)− a0) +

Nass∑
j=1

(
∂F tj(X̂(t0))

∂X̂(t0)
)T (

∂Z(X̂(tj))

∂X̂(tj)
)T H−1{yj − ZX̂(tj)} = 0

X̂(tj) = F̄ j−1(X̂(tj−1)), j = 1, . . . Nass

(113)

Notice that

F tj(X̂(t0)) = F̄ j−1(X̂(tj−1)) = F̄ j−1(F̄ j−2(. . . F̄ 0(X̂(t0)) . . .))

The tangent linear operator corresponding to the non-linear model, governing the model
development over the whole time period (t0, tj), is a series of multiplication with the

tangent linear matrix operators T̄ k−1(X̂(tk−1)), governing the model development over
the sub-periods (tk−1, tk), 1 ≤ k ≤ j.

Then the system of non-linear equations to determine the posterior mode can be rewritten

B−1
0 (X̂(t0)− a0) +

Nass∑
j=1

(

j∏

k=1

T̄ k−1(X̂(tk−1)))
T (tlZ(X̂(tj)))

T H−1{yj − Z(X̂(tj))} = 0

X̂(tj) = F̄ j−1(X̂(tj−1)), j = 1, . . . Nass

(114)

This non-linear system can be solved by minimisation techniques. This equation is, for ex-
ample, the starting point for 4-dimensional variational data assimilation (4D-Var), which
was discussed in the introduction to the report. In the incremental 4D-Var approach
(Courtier et.al., 1994) the non-linear minimization problem is solved through a series of
linear minimization problems, based on linearisations. We will use a different iterative
procedure, discussed, for example, in Durbin and Koopman (2001).

Step 1. The original non-linear model (75) is approximated by a linear model, obtained
by linearising the dynamics and the observation operators around the time evolution of a
trial estimate of the posterior mode (α∗t0 , α

∗
t1
, . . . , α∗tNass

).

yj = Z(α∗tj) + tlZ(α∗tj)(X̂(tj)− α∗tj) + εj(115)

X̂(tj) = F̄ j−1(α∗tj−1
) + T̄ j−1(α∗tj−1

)(X̂(tj−1)− α∗tj−1
)(116)

Notice that under the linearization, X̂(tj) is a linear function of X̂(t0).

X̂(tj) =F̄ j−1(α∗tj−1
) + T̄ j−1(α∗tj−1

)(X̂(tj−1)− α∗tj−1
) =

=F̄ j−1(α∗tj−1
) + T̄ j−1(α∗tj−1

)(F̄ j−2(α∗tj−2
) + T̄ j−2(α∗tj−2

)(X̂(tj−2)− α∗tj−2
)− α∗tj−1

) =

=ᾱj + T̄ j−1(α∗tj−1
)T̄ j−2(α∗tj−2

) . . . T̄ 0(α∗t0)X̂(t0) =

=ᾱj +

j∏

k=1

T̄ k−1(α∗tk−1
)X̂(t0)

The posterior mode for this approximate linear system α̂t0 satisfies the following linear
equation
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(117)

B−1
0 (X̂(t0)−a0)+

Nass∑
j=1

(

j∏

k=1

T̄ k−1(α∗tk−1
))T (tlZ(α∗tj))

T H−1{yj−Z(α∗tj)−tlZ(α∗tj)(X̂(tj)−α∗tj)} = 0

with the following strong constraints on the dynamics

(118) X̂(tj) = F̄ j−1(α∗tj−1
) + T̄ j−1(α∗tj−1

)(X̂(tj−1)− α∗tj−1
)

Notice that this linearised system of equations (117) and (118) is formally equal to the
linearised sub-problems of the incremental 4D-Var.

Step 2. We obtain the posterior mode, and its dynamical evolution (α̂t0 , . . . , α̂tNass
) for

this approximate model. The approximating model (118) is linear and Gaussian. Its

posterior mode, equal to the mean of the posterior distribution E(X̂(t0) | Y), together

with the posterior variance V0 = var(X̂(t0) | Y) can be obtained through the standard
Kalman filter and the fixed interval smoother recursions.

Step 3. This newly obtained estimate of the posterior mode and its dynamical evolution,
are used as new states to linearise the dynamics and non-linear observation operators
around (Step 1). The same probabilistic model, just with different strong constraints on
the dynamics, is used all the time.

Step 4. We repeat the procedure until convergence α∗t0 = α̂t0 is achieved. The dynamical
evolution of the posterior mode estimate, after convergence of this iterative procedure was
achieved, is what we call the time window smoother.

It is interesting to notice that the obtained posterior mode as a result of the convergence
the iterative procedure α̂t0 is the posterior mode of the original system with non-linear
dynamics as well. If convergence is achieved, the strong constraints on the dynamics and
on the observation operators for the approximated system become the same as for the
original system

α̂tj =F j−1(α∗tj−1
) + T j−1(α∗tj−1

)(α̂tj−1
− α∗tj−1

) =

=F j−1(α̂tj−1
) + T j−1(α̂tj−1

)(α̂tj−1
− α̂tj−1

) =

=F j−1(α̂tj−1
)

Z(α∗tj)+tlZ(α∗tj)(α̂tj − α∗tj) =

=Z(α̂tj) + tlZ(α̂tj)(α̂tj − α̂tj) =

=Z(α̂tj), 1 ≤ j ≤ Nass.

(119)

As soon as the posterior mode α̂t0 for the problem linearised around time evolution
(α∗t0 , . . . , α

∗
tNass

) satisfies the requirement α∗t0 = α̂t0 , it is a posterior mode of the orig-
inal system as well.

B−1
0 (α̂t0 − a0) +

Nass∑
j=1

(

j∏

k=1

T̄ k−1(α̂tk−1
))T (nlZ(α̂tj))

T H−1{ytj − Z(α̂tj)} = 0

α̂tj = F̄ j−1(α̂tj−1
), j = 1, . . . Nass

(120)
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Figure 16. The analysed state obtained with the time smoother at the end
of the fifth data assimilation cycle (the short time window) under different
configurations using ”high” precision data (the left picture) and (”low”
precision data (the right picture)). The simulated true state is given by
the full line. The analysed state obtained by the time window smoother in
Configuration a (”long” time window) is given by dashed line. The analysed
state obtained by the time window smoother in Configuration b (”short”
time window, the initial forecast error covariance matrix is dynamically
updated at the beginning of each time window) is given by the dashed-
dotted line. The analysed state obtained by the time window smoother in
Configuration c (”short” time window, the initial forecast error covariance
matrix is kept unchanged at the beginning of each time window) is given by
dotted line. The observations were simulated by the non-linear observation
operator nlZ3

Figure 16 shows the result of the implementation of the time-window smoother under
three different configurations. For simulation of the observations we have used the non-
linear observation operator nlZ3. Two sets of experiments were performed. In the first
set (the left figure), the observations were assumed to be quite precise compared to the
background state a0. The diagonal of the covariance matrix for the observation errors was
taken as Hi = 1

4
tlZ3B0(tlZ3)

T . Thus the variance of the observation errors was roughly
set to the 25% of the variance of the corresponding background errors. In the second set
(the right figure), the background field has a stronger influence on the analysed state by
letting Hi = 2tlZ3B0(tlZ3)

T .

Under Configuration a (the dashed line) we have used the time window smoother with
one long time window. The length of the ”long” time window is 40 observation windows
(Nass = 40 groups of observations yi, with 9 observations in each group were utilised in the
data assimilation). Under Configuration b (the dashed-dotted line) we have used the time
window smoother with a ”short” time window. The length of the ”short” time window is
8 observation windows. The data assimilation consists of 5 cycles, when the time-window
smoother is applied in a sequence. Every data assimilation cycle our knowledge about the
unobservable model state variable is expressed in a form of a Gaussian prior distribution.
For the first data assimilation cycle, the prior is taken to be equal N (a0, B0). In the be-
ginning of the following data assimilation cycles, the prior is taken to be equal N (a8, B8),
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where a8, B8 are obtained during the previous data assimilation cycle. Configuration c
(dotted line) is similar to Configuration b except for the prior formulation. The initial
forecast error covariance matrix B0 is kept the same at the beginning of each assimilation
cycle in Configuration c. In the beginning of the first data assimilation cycle the prior is
taken to be equal N (a0, B0), in the beginning of the following data assimilation cycles,
the prior is N (a8, B0), where a8 is obtained during the previous data assimilation cycle.
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Figure 17. The spatial average squared error of the analysed state ob-
tained using different configurations of the time-window smoother. The
figure to the left corresponds to the case of ”high” precision observations.
The figure to the right corresponds to the ”low” precision observations.
The solid line shows the SEtws corresponding to the ”long” time window
(Configuration a). The dashed line shows the SEtws corresponding to the
”short” time window (Configuration b). The dotted line shows the SEtws

corresponding to the short time window and the same initial forecast error
covariance matrix at the beginning of each time window (Configuration c).
The observations were simulated using the non-linear observation operator
nlZ3

Like we already have mentioned, every time observations are introduced, the amplitudes
of the posterior covariance matrix elements decreases. This expresses our increased confi-
dence in the knowledge about the model state variable. Even if the posterior distribution
is non-Gaussian, the fact that every data assimilation cycle we formulate our opinion
about the model state variable in the form of a Gaussian prior does not make much harm.
Figure 17 represents the spatial average squared analysis error SEtws for both sets of data
assimilated under different configurations. The SEtws, calculated in the same way as for
the extended Kalman filter (110), obtained under Configuration a and under Configu-
ration b are quite close. Under Configuration c we underestimate our knowledge about
the model state variable. Using the same initial forecast errors covariance matrix in the
formulation of the prior every data assimilation cycle, we disregard all improvement in
the estimate of the unobservable model state variable we have achieved by assimilating
the data during the previous data assimilation cycles. The observations have improp-
erly high weights. The loss of information about already assimilated data destroys the
mechanism of filtering observation errors. Observation errors will therefore have large
impact on the construction of the analysed state. The data assimilation procedure gives

62



rather unsatisfactory results after five data assimilation cycles under Configuration c in
comparison with the other configurations. The pattern of behaviour is similar for both
sets of data (with higher precision observations and with lower precision observations).
Although in the general practice of Bayesian inference, the underestimated prior is better
than the overestimated prior, the prior formulation has great impact on the construction
of the analysed state, in the presence of a low amount of observations in comparison
with the degree of freedom of the model state variable, . The dynamical updating of the
initial covariance matrix each data assimilation cycle is essential for the performance of
the time-window smoother, even if the posterior predictive covariance is not estimated
correctly in general.
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Figure 18. The spatial average squared error of the posterior mode of
the model state variable for the u-wind component, for the v-wind com-
ponent and for the geopotential, obtained using different configurations of
the time-window smoother. The solid line shows the S̃E corresponding to
the ”long” time window (Configuration a). The dashed line shows the S̃E
corresponding to the ”short” time window (Configuration b). The dotted
line shows the S̃E corresponding to the ”short” time window and the same
initial forecast errors covariance matrix of the model state variable at the
beginning of each assimilation cycles (Configuration c).

It must be considered, that in the case of a more realistic state space model, without
the perfect model assumption, Configuration c will probably not provide such drastically
bad results like we have shown. In the case of a stationary linear dynamical model
and linear observational operator, in presence of errors of the dynamical evolution, the
Kalman filter will converge to a stationary steady state solution. The growth of the
uncertainty during the dynamical integration will be compensated by assimilation of new
observations. However, in the case of non-linear dynamics and non-linear observation

63



operators, the tangent linear operator changes strongly from one data assimilation cycle
to another, and an exact steady state solution will never occur.

Figure 18 shows the spatial average squared error of the posterior mode S̃E obtained
using different configurations of the time window smoother. The S̃E is defined in the
following way

(121) S̃E(i) =
M∑

k=−M

(αk,i − X̄k(ti))(α−k,i − X̄−k(ti)).

The ”low” precision data are used in the example, simulated using nlZ3. The results of
the time smoother in Configuration c (a ”short” time window and the same initial forecast
error covariance matrix of the model state variable each assimilation cycle) indicate a data
over-fit. Certainly, in the case of a lucky data combination when one observation does
not support the observation errors of others, the result can be even better than using the
”long” time filter. For example, the posterior mode of the geopotential, obtained using
the configuration c, has smallest S̃E during the second and the third data assimilation
cycles.
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Figure 19. The scores of observations sc(i) introduced during different
assimilation cycles with the ”short” time-window. The 0.05, 0.1, 0.5, 0.9
and the 0.95 quantiles of χ2(9) are indicated by dashed lines

Figure 19 shows scores of the used observations. We define the score parameter sc(i) for
observation yi

(122) sc(i) = {yi − nlZ(X̄(ti)}T (Hi)
−1{yi − nlZ(X̄(ti))}, 1 ≤ i ≤ Nass

With the definition of the observations yi ∼ N (nlZ(X̄(ti)), H) , it is evident that the sc(i)
scores are χ2(p) distributed, where p = 9 is the dimensionality of the vector yi. In fact,
during the first data assimilation cycle, a quite erroneous observation of the geopotential
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was obtained. The assimilation of such erroneous data influences the result of the time
smoother under Configuration a long time forward. But the more data we assimilate, the
weaker is the influence of one particular ”bad” observation, because the joint assimilation
of a large number of observations helps to reduce the effect of an error coming from a
particular ”bad” one. Under Configuration c, the previously assimilated observation has
a much smaller impact, compared with the other two configurations. The analysed state
is over-fitted to the small number of newly coming observations, which are always more
or less erroneous. If an unlucky data set is observed, the posterior mode, based on this
small set of observations can deviate significantly from the ”true” state even after a large
number of performed data assimilation cycles. Whether lucky or unlucky combinations
of data are observed we never now in real situations, and the data over-fit is highly
undesirable.

It needs to be mentioned that in operational data assimilation schemes, applied for nu-
merical weather prediction purposes, special quality control procedures have been intro-
duced to handle such ”particularly bad” observations. These quality control procedures
are generally based on prior assumptions about the character of observation errors (also
non-Gaussian ones). We have not used such quality control procedures here.
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Figure 20. The analysis error for the ”u”-wind component, for the ”v”-
wind component and for the geopotential, obtained at the end of the first
(”short”) data assimilation time window (the left figure) and those at the
end of the fifth (”short”) data assimilation time window with different con-
figurations using ”low” precision data. The solid line corresponds to the
analysis error obtained under Configuration a, the dashed line corresponds
to the results obtained under Configuration b and the dotted line corre-
sponds to the results obtained under Configuration c. The observation
were simulated by the non-linear observation operator nlZ3.

It is good to notice that the order of the amplitude of the forecast errors are in good
correspondence with the estimate of the forecast error covariance matrix of the model state
variable. Even if the forecast obtained under Configuration c after five data assimilation
cycles seems to be unacceptably erroneous compared to the forecasts obtained under
the other two configurations, the amplitude of the forecast error under Configuration
c after five assimilation cycles is the same as after the first assimilation cycle (Figure
20). This is what we should expect starting each assimilation cycle with the same initial
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forecast error covariance matrix. However we need always to take into account that the
dynamical evolution of the covariance matrix Bi, obtained by the time-smoother, describes
the dynamic evolution of the Gaussian approximation of the actual posterior distribution
and Bi is not equal to the V ar(X̂ti | Yi), but describes the evolution of the curvature of
the posterior density around the mode.

The procedure to obtain the posterior mode is iterative, and like many iterative procedures
it is only locally convergent. The linearization of the dynamics and the observation
operators is done around an estimate of the posterior mode evolution, and this estimate
must be constructed in some way. To obtain it, we have used the extended Kalman
filter and the finite interval smoother with backtracking by the tangent-linear dynamics
linearised around the non-linear evolution of the analysed state.

To summarise the method, we first run the extended Kalman filter forward in time,
described by the recursion formulas

ai =af
i + Kivi,

Bi =Bf
i −Bf

i tlZT KT
i ,

vi =yi − Z(af
i ),

Ki =Bf
i tlZT F−1

i ,

Fi =tlZ Bf
i (tlZ)T + H,

af
i =F̄ i−1(ai−1)

Bt
i =T̄ i−1Bi−1(T̄

i−1)T , i = 1, . . . , Nass

Here during i-th assimilation term, the tangent-linear observation operator tlZ is evalu-
ated at af

i and the tangent-linear dynamical propagator T̄ i−1 is evaluated along the time
evolution of ai−1.

Secondly, we run the smoother backward in time and we use the following backward
recursive equations

ri = (tlZ T̄ i−1)T F−1
i vi + LT

i ri+1

Ni = (tlZ T̄ i−1)T F−1
i (tlZ T̄ i−1) + LT

i Ni+1Li

with

Li = T̄ i−1 − T̄ i−1KitlZ i = 1, . . . , Nass − 1,

rNass = (tlZ T̄Nass−1)T F−1
Nass

vNass ,

NNass = (tlZ T̄Nass−1)T F−1
Nass

(tlZ T̄Nass−1).

Again, at the i-th assimilation term the tangent-linear observation operator tlZ is evalu-
ated at af

i and the tangent-linear dynamical propagator T̄ i−1 is evaluated along the time
evolution of of ai−1.

Finally, we obtain the initial estimate of the posterior mode evolution
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α∗i = ai + Biri+1

V ∗
i = Bi −BiNi+1Bi, i = 1, . . . , Nass − 1

The evolution of the posterior mode α∗i is governed by linear dynamics obtained by lin-
earization of the non-linear dynamics around the non-linear evolution of analysed state
ai.

The original system has the posterior mode α̂t0 and in a vicinity of that mode the posterior

pdf can be well approximated by the Gaussian one p(X̂(t0) | Y) ∼ N (α̂t0 , V0). If we
want to use the obtained posterior mode as a point estimate of an unobservable random
variable, it is not only the curvature around the posterior mode V0 that is important. The
amount of mass located in the tails of the posterior distribution density is very important
to know in order to conclude about the accuracy of the estimate. This information is not
provided at all by the method. If the distribution is heavy tailed, the probability for the
unobservable model state to be located just in the close vicinity of the posterior mode
can be quite small, especially in the case of a large dimensionality. Solving the non-linear
equation by the Kalman filter and smoother iteration techniques, the approximate time
evolution of the posterior mode and the curvature in its vicinity are obtained as well.
However, this is only an approximation of the posterior predictive mode, because the
posterior mode is not parameterisation invariant in general. If we denote the dynamical
evolution over the period t0 − tj with X̂(tj) = F tj(X̂(t0)), then from the transform

theorem follows that ( ∂Ftj

∂X̂(t0)
)T pF(X̂(tj)) = p(X̂(t0)). Here p(·) and pF(·) denote the

posterior distributions for X̂(t0) and X̂(tj), respectively. The posterior mode α̂t0 satisfies

the requirement ∂p(X̂(t0))

∂X̂(t0)
(α̂t0) = 0. At this point

(123) (
∂F tj

∂X̂(t0)
)T ∂pF

∂X̂(tj)
(F tj(α̂t0))

∂F tj

∂X̂(t0)
+ (

∂2F tj

∂X̂2(t0)
)T pF(F tj(α̂t0)) = 0

Only in the case of linear dynamics ∂2Ftj

∂X̂2(t0)
≡ 0, the posterior distribution pF has a mode

at the point F tj(α̂t0). In general, and for the shallow water model as well, these two
posterior distributions have different modes. The Hessian for the dynamics of the one-
dimensional shallow water model is close to zero, and we can expect that the mode of
pF(·) and the time evolution of posterior mode p(·) must be quite close.

4.4. The ensemble Kalman filter. The ensemble Kalman filter (eKF, Evensen, 1994,
2003, Houtekamer et al., 2001) tries to preserve the optimality property only in the sense

of the mean square error, and estimates the posterior mean E(X̂(ti) | Yi) and poste-

rior variance var(X̂(ti) | Yi) through the construction of the best linear predictor on
the last coming observations yi given the whole history Yi−1 each data assimilation term
ti, i = 1, . . . , Nass. Every data assimilation term the information about the accuracy of the
predictor is estimated from the ensemble of analysed fields {xas

j (ti)}, j = 1, . . . , Nsample,
where Nsample is the ensemble size. To construct the ensemble of analysed fields, the
uncertainty in the forecast valid at time ti and the uncertainty in observations available
at time ti are utilized. The uncertainty in the forecast is sampled using the ensemble
of the forecast fields {xf

j (ti)}, j = 1, . . . , Nsample and the uncertainty in observations is
sampled from the ensemble of randomly perturbed observations yi,j, j = 1, . . . , Nsample.
The construction of the ensemble of the forecast and the ensemble of the observations
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is consistent with their error statistics. The posterior predictive statistics at a new as-
similation term (say, the i + 1-th) are estimated directly from an ensemble of forecast

states {xf
j (ti+1)}, j = 1, . . . , Nsample valid at time ti+1. This ensemble is the ensemble of

analysed states {xas
j (ti)}, j = 1, . . . , Nsample being propagated by the model non-linear

dynamics over the period (ti, ti+1).

(124) xf
j (ti) = F̄ i−1(xas

j (ti−1)), j = 1, . . . , Nsample, i = 1, . . . , Nass

At every moment of time ti, , 1 ≤ i ≤ Nass, the mean of the population, used to describe
the distribution of the forecast states around the ”true” state, is estimated as a sample
mean

(125) E(X̂(ti) | Yi−1) ≈ xf (ti) =
1

Nsample

Nsample∑
j=1

xf
j (ti).

In the same way the population variance is estimated through the sample variance

(126) var(X̂(ti) | Yi−1) ≈ Bf
e (ti) =

1

Nsample − 1

Nsample∑
j=1

(xf
j (ti)− xf (ti))(x

f
j (ti)− xf (ti))

T

The ensemble of forecast states is created in the following way. First, for the initial first-
guess state, the best possible estimate of the true state a0 is drawn from a population
with a Gaussian distribution around the ”true” state, with some known covariance ma-
trix, describing the behaviour of the forecast errors N (X̄(t0), B0). Secondly, given this
”best” estimate of the ”true” state a0, the unobservable ”true” state, the inference about
which we want to make, can be considered as a member of a population with a Gauss-
ian distribution around the ”best” estimate X̄(t0) ∼ N (a0, B0), with the same variance.
Thus to represent the uncertainty in the estimate of the ”true” model state at the initial
time t0 an ensemble is drawn around the ”best” estimate a0 with the same variance B0,
describing forecast errors xas

j (t0) ∼ N (a0, B0), j = 1, . . . , 2 ∗ Nsample. (The purpose of
2 ∗Nsample in the double ensemble Kalman filter will be explained below). The ensemble
of the forecast state valid at the time of the first data assimilation term t1 is obtained by
dynamical forward integration of each ensemble member.

Each data assimilation term ti, 1 ≤ i ≤ Nass, the ensembles of observations are created
as well. As we have already mentioned, the observations are assumed to have a Gaussian
distribution around the projection of the ”true” model state into the space of observations
by the observation operator yi ∼ N (Z(X̄(ti)), H) (we have denoted by Z any observation
operator, a linear or a non-linear one). To represent the uncertainty in the knowledge
about Z(X̄(ti)) coming from observation yi, the ensemble of observations is sampled
around yi with the observation error covariance matrix yi,j ∼ N (yi, H), j = 1, . . . , 2 ∗
Nsample.

Figure 21 shows the result of the implementation of the double ensemble Kalman filter.
We will discuss the method in details later. In short words, in the double ensemble
Kalman filter, the Kalman gain matrix is estimated from one ensemble of forecast states
and the analysis sample is constructed from the second ensemble of forecast states using
the estimate of the Kalman gain matrix from the first ensemble. In the single (not double)
ensemble Kalman filter the same ensemble of the forecast states is used to calculate the
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Figure 21. The analysed fields for the u-wind component, for the v-wind
component and for the geopotential obtained after 40 assimilation terms by
means of the double ensemble Kalman filter. The solid line is corresponding
to the ”true” model state, the dashed line is corresponding to the estimate
from one sub-ensemble of the analysed states, the dashed-dotted line is cor-
responding to the estimate from the second sub-ensemble of analysed states.
The ”low” precision observations simulated by the non-linear observation
operator nlZ3 are used in the examples. The left picture shows analysis ob-
tained from the Nsample = 12 ensemble members sample. The right picture
shows analysis obtained from the Nsample = 100 ensemble members sample.

gain matrix and to construct the ensemble of the analysed states, which is used to represent
the error associated with using the gain matrix. This is a duplicate use of the same
information, also known as inbreeding, and it can lead to an unrealistically small spread
of the ensemble of analysed states after several data assimilation terms (Houtekamer,
1998). One way to overcome the problem is to use the double ensemble Kalman filter.
We can see that the idea turns out to be brilliant, because even the analysis obtained from
a very small sample size on the ”low” precision data looks quite reasonable. In both cases,
with the small and the large sample size, both samples provide quite similar results after
the two samples have stabilised (by mixing with each other and with the observations).
The analysis obtained using the large size sample estimates better the wind-component
fields and results in a more proper dynamical evolution.

Each data assimilation term ti, the ensemble of analysed states {xas
j,k(ti)} is created from

the ensemble of forecast states xf
j,k(ti) and the ensemble of observations {yi,j} by means

of a linear transform. We have applied both the single ensemble Kalman filter and the
double ensemble Kalman filter. Let indexes k and k̄ ({k, k̄} = {0, 1}) denote the different
sub-ensembles each size of Nsample.

In the double ensemble Kalman filter the sub-ensemble k of the analysed states is con-
structed from the sub-ensemble k of the forecasted states and from the sub-ensemble k of
the observations

69



xas
j,k(ti) =xf

j,k(ti) + Ke
i,k̄(yi,j,k − Z(xf

j,k(ti)))

=xf
j,k(ti) + Ke

i,k̄v
e
i,j,k

(127)

with the Kalman gain matrix estimated from the sub-ensemble k̄ of the forecast states
{xf

j,k̄
(ti)}, j = 1, . . . , Nsample

Ke
i,k̄ = Bf,e

i,k̄
ZT (F e,∗

i,k̄
)−1

whis the innovation covariance matrix F e,∗
i,k̄

is estimated by

(128) F e,∗
i,k̄

= ZT Bf,e

i,k̄
Z + H

This estimation of the innovation covariance matrix is different from the sample estimate
of the innovation covariance matrix and it is assumed in order to assure invertibility of
the estimate of the innovation covariance matrix.

In the single ensemble Kalman filter the sub-ensemble k of the analysed states is con-
structed in the similar way as in (127) but using the Kalman gain Ke

i,k, constructed from
the same sub-ensemble of the forecast states k.

The ensemble of analysed states {xas
j (ti)}, j = 1, . . . , Nsample, 1 ≤ i ≤ Nass is created to

be used only for the purpose of estimating statistics, and does not pretend to be sampled
from the true posterior distribution. Like we already have discussed in the subsection
about the bias corrected Kalman filter, the posterior mean is not equal to the best linear
predictor in the case of non-linear observation operators. Even in the case of a linear
observation operator, after the non-linear dynamical evolution, the posterior predictive
distribution is not Gaussian. It is only the posterior mean that obeys E(X̂(ti) | Yi) ≈
E(X̂(ti) | Yi−1) + Kivi. This linear transform is not necessarily valid for a single member
of the ensemble. However, in the case of our one-dimensional shallow water model, where
non-linearity is very weak, in the case of a linear observation operator, the analysed
ensemble state will be sampled from a distribution quite close to the posterior one. In
a more realistic situation, with a non-linear observation operator, the sample does not
come from the posterior distribution.

As it can be noticed from Figure 22, the double ensemble Kalman filter provides a clear
advantage compared with the single ensemble Kalman filter in the case of a small sample
size. In the single ensemble Kalman filter, the Kalman gain is estimated from the same
ensemble of forecast states on which the analysed sample is constructed later. The small
sample size represents poorly the features of the whole population and in the majority
of cases the estimate of the covariance matrix constructed on the small sample size un-
derestimate the covariance matrix of the population. Besides that, the double use of
information for constructing the Kalman gain matrix and for estimating the accuracy of
the analysis can lead to an unrealistically small spread of the ensemble of the analysed
states after several data assimilation terms. As a result, the observations will have a very
small impact and the analysed state will not approach the ”true” one. In the double
ensemble Kalman filter, the spread of the ensemble of the analysed states is artificially
increased if the estimate of the covariance matrix from the two sub-ensembles differ sig-
nificantly. This will cause the observations to be given higher weights. We can see that
the solid SEeKF (i) verification curves on the left picture (the double ensemble Kalman
filter with a small sample size) differ drastically from the dashed ones (the single ensemble

70



5 10 15 20 25 30 35 40
0

0.5

1
x 10

−3 u−wind component

5 10 15 20 25 30 35 40
0

5

10
v−wind component

5 10 15 20 25 30 35 40
0

500

1000

1500

2000
geopotential component

5 10 15 20 25 30 35 40
0

0.5

1
x 10

−3 u−wind component

5 10 15 20 25 30 35 40
0

5

10
v−wind component

5 10 15 20 25 30 35 40
0

500

1000

1500

2000
geopotential component

Figure 22. The spatial average squared error SEeKF of the analysed state
obtained by means of the single ensemble Kalman filter (the dashed line)
and by the means of the double ensemble Kalman filter (the solid line).
The left picture shows the result from using a small sample size (12 ensem-
ble members) and the picture to the right shows the result from using a
large size sample (100 ensemble members). The ”high” precision data were
used in these examples. The observations were simulated by the non-linear
observation operator nlZ3. The result is corresponding to the first sub-
ensemble.

Kalman filter with a small sample size). The larger values of the solid SEeKF (i) verifica-
tion curves for winds components in the case of small sample size compared to the right
picture indicates a data over-fit in the first part of the assimilation procedure due to an
overestimated covariance matrix of the model state. We consider that the estimate of the
forecast error covariance matrix obtained by means of the extended Kalman filter is not
far away from the ”true” forecast error covariance matrix of the population in the case of
a one-dimensional shallow water model, and therefore we have used the behaviour of the
extended Kalman filter as a reference (Figure 24, to be discussed in more details below).
In the second part of the data assimilation procedure, after the two different sub-ensemble
of small size have stabilised by the mixing with each other and with the observations, the
overestimation of the covariance matrix values (in the double ensemble Kalman filter)
decreases. In the case of a large sample size, the ensemble gives a good estimate of the
covariance matrix of the whole population from the start. The double ensemble Kalman
filter gives a minor improvement in the very beginning of data assimilation procedure.
After a while, in the single ensemble Kalman filter, both sub-ensembles influenced by
observations behave in a very similar way.

Figure 23 illustrates the analysis increments for the u-wind component, for the v-wind
component and for geopotential obtained by applying the ensemble Kalman filter. The
analysis state as well as the forecast state are obtained as a sample average of the corre-
sponding sub-ensemble. The analysis state as well as the analysis increments are not well
balanced, and even the spatial stationary balance between the fields does not holds. The
misbalance is very light, but an additional normal mode initialisation procedure must be
applied in order to use the analysed state to represent a ”realistic” atmospheric state.
However, for introducing the observations and for performing the dynamical propagation,
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Figure 23. The analysis increments for the meteorological fields obtained
by applying the ensemble Kalman filter. The solid line shows the analy-
sis increment obtained by using the double ensemble Kalman filter with
a large sample of size Nsample = 100, the dashed line shows the analysis
increment by using the double ensemble Kalman filter with a small sample
of size Nsample = 12. The dash-dot line shows the analysis increment using
the single ensemble Kalman filter with a small sample of size Nsample = 12.
The left picture shows the increments obtained during the 10th data assim-
ilation term (the first part of the data assimilation procedure), the right
picture shows the increments obtained during the 33rd data assimilation
term (the last part of the data assimilation procedure). The shown result
is corresponding to the first sub-ensemble.

the misbalance of the analysis state is unimportant, because in the ensemble Kalman
filter framework all calculations are done for the individual ensemble members, which
are balanced. As we can see in Figure 23, the analysis increments using the double en-
semble Kalman filter with a small sample of size Nsample = 12 are much larger than the
analysis increments using the double ensemble Kalman filter with a large sample of size
Nsample = 100 in the beginning of data the assimilation procedure (the left figure) and that
this difference decreases with time (the right picture). The analysis increments obtained
by using the single ensemble Kalman filter with a small sample of size Nsample = 12 remain
to be much smaller than the analysis increments obtained using the other methods, like
it should be with an underestimated covariance matrix.

The large dimensional covariance matrix Bf,e
i is never estimated directly from the ensem-

ble. Statistics on Bf,e
i ZT and ZBf,e

i ZT are used instead for each data assimilation term
ti, 1 ≤ i ≤ Nass
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cov(X̂(ti), Z(X̂(ti)) | Yi−1) ≈ Bf,e
i ZT =

=
1

Nsample − 1

Nsample∑
j=1

(xf
j (ti)− xf (ti))(Z(xf

j (ti))− Z(xf (tj)))
T ,

var(Z(X̂(ti)) | Yi−1) ≈ Z Bf,e
i ZT =

=
1

Nsample − 1

Nsample∑
j=1

(Z(xf
j (ti))− Z(xf (ti)))(Z(xf

j (ti))− Z(xf (ti)))
T ,

(129)

where E(Z(X̂(ti)) | Yi−1) ≈ Z(xf (ti)) = 1
Nsample

∑Nsample

j=1 Z(xf
j (ti)). In the case of a linear

observation operator, the expression can be simplified by Zxf (ti) = Zxf (ti). We have
omitted the indexes of the different sub-ensembles (k and k̄).
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Figure 24. The time evolution of var3(ti), the estimate of the forecast
error covariance projected to the space of the triple of nlZ3 (the first ob-
servation). The dotted line shows varKF

3 =tlZ3Bi(tlZ
3)T obtained by using

the extended Kalman filter, the solid line shows vare,100
3 =nlZ3Be,100

i (nlZ3)T

obtained by using the ensemble Kalman filter with a large sample of size
Nsample = 100, the dashed line shows vare,12

3 =nlZ3Be,12
i (nlZ3)T obtained

using the ensemble Kalman filter with a small sample of size Nsample = 12.
The left picture shows the result implementing the double ensemble Kalman
filter, the right picture shows the result implementing the single ensemble
Kalman filter. The ”high” precision observations simulated by the non-
linear observation operator nlZ3 are used in the example.

We show in Figure 24, we show the estimation of the forecast error covariance matrix
projected on the space of the third component in triples of the non-linear observation
operator nlZ3 valid at the time moments when observations are assimilated. The results
for the other observation operators look quite similar. The estimation of the projection
of the forecast error covariance matrix on the space of observations is essential for a
proper performance of the Kalman filtering, because, in principle, this is the quantity
which in a broad sense determines the weights of the observations. We can notice a clear
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overestimation of the forecast error covariance matrix values in the beginning of the data
assimilation procedure for the third triple component when the double ensemble Kalman
filter with a small sample of size Nsample = 12 was applied. We can also notice that the
overestimation decreases with time when the sub-ensembles have stabilised due to the
influence of the observations and due to the mixing with each other (the left picture).
But the strong data over-fit in the beginning of the data assimilation procedure influences
the quality of the data assimilation in a negative way. In any case, the result of the
data assimilation procedure is much better in this case than using the single ensemble
Kalman filter with a small sample of size Nsample = 12, because then the analysed state
is very insensitive to the observations due to underestimated values of the quantity var3.
Even when the single ensemble Kalman filter with a large sample of size Nsample = 100

was applied (the left picture) we can see light underestimation of vare,100
3 , although the

estimation of the forecast error covariance matrix obtained by the ensemble Kalman filter
with a large sample size seems to be very close to the one obtained by the extended Kalman
filter varKF

3 . With a large sample size the ensemble Kalman filter works in an almost ideal
way. The estimate of the projection of the forecast error covariance matrix on the space
of the observation operator (vare,100

3 ) differs for the two sub-ensembles in the beginning
of the data assimilation procedure, which can be noticed from a zig-zag-shaped curves of
the quantity. Later on, when the sub-ensembles have stabilised, it converges to the same
estimate for both samples, and the curve becomes smooth. But using a small sample size,
the zig-zag pattern remains. This indicates a poor mixing of the sub-ensembles.

Using a larger sample size when performing the data assimilation by means of the ensemble
Kalman filter does not improve the estimation of the model state variable X̄(t). Rather
an estimation of X̄(t) closer to the one using the extended Kalman filter is obtained.
First of all, as we have mentioned above, the way in which the ensemble of the analysed
state is constructed (127) does not pretend to sample from the posterior distribution
of the model state variable. The larger sample size we use, the better we estimate the
properties of the exact distribution of the ensemble. The ensemble of the analysed state
is constructed by means of a sum of the innovation components Kivi given the set of the
previously assimilated observations Yi−1. From an intuitive point of view, if the amount of
innovation components is large and the non-linearity of dynamics is weak, the conditional
distribution of the ensemble of the analysed states xas

j (ti) given Yi−1 should come close
to a Gaussian one. But the innovation components are strongly correlated and the exact
convergence in distribution of the ensemble members of the analysed state to a Gaussian
variable is questionable. However, the empirical observations for the model studied here
support the idea.

The posterior mean and the posterior variance can be estimated from an ensemble of
analysed states. To perform the filtering, we do not need to know explicitly these posterior
statistics, but we can use them to obtain point estimates of the unobservable state and
to judge about the precision of the estimate.

The sample estimate of the posterior mean, given Yi, omitting the indexes of the sub-
ensembles k and k̂, is equal

E(X̂(ti) | Yi) ≈ 1

Nsample

Nsample∑
j=1

xas
j (ti)

= xf (ti) + Ke
i (yi,j − Z(xf (ti)))

= ae
i → E(X̂(ti) | Yi−1) + Ki(yi − E(yi | Yi−1))

(130)
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and this converges (as the sample size Nsample increases) to the standard Kalman filter
analysis equation when the linear relationship between the innovation vector and the
model state is assumed.

The estimate of the posterior variance has a slightly different expression, from that used
in standard Kalman filtering even for the single ensemble Kalman filter. Let us denote the

sample variance of the innovation F e
i = 1

Nsample−1

∑Nsample

j=1 (ve
j,i − ve

i,j)(v
e
i,j − ve

i,j)
T . Then,

again omitting the indexes of the sub-ensembles,

var(X̂(ti) | Yi) ≈ 1

Nsample − 1

Nsample∑
j=1

{xas
j (ti)− xas

j (ti)}{xas
j (ti)− xas

j (ti)}T =

1

Nsample − 1

Nsample∑
j=1

{xf
j (ti)− xf

j (ti)}{xf
j (ti)− xf

j (ti)}T +

1

Nsample − 1

Nsample∑
j=1

Ke
i (v

e
i,j − ve

i,j)(v
e
i,j − ve

i,j)
T (Ke

i )
T +

1

Nsample − 1

Nsample∑
j=1

Ke
i (x

f
j (ti)− xf (ti))(yi,j − yi,j − Z(xf

j (ti))− Z(xf )(ti))
T +

1

Nsample − 1

Nsample∑
j=1

(yi,j − yi,j − Z(xf
j (ti))− Z(xf )(ti))(x

f
j (ti)− xf (ti))

T (Ke
i )

T

= Bf,e
i + Ke

i F
e
i (Ke

i )
T −Ke

i (B
f,e
i ZT )T −Bf,e

i ZT (Ke
i )

T

If we denote Be
i = Bf,e

i − Bf,e
i ZT (F e,∗

i )−1ZBf,e
i , the usual form of posterior variance in

Kalman filtering, we will have.

var(X̂(ti) | Yi) ≈ Bf,e
i + Ke

i F
e
i (Ke

i )
T −Ke

i (B
f,e
i ZT )T −Bf,e

i ZT (Ke
i )

T

= Be
i + Ke

i (F
e
i − F e,∗

i )(Ke
i )

T

≈ Be
i → var(X̂(ti) | Yi−1)− cov(X̂(ti), vi | Yi−1)(var(vi))

−1(cov(X̂(ti), vi | Yi−1))
T

(131)

This particular estimation of the innovation variance F e,∗
i , different from the sample es-

timate F e
i , is used in the Kalman gain calculation to ensure invertibility. It is interesting

that due to erroneous observations, what corresponds to a full rank matrix H, this inver-
sion is always possible. Besides that, the use of F e,∗

i makes the estimation of the Kalman
gain more stable.

Formally, we can overcome the problem with the innovation covariance estimate F e,∗
i being

not equal to the sample estimate of the innovation covariance defining the analysed state
(130) in a slightly different way. We insert yi as the estimate of the mean of ensemble of
observations {y(i, j), j = 1, . . . , Nsample} instead of the yi,j. By this we asure as that we
know the distribution of the observation errors yi,j ∼ N (yi, H) and do not need estimate
its parameter from the ensemble.

When the double ensemble Kalman filter is applied, the Kalman gain matrix Ke
i,k̄

, calcu-

lated from the sub-ensemble k̄ for the construction of the sub-ensemble k of the analysed
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states, is sub-optimal for the sub-ensemble k. This means that it gives larger analysis
errors for the sub-ensemble k (Lorenc, 2003), which can be calculated, if one knows a
true covariance. In the similar way as when (131) was obtained, one can prove that
sample estimate of the analysis error covariance matrix for the sub-ensemble k obeys the
relationship

1

Nsample

Nsample∑
j=1

{xas
j (ti)− xas

j (ti)}{xas
j (ti)− xas

j (ti)}T =

= Be
i,k + (Ke

i,k −Ke
i,k̄)F

e
i (Ke

i,k −Ke
i,k̄)

T

(132)

disregarding the difference between the values of F e
i and F e,∗

i .

The great advantage of the ensemble Kalman filter is that there is no need for linearization
of the model dynamics, and that the method is free from any assumptions on the pdf.
However, the results of data assimilation, performed in such a way, must be taken with
care. One reason is that the analysed state, estimated through the analysed ensemble
mean, can be optimal only in the sense of mean square error. Even this is valid only in
the case of linear observation operators. If the observation operators are not linear, the
conditional mean, given the recently observed data, cannot be estimated by constructing
the best linear predictor on the given innovation history. Usually, the influence of obser-
vations on the analysed state will be given too small weights in such a case. Even more
complicated problems arise, if the ensemble size of the forecast states is smaller than the
dimension of the forecast error covariance matrix. The covariance matrix, estimated from
such an ensemble, is singular. Taking the huge dimensionality of the model state variable
into account, the ensemble size will always be much smaller than the dimensionality of
the state variable. There exits a number of different proposals to handle the consequences
of such a singularity.

4.5. The estimate of the posterior predictive mean evolution based on im-
portance sampling. Among the four extensions of the standard Kalman that we have
discussed above, three of them, the extended Kalman filter, the time-window smoother
and the ensemble Kalman filter, can be used in both a deterministic and a probabilistic
manner. To obtain a probabilistic representation of an unobserved model variable we can
either try to estimate its posterior distribution or try to sample from the posterior dis-
tribution. In the case of the extended Kalman filter, the posterior predictive distribution
is approximated by a Gaussian one. If either the dynamics of the model are strongly
non-linear and/or the observation operator is non-linear, the Gaussian approximation of
the posterior distribution is good only in the vicinity of the mode. As we already have
mentioned, under this condition, the sample constructed by the ensemble Kalman filter
tends (as the sample size increases) to be sampled from a distribution close to a Gauss-
ian one, and the inference about the unobservable model state based on such a sample
can be misleading in general. The time window smoother gives one more possibility to
estimate the posterior predictive distribution, using the importance sampling technique.
With the importance sampling approach, we do not obtain a sample from the distribution
of interest, but we rather correct the inference from the available sample in a particular
way.

Some results of the importance sampling application are presented in Figure 25 for the
data simulated by the non-linear observation operator nlZ2. The ”low” precision data are
used in the experiments. The left diagrams in Figure 25 show the ”true” meteorological
fields (the solid line) at the end of the ”long” assimilation time window (40 observation
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Figure 25. The left diagrams show the dynamically propagated posterior
mode up to the end of the ”long” assimilation time window, equal to 40
observation windows (dotted line),the posterior mean estimated at the end
of the ”long” assimilation time window from importance sampling size of
Nsample = 12 (the dotted line) and the posterior mean estimated at the
end of the ”long” assimilation time window from importance sampling size
of Nsample = 100 (the dash-dotted line). The solid line corresponds to
the ”true” model state at the end of the ”long” assimilation time window.
The right diagrams show the spatial average squared error S̃E of the pos-
terior mode (the solid line) and the spatial average squared error of the
posterior mean estimated from importance sampling size of Nsample = 12

(S̃E
i.s.,12

, dash line), size of Nsample = 48 (S̃E
i.s.,48

,dash-dotted line), size

of Nsample = 100 (S̃E
i.s.,100

, dotted line). The results are shown for the u-
wind component, for the v-wind component and for the geopotential. The
experiment are made with the ”low” precision observations, simulated by
nlZ2

.

windows), the posterior mode dynamically propagated up to the same time moment (the
dotted line) and the posterior predictive mean at the same time moment estimated from
a sample of size Nsample = 12 (the dashed line) and from a size Nsample = 100 (the
dashed-dotted line). The right diagrams show the time development of the spatial average
squared errors of the different estimates. We can see that both the posterior mode,
dynamically propagated up to the end of the assimilation window, and the posterior
predictive mean, obtained at the same moments, come close to the ”true” model state
variable. A posterior mode and a posterior mean are optimal in different sense and both
have certain disadvantages. The posterior mode maximizes the posterior distribution
in the beginning of the time window and can significantly deviate from the posterior
predictive mode at the end of the time window. This is not a serious problem in the
one-dimensional shallow water model, because the dynamical propagation is very close to
the linear one. In the experiments we discuss here the influence of the observations on the
analysed state is strong and the posterior pdf is sharp enough for the posterior mode to
come close to the ”true” state. Groups of 9 observations were introduced 40 times during
the experiment. The posterior predictive mean is strongly influenced by the existence of
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a heavy tail. The posterior predictive mean can be significantly displaced away from the
posterior predictive mode toward the heavy tail in such a case and it will therefore be
inefficient as a point estimate of the ”true” model state. A careful investigation of the form
of the posterior predictive pdf is needed to give any preference to one type of estimator
over another one, and this is impossible to perform in practice. When the assimilated
data are simulated with the non-linear observation operator nlZ2, the posterior (as well
as the posterior predictive) pdf deviates from a Gaussian one, but the posterior mean is
a better estimate than the posterior mode with respect to spatial average squared error
S̃E, in particular for the geopotential. This result is strongly dependent on the type
of observation operator. Using the other observation operators, the results presented in
Figure 25 would look different. In a majority of cases, the dynamical propagation of
the posterior mode estimates the ”true” model state better than the posterior predictive
mean.

The estimate of the posterior mean using importance sampling is sensitive to the sample
size. The sample size must be large enough to sample from the essential particularities
of the posterior pdf. When new essential particularities are discovered, they can strongly
influence the estimate of the posterior mean and the whole probabilistic inference based
on the importance sampling.

For the derivation of the time-window smoother, we have used the analytical expression
for the posterior distribution up to the normalising constant

p(X̂(t0) | Y) ∝ p(X̂(t0))p(y1, . . . , yNass | X̂(t0))

and we have obtained its mode α̂0 and the curvature around the mode V0. Here we denote
by Y = {y1, . . . , yNass} the whole sequence of observations available during the period of
the assimilation time window (t0, tNass). The notation p(·) means an arbitrary probability

density. The prior distribution for the assimilation window p(X̂(t0)) is based both on the
information content of the already assimilated observations, available up to the time t0,
and on analytically deduced and derived constraints.

As we already have discussed, the time-window smoother method allows us to find out
only a mode of the posterior distribution p(X̂(t0) | Y). For the model studied here the

posterior pdf of a non-linear transform ζ(X̂(t0)) (including the dynamical propagator) of
the model state variable cannot be expressed analytically. Therefore we cannot use the
time-window smoother to estimate the mode of the pdf for ζ(X̂(t0)).

If we want to obtain an inference based on a sample, two requirements must be satisfied.
First of all, the sample must be random and the sample space of the chosen data generating
mechanism must include the sample space of the distribution of interest. Any random
data generating mechanism with an infinite support, which is easy to sample from, could
be used for this purpose. But in order to make the procedure efficient, it is better to
choose a random data generating mechanism which has the main amount of mass around
the mode of the distribution of interest. For example, a Gaussian distribution g(X̂(t0) |
Y) = N(α̂0, V0) can be used as a sampling distribution.

The second requirement is that the mass of the sample must be distributed according to
the distribution of interest. This requirement cannot be satisfied implicitly. However, if
we can construct an estimate in form of a weighted sum of the sample members, we can
choose weights such that the inference would (approximately) look like being constructed
on the sample space of the distribution of interest. If we want to estimate the posterior
mean
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(133) E(ζ(X̂(t0)) | Y) =

∫
ζ(X̂(t0))p(X̂(t0) | Y)dX̂(t0)

of an arbitrary function ζ(X̂(t0)) of X̂(t0), given the whole sequence of observations Y ,

then the estimation of the quantity E(ζ(X̂(t0)) | Y) can be obtained from a sample

from a Gaussian distribution g(X̂(t0) | Y), correcting the weights of the members in the
estimate. In the standard sample estimate of the mean, all the members of the sample
have the same weight equal to 1

Nsample
, with Nsample denoting sample size. If a member of

the sample from a Gaussian distribution should be representative for the sample space of
the distribution of interest corresponding to its heavy tail part, it must have very large
weight. If we would sample from the distribution of interest, a large number of members
would be placed in the sample space corresponding to the heavy tail. Due to the same
reason, the weights of the large amount of sample members located around the mode of
the Gaussian distribution must be decreased.
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Figure 26. The weights of the ordered importance sample using different
sample size: Nsample = 100 sample members (the left diagram), Nsample = 12
sample members(the right diagram). In the upper diagrams the weights of
the realisations of the grouped antithetic variables x̂R and x̃R = −x̂R, which
have the same value c = (x̂R)T x̂R, are shown. The dotted line indicates the
”Gaussian” weight wG = 1

Nsample
. In the lower diagrams the observed values

for c for the particular realisation of the sample are shown. The dotted
lines show the 0.1 : 0.1 : 0.9 quantiles of χ2(p), nV = nB = p = 22, the
dashed line denotes the median - 0.5 quantile. Experiments are made with
the ”low” precision data simulated by nlZ2.

The importance sampling weights, obtained in the experiment with the results shown
in Figure 25, are presented in Figure 26. We would like to stress that in all our the
experiments using importance sampling, the same set of realisations x̂0

i of a normally
distributed random p-dimensional vector X 0 ∼ N (0, Ip) is used (here p = 22 is the chosen
number of principal components used to represent V0) and transformed to a sample of
the Gaussian approximation of the posterior pdf. The ordered values of a χ2(p) variable

c = (X̂ 0)TX 0 are shown in the lower diagrams of Figure 26. Thus, a realisation which has
a small value of c, happens to be drawn from the vicinity of the pdf mode, a realisation
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which has a large value of the c comes from the tails of the Gaussian approximation. Every
value of c corresponds to two dependent random draws, because for every X̂ 0 we take
X̃ 0 = −X̂ 0. For every ci value correspond two weights of the symmetric Gaussian draw
and these weights are presented in the upper diagrams of Figure 26. We will discuss below
the construction of the dependent sample in more details. The weights of the sampling
allow us to look a little inside to the way the posterior pdf deviates from the Gaussian
approximation. From the right diagram of Figure 26, which shows the importance weights
of a small sample size (only 3 independent draws), the main pattern of the deviation can
be seen. First of all, the posterior pdf is strongly asymmetric what can be seen from very
different weights of most of the symmetric draws. The main disagreement in the form of
the densities lies not in the tails, but more in the central parts as we can see from the
big weights of the realisations having c values around the median of the χ2(p), and the
Gaussian approximation is good just in a vicinity of the posterior mode.
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Figure 27. The weights of the ordered importance sample using different
sample size: Nsample = 100 sample members (the left diagram), Nsample = 12
sample members (the right diagram). In the upper diagrams the weights of
the realisations of the grouped antithetic variables x̂R and x̃R = −x̂R, which
have the same value c = (x̂R)T x̂R, are shown. The dotted line indicates the
”Gaussian weight wG = 1

Nsample
. In the lower diagrams the observed values

for c for the particular realisation of the sample are shown. The dotted
lines show the 0.1 : 0.1 : 0.9 quantiles of χ2(p), nV = nB = p = 22, the
dashed line denotes the median - 0.5 quantile. Experiments are made with
the ”low” precision data simulated by nlZ3.

In Figure 27 we present the weights of importance sampling obtained by assimilating
data of the same ”low” precision but related to the model state with another observation
operator nlZ3. The weights of the importance sampling are different in this case. For
example, even weights of the realisations drawn from a close vicinity of the mode are
strongly asymmetric, and the posterior distribution has a much heavier tail than the
Gaussian one. However, the patterns of weights using these two non-linear observation
operators have some general similarities, as would be expected, because the observation
operators differ only in the part related to the direct observations of geopotential.

In fact,
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E(ζ(X̂(t0)) | Y) =

∫
ζ(X̂(t0))

p(X̂(t0) | Y)

g(X̂(t0) | Y)
g(X̂(t0) | Y)dX̂(t0) =

=

∫
ζ(X̂(t0))

1

p(Y)

N (a0, B0)
∏Nass

j=1 N (Z(X̂(tj)), H)

N (α̂0, V0)
g(X̂(t0) | Y)dX̂(t0)

(134)

Here the notation Z means any observation operator (both linear and non-linear ones)
Let us denote

(135) w(X̂(t0),Y) =
N (a0, B0)

∏Nass

j=1 N (Z(X̂(tj)), H)

N (α̂0, V0)
,

then the sample estimate of the posterior mean is equal to

(136) ζ(X̂(t0)) | Y =

Nsample∑
j=1

ζ(x̂j(t0))wj

where the weights are given by

(137) wj =
w(x̂j(t0),Y)∑Nsample

j=1 w(x̂j(t0),Y)

Here x̂j(t0), j = 1, . . . , Nsample is a sample with Nsample members from g(X̂(t0) | Y) =
N (α̂0, V0).

To justify the expression for weights (137), one can notice that

∫
w(X̂(t0),Y)g(X̂(t0) | Y)dX̂(t0) =

∫
p(X̂(t0),Y)

g(X̂(t0) | Y)
g(X̂(t0) | Y)dX̂(t0) = p(Y)

On the other hand,

∫
w(X̂(t0),Y)g(X̂(t0) | Y)dX̂(t0) ≈

Nsample∑
j=1

w(x̂j(t0),Y).

Then, obviously, p(Y) ≈ ∑Nsample

j=1 w(x̂j(t0),Y). Inserting this approximation of the mar-
ginal observation density p(Y) into eqn.(134), we get the importance sampling estimation

(136) of the posterior mean E(ζ(X̂(t0)) | Y).

Under a perfect model assumption, which we use in our model, the whole uncertainty
about the model state is concentrated in the beginning of the assimilation time window
t0. The formula (134) for a posterior mean estimate can be used to find out, for example,

the time evolution of the posterior predictive mean E(X̂(t) | Y), t > t0, if we make

a transformation ζ(X̂(t0)) equal to the model dynamics governing the model evolution
over period (t0, t). Certainly, we can obtain an estimate of the posterior predictive mean

of any linear or non-linear transformation of X̂(t) as well. Usually, the probabilistic
evolution of the huge dimensional model state variable itself is not of main interest.
The most useful is to have a probabilistic representation of the evolution of a smaller

81



Table 1. The kinetic energy, valid at the end of the ”long” time window at
grid-point x16, estimated by the double ensemble Kalman filter with a sam-
ple size of Nsample = 100 (eKF (100 m. s.)), by the importance sampling
of size Nsample = 12 with the ”long” assimilation time window smoother
(tws(12 m. s.)) and by the importance sampling of size Nsample = 100
with the ”long” assimilation time window smoother (tws(100 m. s.))). The
results are shown for the observation simulated with the non-linear obser-
vation operator nlZ2 and for the observations simulated with the non-linear
observation operator nlZ3 (see the first column). The estimates of 0.1, 0.5

and 0.9 quantiles of the kinetic energy ( q
fζ

0.1, q
fζ

0.5, q
fζ

0.9), the posterior mean
of the kinetic energy (E(fζ)), the estimate of the kinetic energy obtained
from the time propagated mode, when the time-window smoother is used,
(fζ(α̂t)) and the ”true” value of the kinetic energy (fζ(X̄(t))) are presented.

q
fζ

0.1 q
fζ

0.5 q
fζ

0.9 E(fζ) fζ(αt) fζ(X̄t)
nlZ2 : eKF (100 m. s.) 1624.62 1632.45 1642.33 1633.21 1627.85
nlZ2 : tws(12 m. i.s) 1626.52 1626.72 1635.62 1630.16 1629.42
nlZ2 : tws(100 m. i.s.) 1620.22 1633.09 1646.43 1632.44
nlZ3 : eKF (100 m. s.) 1624.66 1632.49 1642.50 1633.27
nlZ3 : tws(12 m. i.s) 1627.78 1633.84 1633.84 1633.78 1629.34
nlZ3 : tws(100 m. i.s.) 1622.14 1634.74 1649.89 1634.69

dimensional but easily interpretable function of the model state variable, for example, the
time development of the kinetic energy at a particular grid-point xj, which is proportional
to the following expression through the model state variable fζ(t) = (ū+uj(t))

2+(vj(t))
2 =

(ū+
∑M

k=−M ûke
ik̂xj)2 +(

∑M
k=−M v̂ke

ik̂xj)2. Examples of such a probabilistic interpretation
of the kinetic energy by different techniques are given in Table 1. The kinetic energy was
estimated at the end of the ”long” assimilation time window (40 observation windows)
and valid at grid-point x16.

It is interesting to notice that under the ensemble Kalman filter approach the probabilistic
inference about the functional is nearly the same using the two different non-linear obser-
vation operators. The reason for this is the large amount of assimilated data. Certainly,
the underlying ”true” process is the same one, and if the data assimilation procedure
works, the posterior mode estimate will come close to the maximum likelihood estimate
for any observation operator. Besides that, both the likelihood and the posterior pdf are
quite sharp in the vicinity of their modes, even if the strictly unique maximum likelihood
estimate of the ”true” model state is impossible within the framework of the one dimen-
sional shallow water model. It is just the sharpness of the pdf in the vicinity of the mode
that is expressed in the Gaussian approximation. Table 2 shows the largest eigenvalues
of the B0 and V̂0 matrixes obtained for the two non-linear observation operators.

The experiments which are shown here are perfectly behaving ”toy” examples, since a
very large amount of data comparable to the dimensionality of the model state variable
can be assimilated, and the posterior mode gives an efficient estimate of the ”true” model
state. As we have seen, using a less computationally expensive and a practically feasible
configuration of the time window smoother with the same forecast error covariance matrix
at the beginning of each ”short” time window, the posterior mode gives a very inefficient
estimate of the ”true” process. Therefore, the probabilistic inference about a smaller
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Table 2. The 11 largest eigenvalues of the initial forecast error covariance
matrix B0 (ΛB

22), of the posterior pdf ”curvature” matrix around the mode

V̂0 using the ”high” precision observations simulated by nlZ3 (ΛV
22 : 3, the

second raw), using the ”low” precision observations simulated by nlZ3 (ΛV
22 :

3, the third raw), using the ”high” precision observations simulated by nlZ2

(ΛV
22 : 2, the fourth raw), using the ”low” precision observations simulated

by nlZ2 (ΛV
22 : 2, the fifth raw)

1 2 3 4 5 6 7 8 9 10 11
ΛB

22 7815.16 663.17 663.11 167.42 167.37 35.11 35.11 7.00 7.00 1.82 1.82
ΛV

22 : 3 23.27 6.61 3.50 2.91 2.63 1.88 1.40 1.35 1.23 0.97 0.87
ΛV

22 : 3 177.97 46.91 24.83 17.70 13.40 10.69 8.84 4.81 4.60 1.65 1.63
ΛV

22 : 2 21.57 6.46 3.44 2.88 2.60 1.87 1.39 1.35 1.23 0.96 0.87
ΛV

22 : 2 202.53 48.15 25.61 17.89 13.52 10.83 8.90 4.81 4.60 1.65 1.63

dimensional transform of the model state (a model subspace) can be very useful. As we
already have mentioned, the sample of analysed states created by the ensemble Kalman
filter behaves (as the sample size increases and the dynamics are weakly non-linear) almost
as being sampled from the Gaussian approximation of the pdf, and therefore it can not
be used for the probabilistic inference about the model state variable. The posterior
q-quantile qfζ for the one dimensional functional fζ satisfies the following formula

(138)

∫
I{fζ(X̂(t0))≤q

fζ }
p(X̂(t0) | Y)

g(X̂(t0) | Y)
g(X̂(t0) | Y)dX̂(t0) = q

The posterior q-quantile is approximated by the m-th order statistics of a fζ transform
fζ(x̂

[m](t0)), where the number m is chosen such that

(139)
m∑

j=1

w[j] ≈ q.

The values wj (137) are ordered in accordance with the order statistics of the fζ transform.
In the equations above (139), ”the jth sample member” x̂j(t0) denotes the members of
the dependent sample. The construction of the dependent sample is discussed below.

Figure 28 shows the estimation of the quantiles of the functional fζ (kinetic energy) using
the double ensemble Kalman filter with sample of size Nsample = 100 (the solid line)
and the importance sampling from the ”long” assimilation time window smoother with
different sample sizes: size of Nsample = 12 (the dotted line), size of Nsample = 48 (the
dash-dotted line), size of Nsample = 100(the dashed line). On the horizontal axis, the

symbol x denotes the position of the ”true” value of the functional (fζ(X̂(t)) in Table 1)
and the symbol o denotes the position of the estimation of the kinetic energy from the time
propagated posterior mode (fζ(α̂t) in Table 1). The left diagram in Figure 28 shows the
result when the observations were simulated by the non-linear observation operator nlZ3

and the right diagram shows the result when the observations were simulated by nlZ2. In
order to estimate quantiles by the importance sampling we need to find estimate of a large
dimensional integral, and the size of the sample used for the estimation of the integral is
very essential for the quality of the estimate. The small size importance sampling gives
very similar results for both non-linear observation operators. The estimation of the pdf
seems to be strongly under-dispersed, and is in fact misleading. Some sample members
can have very high absolute weight in the estimate. When the sample size increases,
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Figure 28. The estimation of quantiles of the functional fζ (kinetic en-
ergy) using the double ensemble Kalman filter with sample of size Nsample =
100 (the solid line) and the importance sampling from the ”long” assimila-
tion time window smoother with different sample sizes: size of Nsample = 12
(the dotted line), size of Nsample = 48 (the dash-dotted line), size of
Nsample = 100 (the dashed line). On the horizontal axes symbol x denotes

position of the ”true” value of functional (fζ(X̂(t)), in Table 1)and symbol
o denotes position of the estimation of the kinetic energy from the time
propagated posterior mode (fζ(α̂t), in Table 1). The left diagram in Figure
28 shows the result when the observations were simulated by the non-linear
observation operator nlZ3 and the right diagram shows the result when the
observations were simulated by nlZ2.

the dominance of one particular sample member decreases, and this gives much better
estimates of the quantiles.

The larger size importance sampling gives a real possibility to detect the particularities,
which should appear due to the specific form of the posterior pdf influenced by the obser-
vation operator. The importance sampling estimate of the quantiles of the functional fζ

with a Nsample = 100 members sample indicates bimodality of the pdf of the functional,
which is not reflected at all by estimating quantiles using the ensemble Kalman filter. The
pdf of the functional corresponding to observations simulated by nlZ3 (the left diagram)
seems to have a heavier tail than it could be thought if the inference would be made on
the sample constructed from the Gaussian approximation of the posterior density of the
model state variable. The pdf of the functional, in the case of the observation operator
nlZ2, has the largest disagreements in the middle part around the mode with the inference
made from the Gaussian approximation. In both cases, due to indication of a bimodality,
the mean as a point estimate of the functional can be irrelevant, and it is better to use
the transform of the posterior mode propagated in time as a point estimate.

To apply importance sampling in order to estimate a posterior mean, the expression

(140) w(x,Y) = c ∗ e(x−a0)T B−1
0 (x−a0)+{∑Nass

i=1 (yi−Fti (x))T H−1(yi−Z(Fti (x)))}−(x−α̂0)T V −1
0 (x−α̂0)

must be calculated explicitly up to the constant c. When the weights wj are calculated,
the constant c will cancel. We have already discussed the reasons due to which both the
initial forecast error covariance matrix B0 and the covariance matrix V0 for the sampling
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distribution are singular. The exact inverse of the matrices is impossible. We will instead
apply approximate inverse matrices by decomposition into principal components. Both
matrices are complex in our model. But in both cases when we perform the approximate
inversion and when we sample from g(X̂(t0) | Y) we will work with the covariance matrices

BR
0 and V̂ R

0 transformed into real value space. The model state variable X̂(t) has the
following structure

X̂(t) =
[
· · · , û−k, · · · , û0, · · · , ûk, · · · , v̂−k, · · · , v̂0, · · · , v̂k, · · · , φ̂−k, · · · , φ̂0, · · · , φ̂k, · · ·

]T

where k, k = 1, . . . , M denotes wave number. For all spectral coefficients â−k = (âk)
∗.

The ∗ symbol denotes complex conjugate (for any complex value â = âRe + iâIm, the
complex conjugate â∗ = âRe − iâIm). As we have already mentioned, such a particular

structure of the model state variable is assumed because X̂t consists of spectral coefficients
of the Fourier transform of real-valued fields.

We transform the model state variable by an orthogonal matrix X̂R(t) = Tr X̂(t) to the

real valued vector X̂R(t), with the following structure

X̂R(t) =
[
û0, · · · , ûRe

k , · · · , ûIm
k , · · · , v̂0, · · · , v̂Re

k , · · · , v̂Im
k , · · · , φ̂0, · · · , φ̂Re

k , · · · , φ̂Im
k , · · ·

]T

The orthogonal square matrix Tr3∗(2M+1)×3(2M+1) has a square-diagonal structure

Tr =




Dr O O
O Dr O
O O Dr




with the (2M + 1)× (2M + 1)-dimensional orthogonal matrix Dr being equal

(141)




0 . . . 0 0 1 0 0 . . . 0
0 . . . 0 0.5 0 0.5 0 . . . 0
0 . . . 0.5 0 0 0 0.5 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.5 . . . 0 0 0 0 0 . . . 0.5
0 . . . 0 0.5i 0 −0.5i 0 . . . 0
0 . . . 0.5i 0 0 0 −0.5i . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0.5i . . . 0 0 0 0 0 . . . −0.5i




Thus the real valued covariance matrices defined above are BR
0 = Cov(X̂R(t0)) = Tr B0 TrT

and V R
0 = Cov(X̂R(t0) | Y) = Tr V0 TrT .

In fact, for any two spectral transforms {âk,−M ≤ k ≤ M} and {b̂l,−M ≤ l ≤ M} of
real valued fields {ai, 1 ≤ i ≤ N}, {bi, 1 ≤ i ≤ N} the following relationships between

elements of the covariance matrices B = cov(â, b̂) and BR = TrBTrT are valid
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BR(â0, b̂0) = BR(b̂0, â0) = B(â0, b̂0)

BR(â0, b̂
Re
k ) = BR(b̂Re

0 , â0) = Re(B(â0, b̂k))

BR(â0, b̂
Im
k ) = BR(b̂Im

0 , â0) = Im(B(â0, b̂k))

BR(âRe
k , âRe

k ) = 0.5(Re(B(âk, â−k)) + Re(B(âk, âk)))

BR(âIm
k , âIm

k ) = 0.5(Re(B(âk, â−k))−Re(B(âk, âk)))

BR(âRe
k , âIm

k ) = BR(âIm
k , âRe

k ) = 0.5Im(B(âk, âk))

BR(âRe
k , b̂Re

l ) = BR(b̂Re
l , âRe

k ) = 0.5(Re(B(âk, b̂−l)) + Re(B(âk, b̂l)))

BR(âIm
k , b̂Im

l ) = BR(b̂Im
l , âIm

k ) = 0.5(Re(B(âk, b̂−l))−Re(B(âk, b̂l)))

BR(âRe
k , b̂Im

l ) = BR(b̂Im
l , âRe

k ) = 0.5(Im(B(âk, b̂l)) + Im(B(â−k, b̂l)))

BR(âIm
k , b̂Re

l ) = BR(b̂Re
l , âIm

k ) = 0.5(Im(B(âk, b̂l))− Im(B(â−k, b̂l)))

Here the element B(âk, b̂l) of the covariance matrix B corresponds to the expectation of

B(âk, b̂l) = E((âk − E(âk))(b̂l − E(b̂l)).

The approximate inverse of a singular square matrix Bp×p is defined to be equal B−1(Λn) =
UnΛ−1

n UT
n , n < p, where Λn is a n×n diagonal matrix containing the n largest eigenvalues

of the matrix B and a p × n orthonormal matrix Un containing the n corresponding
eigenvectors of the matrix B.

The expression (140) is approximated by

w(x̂,Y) =c ∗ e(Trx̂−Tra0)T (BR
0 )−1(ΛB

nB
)(Trx̂−Tra0)∗

∗ e
∑Nass

i=1 (yi−Fti (x̂))T H−1(yi−Z(Fti (x̂)))∗
∗ e−(Trx̂−Trα̂0)T (V R

0 )−1(ΛV
nV

)(Trx̂−Trα̂0)

(142)

In the one-dimensional shallow water model the number of the largest eigenvalues is
chosen to be equal for both matrices to be used in the expression (142) and is equal
nB = nV = 22. The formal degrees of freedom of the model state is 63. Geostrophic
balance will approximately reduce these degrees of freedom by factor 3. To compute the
approximate inverse of the matrix and to sample from the Gaussian distribution all eigen-
values larger than λε = 0.00001 were chosen. Essentially different from each other are
only the largest 13 eigenvalues. Eigenvectors corresponding to the smaller eigenvalues are
nearly insensitive to the assimilated data. In Table 2 we show the 11 largest eigenvalues
of the initial forecast error covariance matrix ΛB

22, and the covariances of the Gaussian ap-
proximation of the posterior pdf for the non-linear observation operators nlZ3 and nlZ2.
For each observation operator the first line corresponds to the result of the data assimila-
tion of ”high” precision data (H = diag(1

4
tlZB0(tlZ)T ) and the second line corresponds

to results of the data assimilation of the low precision data (H = diag(2tlZB0(tlZ)T ).
The prior pdf is Gaussian, so ΛB

22 gives the largest eigenvalues of the prior variance of
the model state variable as well. The posterior pdf is not Gaussian, and therefore ΛV

22

contains the eigenvalues of the curvature of the posterior pdf around the mode, which in
general can be quite different from the posterior variance.
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The dependent sample x̂j(t0), j = 1, . . . , Nsample , which is represented in Figures 26 and
27, is constructed as follows. Firstly, we obtain a sample of real valued vectors (x̂R(t0))

j.

(143) (x̂R(t0))
j = Tr α̂t0 + UV

nV
(ΛV

nV
)

1
2X j

nV

The random nV -dimensional vectors X j
nV

, j = 1, . . . , Nsample have a standard multivariate
normal distribution N (0, InV ×nV

)

Secondly, these real-valued random vectors (x̂R(t0))
j are transformed back to the complex

valued model state variables (x̂(t0))
j with the structure of the spectral coefficients of the

discrete Fourier transform of a real valued field outlined above.

The subspace of a linear space spanned by matrix V R
0 in which the sample (x̂R(t0))

j ,
j = 1, . . . , Nsample varies, depends on the chosen amount of the largest eigenvalues nV .
Even if the matrix itself V R

0 = BR
0 − Tr B0N1B0 TrT spans the subspace spanned by

BR
0 , the number of the largest eigenvalues nB of the matrix BR

0 must be chosen so that
the subspace corresponding to the matrix UB

nB
(ΛB

nB
)(UB

nB
)T would include a subspace

corresponding to the matrix UV
nV

(ΛV
nV

)(UV
nV

)T .

The efficiency of the estimate (136) depends on the sample size Nsample. But for every
realisation of the sample, the result of the estimation will depend on the inherited ran-
domness of the sample as well. For a moderate sample size, especially in the case of a large
dimensional sampling distribution, the result of the estimation can depend significantly
on how well a particular realisation of the sample represents essential properties of the
sampling distribution, for example, such properties like different types of symmetry for a
normal distribution. The efficiency of the estimate can be increased by constructing a de-
pendent, often called a balanced, sample instead of the independent one described above.
This improvement can be made by means of antithetic variables. An antithetic variable
in the context here is a function of a random draw, it is equi-probable with the random
draw and it helps to represent the particular features of a sampling distribution, when it is
included in the sample together with the random draw. We will use two types of antithetic
variables to balance the sample for location in a linear space and to balance the sample
for scale. These antithetic variables are discussed for example in Durbin and Koopman
(1997). First, for every random draw of XnV

we construct a variable X̃nV
= −XnV

, and in

accordance with (143) for every x̂R(t0) we will obtain x̃R(t0) = Trα̂t0 − UV
nV

(ΛV
nV

)
1
2XnV

.
The symmetry around the mean of a normal distribution density suggests this type of
an antithetic variable to balance for location. The XnV

and X̃nV
are equi-probable and a

sample estimate of the normal mean is equal exactly to the true value. The weights for
the realisation of these two antithetic variables are grouped in Figures 26 and 27.

X̂R(t0) =
(x̂R(t0))

1 + (x̃R(t0))
1

2
=

=
Trα̂t0 + UV

nV
(ΛV

nV
)

1
2X 1

nV
+ Trα̂t0 − UV

nV
(ΛV

nV
)

1
2X 1

nV

2
=

=Trα̂t0 = E(X̂R(t0))

(144)

The second type of antithetic variable was developed by Durbin and Koopman. Let
ξ = (XnV

)TXnV
, then the variable ξ ∼ χ2

nV
. For the particular realisation of XnV

let us
denote q a probability Pr(χ2

nV
< ξ) = q. Then a 1− q-quantile of the χ2

nV
distribution ξ′

Pr(χ2
nV
≥ ξ′) = q is equi-probable with ξ. Then a value X ′

nV
=

√
ξ′
ξ
XnV

is equi-probable

with XnV
. The fact that X ′

nV
and XnV

have the same distribution follows because ξ =

(XnV
)TXnV

and
XnV√

ξ
are independently distributed (Durbin and Koopman, 1997). Such a

87



construction of the sample makes the sampling symmetric around a median of a certain
transform (the sum of squares). If the perfect sampling could be made, it would always
be symmetric around the median of any transform. Then, obviously, X ′R(t0)(= Tr α̂t0 +

UV
nV

(ΛV
nV

)
1
2X ′

nV
= Trα̂t0 + ξ′

ξ
UV

nV
(ΛV

nV
)

1
2XnV

) and X̂R
nV

have the same distribution and are

equiprobable. Thus, for every independent draw X j
nV

, j =
Nsample

4
we create four depen-

dent variables (x̂R(t0))
j = Tr α̂t0 + UV

nV
(ΛV

nV
)

1
2X j

nV
, (x̃R(t0))

j = Tr α̂t0 − UV
nV

(ΛV
nV

)
1
2X j

nV
,

(x′R(t0))
j = Tr α̂t0 + ξ′

ξ
UV

nV
(ΛV

nV
)

1
2X j

nV
and (x̃′R(t0))

j = Tr α̂t0 − ξ′
ξ
UV

nV
(ΛV

nV
)

1
2X j

nV
. Such

a procedure allows us to construct a sample of a moderate size, which has some desired
properties of a large dimensional independent sample from the sampling distribution. If
we would like, the procedure for construction of an antithetic variable can be continued
infinitely. For example, we could employ a uniform distribution of the q-quantile inverse,
and instead of taking only two probability realisations q and 1 − q as above, we could
define q1 = q+0.5 modulus 1 and take four realisations of the probability q, 1−q, q1, 1−q1
and so on. In our construction of a sample from a sampling distribution, we utilize only
the symmetry around a mean of the normal distribution, and a distribution of mass for
the sum of nV squares of normally distributed variables in accordance with the location
of a median of a χnV

distribution density. The main goal was to estimate the posterior

expectation of the model state variable E(X̂(t0) | Y) and the posterior expectation of a

usually smaller dimensional transform E(ζ(X̂(t0)) | Y). In fact, any function of the model
state variable can be estimated in this way. Besides the importance sampling estimate of
quantiles (139) were have used above, the estimate of the posterior variance of fζ(X̂(t0))
can be useful to obtain.

var(fζ(X̂(t0)) | Y) =

∫
E((fζ(X̂(t0))−E(fζ(X̂(t0)) | Y)2 | Y)

p(X̂(t0) | Y)

g(X̂(t0) | Y)
g(X̂(t0) | Y)dX̂(t0)

Then the importance sampling estimate of variance var(fζ(X̂(t0)) | Y) can be taken as

(145) var(fζ(X̂(t0)) | Y) ≈
Nsample∑

j=1

(fζ(x̂
j(t0)))

2wj − (fζ(X̂(t0)) | Y)2

5. Validation of data assimilation provided by the different Kalman
filter extensions

In the previous chapter we have outlined the basic properties of four different Kalman filter
extensions, which we have applied to data assimilation with a one-dimensional shallow
water model. All these four extensions are used with the same aim to reconstruct the
”true” model state X̄(t) from a given forecast a0 and observations Y , in other words,

to construct a point estimate of the unobservable model state X̂(t), where t denotes the
desired time moment t > 0. The construction of a point estimate is a decision problem,
and a point estimate can be optimal only with respect to the loss function it is supposed to
minimize. We are only dealing with simulated observations in this study, and therefore the
”true” model state X̄(t) is known over the desired time period. The objective comparison
of the different Kalman filter extensions is possible with the purpose to determine which
estimate comes closer to the ”true” model state and it will be carried out. The main
issues we would like to concentrate on are the following ones

• In what sense, i.e. with respect to which loss function, if any, is a particular
Kalman filter extension more efficient than the others?
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• How close, in some sense, is the estimate of the unobservable model state to its
”true” value and do we have some information representing the distance?

• How feasible is it to perform the necessary computations to obtain the estimate
in the case of a full scale problem?

• What type of approach is preferable for the meteorological data assimilation prob-
lem, the deterministic or the probabilistic one?

In all four extensions the unobservable model state is treated from a Bayesian point of
view. The point estimates are constructed to minimize a Bayes risk, which is defined as
the expected value of a frequentist risk with respect to a prior distribution for the model
state variable X̂(t0). Let us denote by δ a decision function, a function which is defined
on the sample space of observations Ȳ (all possible outcomes of observation series) and
specifies the action to take for any possible outcome. In our situation the decision δ is
to use some particular estimator for X̄(t). The resulting error of estimation is quantified
by some loss function loss(X̄(t), δ(Y)). The frequentist risk is the expected value of the
chosen loss function regarded as a function of the ”true”, unobservable, model state X̄(t)
treated as a parameter.

riskF (X̄(t), δ) =

∫

Ȳ
loss(X̄(t), δ(Y))p(Y ; X̄(t0))dY

Thus the Bayes risk is a function of the hyper parameters of a prior distribution for the
unobservable model state (X̂(t0) ∼ N (a0, B0)):

riskB(p(X̂(t0)), δ) =

∫
¯̂
X(t0)

∫

Ȳ
loss(X̂(t), δ(Y))p(Y | X̂(t0))p(X̂(t0))dYdX̂(t0) =

=

∫

Ȳ

∫
¯̂
X(t0)

loss(X̂(t), δ(Y))p(X̂(t0) | Y)p(Y)dX̂(t0)dY
(146)

rewritten according to Bayes formula.

The function (146) can be minimized for each realisation Y separately, so we may condition
on the particular realisation of observations Y and minimize the functional

(147) lossB(p(X̂(t0)), δ(Y)) =

∫
¯̂
X(t0)

loss(X̂(t), δ(Y))p(X̂(t0) | Y)dX̂(t0)

Dependent on the loss function we have chosen, different point estimates are defined.

The extended Kalman filter approximates the posterior mode of the unobservable model
state variable at the time of the end of the data assimilation time window X̂(tNass) and the
time-window smoother approximate the posterior mode of the unobservable model state
variable at the beginning of the data assimilation time window X̂(t0). The ensemble
Kalman filter and the bias-corrected Kalman filter provide refinements, compared with
the extended Kalman filter, in approximation of the posterior mode of the model state
at the end of the data assimilation time window X̂(tNass). The importance sampling is
to approximate the posterior mean of X̄(t0) at the beginning of the assimilation time-
window, but under the perfect model assumption it can be used to approximate the
posterior mean of X̄(tNass) at the end of the data assimilation time window as well. A
posterior mode and a posterior mean are point estimates which are optimal in different
respects, in general. While applied to reconstruct the ”true” model state, which gave rise
to the observations, they both have advantages as well as limitations.
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5.1. Posterior mean as a point estimate. Suppose we choose the loss function in
equation (147) to be quadratic in X̂(t)(say, t = tNass , or t = t0)

(148) loss(X̂(t), δ(Y)) = (X̂(t)− δ(Y))2

Then, since a second moment is smallest taken about the mean, the Bayes decision rule,
which minimizes the Bayes expected loss (147) is the posterior predictive mean (or just
the posterior mean if the loss function is evaluated at the beginning of a time window)

E(X̂(t) | Y).

(149) δ(Y) = E(X̂(t) | Y) =

∫
¯̂
X(t0)

X̂(t)p(X̂(t0) | Y)dX̂(t0)

The optimal expected Bayes loss is equal to the expectation of the posterior predictive
variance

∫
¯̂
X(t0)

(X̂(t)− E(X̂(t) | Y))2p(X̂(t0) | Y)dX̂(t0) = var(X̂(t) | Y)

We intentionally specify the integrals in the expressions above with respect to the poste-
rior pdf, evaluated at the beginning of the time window, and not the posterior predictive
one, evaluated at the end of the data assimilation procedure. We know the posterior pdf
p(X̂(t0) | Y) up to the normalizing constant. Even if, under the perfect model assumption,

X̂(t) is a unique function of the X̂(t0), the posterior pdf p(X̂(t) | Y) can not be expressed
analytically at all. As soon as the posterior variance is finite, the posterior mean will be
optimal with respect to the mean squared error. The point estimate minimizing the risk
is unique and this is a big advantage of the estimate. Even if the posterior covariance is
infinite, the posterior mean can still exist. But in this case it will only denote an expecta-
tion of the unobservable model state variable according to the posterior distribution, and
it can be difficult to relate the estimate to the particular realisation of the unobservable
model state, the ”true” value which gave rise to the observations. As it was already men-
tioned, the dynamics of our model is not completely correct, because the conservation of
the total energy does not hold. The distribution cloud contracts with time (after a very
long integration time). If the initial covariance matrix is finite, the posterior predictive
covariance matrix will be finite as well.

The posterior mean as a point estimate of the unobservable model state variable is sensitive
to the introduced observations. Even in the case when the observations are quite in-precise
compared to the prior opinion about the model state, the posterior distribution is different
from the prior distribution (except in the case of non-informative observations). Therefore,
the posterior mean which is the average of the unobservable model state, weighted by the
posterior pdf, is different from the prior mean.

Another advantage is that the distance, in a certain sense, between the posterior (or the

posterior predictive) mean E(X̂(t) | Y) and the ”true” value of X̂(t) is well represented
by the posterior (or posterior predictive) variance.

The posterior mean is a point to which all possible values of a random variable have the
shortest averaged squared distance, weighted with the posterior pdf. If the posterior pdf
is heavy tailed, the posterior expectation can be displaced strongly toward the heavier
tail, toward the subspace with a lower probability density. It is more believable that the
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”true” value of the X̂(t0) falls in the area with higher probability density, and therefore
away from the point of the posterior mean.

Even more, if the model space
¯̂
X(t0), where the unobservable model state variable varies,

forms a non-linear subspace, the posterior mean does not necessary fall into
¯̂
X(t0). The

posterior mean can define a model state, which does not exist. However, the problem here
does not lie in the estimate itself, but in the way in which the estimate is interpreted.

5.2. Posterior mode as a point estimate. If we choose the loss function in the ex-
pression of the Bayes risk (146) as

(150) loss(X̂(t0), δ(Y)) =

{
0 , δ(Y) = X̂(t0)

1 , δ(Y) 6= X̂(t0)

then we are supposed to minimize

min
δ(Y)

∫
¯̂
X(t0)

(1− Iδ(Y)=X̂(t0))p(X̂(t0) | Y)dX̂(t0) =

= 1−max
δ(Y)

p(δ(Y) | Y)
(151)

Then the optimal decision with respect to the zero-one loss (150) will be the posterior

mode of p(X̂(t0) | Y). Let α̂0 denote the posterior mode of the p(X̂(t0) | Y).

The posterior mode determines simply a point at which the posterior pdf achieves its
maximum. A pdf function is bounded from above, so it always achieves a maximum.
It is not necessary that the maximum is unique, so just the existence of the posterior
mode can not be considered as an optimality feature. Also, not only the maximum point
is important, but even more the whole form of the posterior pdf. Accepting the mode
as a point estimate of the unobservable model state variable, the curvature around the
modes as well as the total amount of mass located in the tails of the posterior pdf must
be taken into account. It is not easy to estimate the amount of mass located in the
tails of the pdf, but a good estimate of the curvature around the mode of the pdf is the
matrix V0, obtained during approximation of the mode in the time-window smoother.
Approximating the mode of the posterior pdf by the time-window smoother, we apply
the backwards smoothing to the filter based on the extended Kalman filter approach in
order to obtain the first estimation of the posterior mode and its dynamical evolution. By
the method outlined above we will find the mode of the posterior pdf which lies closest
to the mode of the posterior pdf for the approximate linear state space problem with
linerised dynamics and linearised observation operators. In our model the dynamics are
well approximated by linearization, and in the case of a linear observation operator, with
Gaussian observation errors, the posterior distribution is unimodal. If the observation
operator is non-linear, multimodality of the posterior pdf can easily occur.

When a posterior pdf has several separately located modes, it means that there is evidence
that several model state realisations could give rise to the same observations, and we do
not have enough information to choose only one of them. The global mode can be chosen
as a point estimate in such a situation. The iterative procedure used in the time-window
smoother does not guarantee that it is the global mode that will be estimated.

One of the main advantages of the posterior mode as a point estimate is that it always
determines an existing model state. A support of a posterior pdf is always a subspace of
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the support of a prior pdf. The posterior pdf differs from zero only where the prior pdf
does. The cloud of the prior pdf is concentrated (approximately) along a slowly evolving
manifold (see discussion above on the approximation of the valid physical balances). The
cloud of the posterior pdf is formed from the cloud of the prior pdf down-weighting values
which are unlikely according to the observations.

A posterior pdf is proportional to a prior pdf multiplied by a likelihood. If the number
of observations is large enough, the likelihood will dominate the prior, and the posterior
mode will come close to the maximum likelihood estimate of the unobservable model
state. But this is far away from the common situation in meteorological data assimilation.
Here observations can have large errors and the number of them is small compared to
the dimensionality of the model state variable. Even if the introduction of observations
can change significantly the form of the pdf, there is often not enough evidence in the
displacement of the location of the mode. In that case, interpreting the posterior mode as
a point estimate of the unobservable model state, we always need to take into account that
the position of the mode is strongly affected by our prior opinion about the model state
variable and it can differ significantly from the most likely one in the light of observations.

It is well known that the maximum likelihood estimate of the unobservable model state
variable is asymptotically efficient under quite mild regularity conditions. If fact, if nec-
essary conditions are satisfied, even in the case of dependent observations the maximum
likelihood estimate of the parameter, when the number of observations is large enough, is
approximately Gaussian around the true value of the parameter as a mean and with the
Fisher information matrix I(X̂(t0)) as a variance-covariance matrix, and asymptotically
efficient. In the case of the model we are using, the exact asymptotic theory cannot be

applied, because the space of the model state variable
¯̂
X(t0) is not convex, and due to the

irreversibility of the normal mode initialisation procedure, there exists a whole subspace

of
¯̂
X(t0), which could give rise to the same observations.

As first shown by Godambe (1960) and Durbin (1960) for the maximum likelihood es-
timate, and later generalized for the posterior mode by Durbin(1997), a finite sample
property analogous to the asymptotic efficiency, the minimum variance unbiased estimat-
ing equation property, holds for the posterior mode.

Namely, the posterior mode α̂0 is a solution of an unbiased estimating equation (with

respect to the joint probability density p(X̂(t0),Y)) :

(152) DX̂(t0)(log p(X̂(t0) | Y)) = DX̂(t0)(log p(X̂(t0),Y)) = 0,

which is proportional to the minimum variance unbiased estimating equation defined
below.

(153) h(X̂(t0),Y) := DX̂(t0)(−(J )−1 log p(X̂(t0),Y)) = 0,

The minimum variance unbiased estimating equation h(X̂(t0),Y) has the smallest variance
with respect to the joint probability density which is equal (J )−1, where J is an integrated
Fisher information matrix

(154) J = var(
∂ log p(X̂(t0),Y)

∂X̂(t0)
) = −E(

∂2 log(p(X̂(t0),Y))

∂X̂2(t0)
) = EX̂(t0)(I(X̂(t0)))
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The integrated Fisher information matrix J is the expectation of the Fisher information
matrix I(X̂(t0)) with regard to the prior distribution of X̂(t0). The importance of the
result is that it formulates a finite-sample optimal property of the posterior estimate
and relates it to the Fisher information matrix, namely to its average over the prior
distribution of the parameter. However, in practice, when we obtain a posterior mode
estimate given a particular set of observations Y , it is difficult to apply and to interpret
this optimality property, which is considered with respect to the joint probability density.
Then all observations, not only the actually observed but all the possible ones to occur,
are taken into account. The integrated expected information matrix Y , which indicates
the ”closeness”, has little to deal with the actual value of the observed information at the

point of the posterior mode i(α̂0,Y) = −∂2 log(p(X̂(t0),Y))

∂X̂2(t0)
| (α̂0,Y) = V0

J =

∫
¯̂
X(t0)

∫

Ȳ
i(X̂(t0),Y)p(X̂(t0),Y)dYdX̂(t0)

The exception is the Gaussian linear model for which the observed information matrix is
constant.

The conditional, given observations Y , minimum variance optimality property does not
hold in general. To make it true, a very special condition must be satisfied.

(155)

∫
¯̂
X(t0)

∂2p(X̂(t0) | Y)

∂X̂2(t0)
dX̂(t0) = 0

In other words, the model must be such that the following property holds

(156)∫
¯̂
X(t0)

−∂2 log(p(X̂(t0) | Y))

∂X̂2(t0)
p(X̂(t0) | Y)dX̂(t0) =

∫
¯̂
X(t0)

(
∂ log(p(X̂(t0) | Y))

∂X̂(t0)
)2p(X̂(t0) | Y)dX̂(t0)

5.3. The estimate of the posterior predictive mode versus the estimate of the
posterior predictive mean of X̂(t). We would like to compare the posterior mode
obtained using the time-window smoother and the posterior mean estimated from impor-
tance sampling as estimators of the unobservable model state variable at the beginning
of a time-window. In the experiment we have been using ”low” precision data simulated
with the non-linear observation operator nlZ1. In Figure 29 we can see the normalized
squared error for the three meteorological fields of the posterior mode ˜NSE(∗) and of

the posterior mean ˜NSE
i.s.

(+) as estimators of X̂t evaluated at the end of the ”short”
time window (8 observation windows) for different realisations of the first-guess state a0,

which specifies the prior X̂(t0) ∼ N (a0, B0). To obtain the normalized squared errors
˜NSE and ˜NSE

i.s.
the corresponding spatial average squared errors were divided by the

initial spatial average forecast error variance of the meteorological field. The normalizing
quantities are var0

u = 0.004375 for the u-wind component, var0
v = 38.40 for the v-wind

component and var0
φ = 11280 for the geopotential.

The total number of the introduced observations (8 times by 9 observations) is not very
large compared to the dimensionality of the model state variable, but the impact of
the observations in the specification of the posterior pdf is significant. In a majority of
cases (different realisations of the initial first guess) the posterior mode is a much better
estimator of the ”true” model state X̄(t0) than the posterior mean. Even at the end of
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Figure 29. The spatial average normalised squared error for the u-wind
component, for the v-wind component and for the geopotentials of the pos-
terior mode (∗) and of the posterior mean (+) as estimators of X̂(t), evalu-
ated at the end of the ”short” assimilation time window t = tNass (Nass = 8
observation windows) for 20 different realisations of the first-guess state a0.
The number of the realisation is indicated on the horizontal axis.

the assimilation time window the time development of the posterior mode, which is not
equal to the posterior predictive mode at the time moment, estimates X̄(t) better than
the posterior mean in a large number of cases.

Such good results are partly due to the simulation technique. The first guess states as well
as the observation errors form indeed a Gaussian cloud around the ”true” model state.
The posterior mode is the most believable location of the ”true” model state under our
prior opinion and in the light of the observations. With such a ”successful” specification
of the prior, in accordance with the Bayesian interpretation of the probability density as
a belief about the location of the ”true” state, the ”true” model state will appear in a
vicinity of the posterior mode for the majority of the first guess realisations.

Secondly, the posterior mean as a point estimate is not so meaningful as the mean is
defined in a frequentists context. The behaviour of the posterior mean as a point estimate
will depend on the form of the pdf. The form of the posterior pdf will depend on the actual
realisation of the first guess field, and for a large amount of realisations it is heavy tailed
and non-symmetric. Therefore the location of the mean is displaced from the location
of the first-guess field much toward the heavy tail. If we would repeat the ”short” time
window smoother several times, specifying a Gaussian prior in the beginning of every time
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window as we have done it in Configuration b (with the dynamical update of the forecast
error covariance matrix, see section 4.3), the results in Figure 29 would look differently.

We tried 5 sequential applications of the time-window smoother. During the last, the
fifth, time window, the observations were considered as rather poor compared to the
sharp prior, and the observations did not have enough influence to replace the mode.
However, even very weak observations influence the form of the posterior pdf and move
(very slightly) the posterior mean away from the first-guess state. Now the posterior mean
became a better estimator of X̄(t), with respect to the spatial average normalised squared

error. For the majority of different starting first-guess fields ˜NSE
i.s.

is smaller than ˜NSE.
But we need to stress that the improvement is very small due to the sharp prior. As we
have seen (Figure 17, section 4.3), in Configuration c (with the initial covariance matrix
being the same at the beginning of every time-window) the posterior mode estimate of
X̄(t0) is much worse than for the other two Configurations(a and b). Because the prior
in that case will never dominate the likelihood, the influence of the observations on the
posterior pdf will be very strong every time window. Besides that, the prior formulation
is not so ”successful” in this case, because the first-guess state at the beginning of the
new time-window is equal to the time development of the posterior mode up to the end
of the previous time window. The cloud of the possible first-guess fields does not exactly
form a Gaussian cloud, as the prior specifies. The posterior mean provides no help in the
improvement of the estimation X̄(t), because it is often too strongly displaced towards
the tail.

Under the perfect model assumption, when we have assimilated observations using the
”long” assimilation time window, for almost all realisations of the starting first-guess
state, the posterior mode comes so close to the ”true” state X̄(t0), that even at the end
of the ”long” assimilation time window, the time evolution of the mode is still a better
forecast than the posterior predictive mean, when data were simulated with the non-linear
observation operator nlZ1. We need to say, however, that both estimates are very close
to one another. After such a large amount of data have been introduced (totally 40 times
by 9 observations), the likelihood dominates over the prior and the posterior mode comes
close to the maximum likelihood estimate of X̄(t0). Even if a large amount of mass of the
posterior pdf is concentrated around the mode, the form of the posterior pdf still deviates
from the Gaussian one, and the posterior mean is displaced away from the mode toward
the heavy tail. Assimilating observations simulated by other observation operators, the
posterior pdf could have a lighter tail, and the result can be more in favour of the posterior
predictive mean as a point estimate of the X̄(t) (as we can in Figure 25 when data were
simulated using the non-linear observational operator nlZ2).

For a sharp posterior pdf, the transform fζ(αt) of the posterior mode propagated in time is
a better estimate of fζ(X̄(t)) than the mean of fζ(X̂(t)) estimated by importance sampling.
If the mass of the posterior pdf is widely distributed around the posterior mode, the
answer to which of these two point estimates is preferable will again depend on the form
of the posterior pdf of fζ(X̂(t)). However, usually with a strongly non-linear transform the

estimator, fζ(α(t)) has not much in common with fζ(X̄(t)) and the posterior predictive
mean of fζ(X̂(t)) is a better estimator of fζ(X̄(t)).

We have illustrated the comparison of fζ(α(t)) and the posterior mean of fζ(X̂(t) as esti-

mators of fζ(X̄(t)) in Figure 30. Values of fζ(α(t)), corresponding to different realisations
of the first-guess state a0 (19 different realisations) are denoted by ∗, and values of the
posterior mean of fζ(X̂(t)) corresponding to different realisations of a0 are denoted by +.
The dotted line defines position of the ”truth”, fζ(X̄(t)). To estimate the posterior mean
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Figure 30. The transform fζ(αt) of the posterior mode propagated in time
(∗) and the posterior mean of fζ(X̂(t)) estimated by Nsample = 100 members

importance sampling (+) as point estimators of fζ(X̄(t)) (the dashed line)
obtained for 19 different realisations of the initial first-guess state a0. The
number of the realisation is indicated on the horizontal axis. The compari-
son is made at the end of the first, ”short” time window t = tNass(Nass = 8).
The assimilated data are ”low” precision and are simulated using nlZ1.

we have used Nsample = 100 members importance sampling. The comparison is made
at the end of the first, ”short” time t = tNass- window, where assimilation for Nass = 8
observations term have been performed. The assimilated data were simulated by the non-
linear observation operator nlZ1. The functional fζ (kinetic energy) is a function of the
u- and the v−wind components. As we have seen (Figure 29), the posterior predictive
mode was a better estimate for both of these wind components compared to the posterior
predictive mean. However, after the strongly non-linear transform fζ the posterior mean
of fζ(X̂(t)) becomes a more powerful tool to estimate the true model state.

The efficiency of the posterior mean of fζ(X̂(t)) as an estimator of fζ(X̄(t)) depends on

the sharpness of the posterior pdf of X̂(t0), but is strongly influenced by the form of
the posterior pdf of fζ(X̂(t)). Therefore, the possibility to judge about the posterior pdf
of a non-linear transform of the model state variable, for example by estimation of its
quantiles, is a stronger side of importance sampling than the possibility to estimate just
the posterior mean of this non-linear transform.
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Table 3. The spatial average squared error of the time propagated poste-
rior mode αt (S̃E, the first row), the posterior predictive mean estimated by

the importance sampling of size Nsample = 100 (S̃E
i.s.,100

, the second row)
and the posterior predictive mean estimated by importance sampling of size

Nsample = 12 (S̃E
i.s.,12

, the third row) as estimators of the ”true” model
state. The time-window smoother with a ”short” time window (Nass = 8
observation windows) is used. The result is valid at the end of the assimi-
lation window t = tNass . The error is calculated for the u-wind component
(the third column), for the v-wind component (the fourth column) and for
the geopotential (the fifth column). The result is presented for the obser-
vations simulated by the three different non-linear observation operators
nlZ1, nlZ2, nlZ3. The observations are of ”low” precision.

The ”short” time window; u-wind comp. v-wind comp. geopotential
The ”low” prec. dat

S̃E 0.001382 3.9086 4328.5

nlZ1 S̃E
i.s.,100

0.001852 3.7524 5506.3

S̃E
i.s.,12

0.003124 7.3060 8055.7

S̃E 0.001339 3.8013 4474.5

nlZ2 S̃E
i.s.,100

0.001871 3.7178 3881.8

S̃E
i.s.,12

0.000748 2.2555 10237.5

S̃E 0.001376 3.9244 4036.0

nlZ3 S̃E
i.s.,100

0.001052 2.5412 3601.5

S̃E
i.s.,12

0.002877 6.9410 6391.2

The ”curvature” around the mode of the posterior pdf of X̂(t0), the matrix V0, which is
explicitly calculated by time-window smoother, can be used as a certain measure, how
close the posterior mode α0 can be located to the ”true” X̄(t0). In the example here, the

largest eigenvalue of V̂ R
0 taken after the transform of V0 to the real-valued space (141)

ranges between 877 and 887. Only for two realisations of a0 from totally 19 ones, the
posterior mode of X̂(t0) comes so close to its ”true” value, that fζ(αt) is significantly closer
to the fζ(X̄(t)) than the posterior mean of fζ(X̂(t)), estimated by importance sampling.

The posterior variance of fζ(X̂(t)), estimated by importance sampling (145), varies very
strongly for different realisations of the initial first guess state(from 46 up to 332 in the
example) and is not an indicator of the distance between the estimate of the posterior
mean of fζ(X̂(t)) and its ”true” value f(̄X̂(t)). Dependent on the different realisations of a0

the posterior pdf on the same set of observations can differ strongly in the form, and that
is of coarse reflected in the posterior variance. A very large sample size is needed in order
to correctly estimate the integral over the space of such a large dimensional model state
variable. For the moderate sample size, the quality of the importance sampling estimate
of the posterior variance is very questionable for the dependent sample. The calculation
of the importance sampling weights is a computationally expensive procedure, and in
practice, it is not feasible to perform it for a very large sample size.

The curvature of the posterior pdf of X̂(t0) is much more sensitive to the amount of the
assimilated observations than to the different realisations of the initial first guess field
and/or to the different realisations of the observations. The curvature of the posterior
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Table 4. The spatial averaged square error of the time propagated poste-
rior mode αt (S̃E, the first row), the posterior predictive mean estimated by

the importance sampling of size Nsample = 100 (S̃E
i.s.,100

, the second row)
and the posterior predictive mean estimated by importance sampling of size

Nsample = 12 (S̃E
i.s.,12

, the third row) as estimators of the ”true” model
state. The time-window smoother with a ”short” time window (Nass = 8
observation windows) is used. The result is valid at the end of the assimi-
lation window t = tNass . The error is calculated for the u-wind component
(the third column), for the v-wind component (the fourth column) and for
the geopotential (the fifth column). The result is presented for the obser-
vations simulated by the three different non-linear observation operators
nlZ1, nlZ2, nlZ3. The observations are of ”high” precision.

The ”short” time window; u-wind comp. v-wind comp. geopotential
The ”high” prec.data

S̃E 0.000156 0.6430 608.9

nlZ1 S̃E
i.s.,100

0.000268 1.1619 617.2

S̃E 0.000155 0.6641 526.6

nlZ2 S̃E
i.s.,100

0.000305 1.0732 352.9

S̃E
i.s.,12

0.000231 0.6949 535.9

S̃E 0.000156 0.6631 565.8

nlZ3 S̃E
i.s.,100

0.000175 0.7940 580.1

S̃E
i.s.,12

0.000226 0.5007 573.5

pdf of X̂(t0) represents well the precision of the posterior mode estimate. In the example

(Figure 29, Figure 30), the total sum of the eigenvalues of V̂ R
0 taken for the different

realisations of a0 varies from 1214.4 to 1231.7 with a mean value 1223.0 and a variance
22.88.

The results of the comparison between the posterior mode propagated in time to the end
of the data assimilation procedure αtNass

and the posterior predictive mean of X̂(tNass),
valid at the same time moment and estimated by importance sampling, are summarised
in Table 3, Table 4 and Table 5. Table 3 presents the results of the comparison when
the ”short” time window smoother (Nass = 8) was used to estimate the posterior mode
by assimilating the ”low” precision observations. The spatial average squared error valid
at the time moment is shown for the u-wind component, the v-wind component and
the geopotential and from assimilation of observations simulated with the three different
non-linear observation operators nlZ1, nlZ2, nlZ3. To estimate the posterior predictive
mean, the importance sampling of two different sizes (Nsample = 12 and Nsample = 100)
were used. When a small amount of the ”low” precision observations are assimilated,
the posterior predictive mean and the posterior mode propagated in time are comparable
in their efficiency to estimate the ”true” model state. The posterior predictive mean
(estimated from the ”large” size sample) comes closer to the ”true” model state with
respect to the spatial average squared error estimating both the v-wind component and the
geopotential for the case of the non-linear observation operators nlZ2 and nlZ3. However,
a reasonably large sample size is required. The posterior predictive mean estimated by
importance sampling with Nsample = 12 gives a misleading estimate of the ”true” model
state for the case of all three non-linear observation operators.
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Table 4 presents similar results as Table 4, but with the use of the ”high” precision ob-
servations. Again, the ”short” time window smoother was used to estimate the posterior
mode of the model state variable. Now the observations have stronger influence on the
form of the posterior pdf of the model state, and the posterior mode of the pdf comes
closer to the ”true” model state. The posterior pdf of the model state is much sharper
now. When a small sample size for the importance sampling is used, the sample mem-
bers are sampled in the close vicinity of the posterior mode of the pdf. The posterior
predictive mean estimated from the ”small” sample is close to the posterior mode of the
pdf propagated in time. The posterior predictive mean is a slightly noisier estimate than
the posterior mode propagated in time, and this is a common problem for all sampling
estimates. The posterior predictive mean estimated from the ”large” sample is more in-
fluenced by the information coming from the tails of the posterior pdf and it is different
from the estimate of the ”true” model state based on the posterior mode. The efficiency
of the estimate, with respect to the spatial average squared error, of the ”v”-wind com-
ponent indicates the the closeness of the spectral wave components of the estimate for
k > 0 to their ”true” values for the one-dimensional shallow water model. Due to this,
we consider that the posterior mode propagated in time is a more efficient estimate of the
”true” model state than the posterior predictive mean for the experiments presented in
Table 4.

Table 5 presents the result of the comparison when the ”long” time window smoother
in three different configurations is used to estimate the mode of the posterior pdf of the
model state for assimilation of ”low” precision observations. The efficiency of the poste-
rior predictive mode propagated to the end of the assimilation procedure (40 observation
windows) is compared with the posterior predictive mean valid at the same time and
estimated by importance sampling with sample size Nsample = 100 for the three differ-
ent observation operators. It can easily be noticed, that the time window smoother in
Configuration ”c” (the same initial forecast error covariance matrix at the beginning of
each ”short” assimilation window) is a clear outlier. The posterior predictive mean is
a more efficient estimate of the ”true” model state than the posterior mode of the last
assimilation cycle propagated in time, when Configuration ”b” is used. For Configuration
a, the posterior mode propagated in time is a more efficient estimate.

In summary we can say that the importance sampling estimation of the posterior mean
(and the posterior predictive mean ) is the only type of estimator, among those discussed
in this thesis, which attempts to estimate the posterior mean in the case of non-linear
observation operators. The other types of estimators, the extended Kalman filter, the
bias corrected Kalman filter, the ensemble Kalman filter and the time window smoother
estimate the posterior predictive mode. The results shown in the discussion at the end at
this section give preference to the estimator of the posterior mode, because the repeated
samples principle is not applicable here for the validation of the estimators. But in a
general sense, the discussion concerns particularities of the one dimensional shallow water
model, which is considered here, and it is oversimplified in many respects. The most
important limitations are the nearly linear dynamics, the perfect model assumption and
the simulated observations. Applying the methods of data assimilation discussed here to
a more realistic model, the posterior predictive mean estimate could turn out to be more
powerful. The example with the strongly non-linear transform that was applied to the
model state variable (Figure 30) is an indication of this. If the model dynamics would
not be perfect, the posterior mode estimate would never come very close to the maximum
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Table 5. The spatial average squared error of the time propagated pos-
terior mode αt (S̃E) and the posterior predictive mean estimated by the

importance sampling of size Nsample = 100 (S̃E
i.s.,100

) as estimators of the
”true” model state. The time-window smoother with a ”long” time window
(Nass = 40 observation windows) is used in three different configurations:
Configuration a (rows 1,2 ), Configuration b (rows 3,4), Configuration c
(the rows 5,6). The result is valid at the end of the assimilation window
t = tNass . The error is calculated for the u-wind component (the fourth col-
umn), for the v-wind component (the fifth column) and for the geopotential
(the sixth column). The result is presented for the observations simulated
by the three different non-linear observation operators nlZ1, nlZ2, nlZ3.
The observations are of ”low” precision.

The ”long” time window; u-wind comp. v-wind comp. geopotential
The ”low” prec.data

nlZ1 Configuration a S̃E 0.000023 0.3086 561.6

S̃E
i.s.,100

0.000062 0.5582 552.2

Configuration b S̃E 0.000054 0.2923 569.3

S̃E
i.s.,100

0.000060 0.3359 357.7

Configuration c S̃E 0.000478 7.4863 1111.4

S̃E
i.s.,100

0.001463 11.8993 3387.3

nlZ2 Configuration a S̃E 0.000025 0.3302 598.2

S̃E
i.s.,100

0.000044 0.4290 414.7

Configuration b S̃E 0.000054 0.3096 642.4

S̃E
i.s.,100

0.000079 0.4657 459.4

Configuration c S̃E 0.000463 7.4265 1173.1

S̃E
i.s.,100

0.001397 11.7583 2472.7

nlZ3 Configuration a S̃E 0.000023 0.3102 520.4

S̃E
i.s.,100

0.000057 0.5019 591.4

Configuration b S̃E 0.000054 0.2887 545.9

S̃E
i.s.,100

0.000075 0.4367 401.2

Configuration c S̃E 0.000472 7.4119 1152.5

S̃E
i.s.,100

0.001218 10.0844 2189.0

likelihood estimate of model state variable, and therefore would never come close to the
”true” model state, which would give rise to the real (not simulated) observations.

5.4. The estimate of the posterior predictive mode of X̂(t) provided by differ-
ent methods as estimators of X̄(t). As we have already mentioned, the time-window
smoother, the extended Kalman filter, the bias corrected Kalman filter and the ensemble
Kalman filter, all provide different estimators of the posterior predictive mode of X̂(t).
Therefore they can easily be compared between themselves. Applying different types of
filters, the corresponding analysed states (after the tangent-linear normal mode initiali-
sation transform) valid at the time moment ti, 1 ≤ i ≤ Nass are ai (88) for the extended

Kalman filter, am
i (106) for the bias-corrected Kalman filter and xas(ti) (130) for the en-

semble Kalman filter. They all provide the estimate of the posterior predictive mode of
X̂(ti), 1 ≤ i ≤ Nass. Applying the time-window smoother the estimate of the posterior
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predictive mode of X̂(ti) is given by the posterior mode estimate α̂(ti) propagated in time
(the posterior mode α̂(t0) is estimated by the iterative solution of equation (117)). The
corresponding spatial average squared errors of estimators for the u-wind component, the
v-wind component and the geopotential SEKF , SEbc, SEeKF and S̃E valid at the end
of the ”short” (Nass = 8) and at the end of the ”long” (Nass = 40) assimilation time
window are given in Table 6. We illustrate performance of the ensemble Kalman filter
in three different configuration: for the double ensemble Kalman filter with a sample of
size Nsample = 100 (SEeKF,100, (2 s. m.)), for the double ensemble Kalman filter with
a sample of size Nsample = 12(SEeKF,12(2 s. m.)), and for the single ensemble Kalman
filter with a sample of size Nsample = 12 (SEeKF,12(1 s. m.)). In the case of the ”long”
time window, besides the performance of the time-window smoother in Configuration a
(S̃E), the performance of the time-window smoother in Configuration b (S̃E(Config. b))
and in the Configuration c (S̃E(Config. c)) are shown as well. The results shown here
are for the data simulated by the non-linear observation operator nlZ3. The results of
the comparison are nearly the same using the other non-linear observational operators.
All the methods provide almost identical estimators of X̂(ti) in the case of the linear
observational operator due to weak non-linearity of the dynamical propagator.

Performing the comparison of the estimation of the ”true” state X̄(t) provided by the
different methods, we use the the extended Kalman filter as a reference. From what
we can see in the table, when ”low” precision data are assimilated, the bias corrected
Kalman filter gives a very small but still an improvement in the estimation of the ”true”
state X̄(t) compared to what the extended Kalman filter provides. In the case of the
”high” precision data, the spatial average squared error for the v-wind component field
estimator is larger for bias-corrected Kalman filter. Performing different experiments we
have noticed that the analysed state obtained by means of the bias-corrected Kalman
filter comes slightly closer to the observations than the one obtained by the extended
Kalman filter with respect to the measure by the spatial average squared error. The
estimation of the geopotential field becomes better (or even ”too good” for the ”high”
precision data) with the bias corrected Kalman filter, but the representation of dynamics
suffers. A good representation of the dynamics in the analysed state is very important for
the quality of the forecast made from the analysed state. In the one-dimensional shallow
water model, the mean value of the geopotential field φ0(t) is very weakly correlated with
the other spectral components of the model state variable. To estimate the mean value of
the geopotential φ0 with a high precision, the direct observations of it are required, and it
is not possible to obtain them when the observation operator is non-linear in geopotential.
The spectral components of v-wind component with wave numbers greater than 0 have a
nearly linear relationship with the corresponding spectral components of the geopotential
for the model. When the estimator of the ”true” model state is close to its ”true” value for
the ”v”-wind component field, it estimates well also the higher order spectral components
of the geopotential. If the spatial average squared error for the geopotential is bigger at the
same time, its mainly indicates the poor estimation of the mean value of the geopotential
field.

Even for the assimilation of ”low” precision observations, the improvement of the estima-
tion of X̄(t) given by the bias-corrected Kalman filter compared to one provided by the
extended Kalman filter is quite small. In any case, we are satisfied, that the refinement
in the calculation of the innovations have forced the analysed state to come closer to ob-
servations in spite of all approximations and simplifications which had to be accepted in
the derivation of the bias-corrected Kalman filter. Probably, if we would try the method
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u-wind comp. v-wind comp. geopotential
The ”short” time window; SEKF 0.000884 4.3607 3943.7
The ”low” prec. data SEbc 0.000764 4.1055 3734.7

SEeKF,100(2 s. m.) 0.000957 4.0257 3985.0
SEeKF,12(2 s. m.) 0.001392 5.2235 2182.7
SEeKF,12(1 s. m.) 0.001385 36.8630 12105.0

S̃E 0.001045 3.9258 4044.3
The ”long” time window; SEKF 0.000064 0.3291 549.2
The ”low” prec. data SEbc 0.000060 0.3241 527.1

SEeKF,100(2 s. m.) 0.000072 0.5865 535.3
SEeKF,12(2 s. m.) 0.000161 1.4171 244.2
SEeKF,12(1 s. m.) 0.000560 6.1458 11040.5

S̃E(Config. a) 0.000023 0.3102 520.9

S̃E(Config. b) 0.000053 0.2886 545.9

S̃E(Config. c) 0.000472 7.4119 1152.5
The ”short” timw window; SEKF 0.000100 0.9485 571.2
The ”high” prec. data SEbc 0.000081 0.9604 532.4

SEeKF,100(2 s. m.) 0.000099 0.5959 639.9
SEeKF,12(2 s. m.) 0.000213 1.3582 329.1
SEeKF,12(1 s. m.) 0.000389 3.1713 1719.1

S̃E 0.000156 0.6632 566.0
The ”long” time window; SEKF 0.000018 0.0149 63.3
The ”high” prec. data SEbc 0.000017 0.0153 60.4

SEeKF,100(2 s. m.) 0.000015 0.0490 64.4
SEeKF,12(1 s. m.) 0.000031 0.1884 32.2
SEeKF,12(1 s. m.) 0.000116 0.4710 762.9

S̃E(Config. a) 0.000016 0.0143 62.7

S̃E(Config. b) 0.000017 0.0144 61.6

S̃E(Config. c) 0.000275 1.3555 216.0
Table 6. The spatial average squared error of the different posterior pre-
dictive mode estimates as estimators of the ”true” model state valid at the
end of the ”short” assimilation time window (Nass = 8 observation windows)
and at the end of the ”long” assimilation time window (Nass = 40 obser-
vation windows) for the ”low” precision observations and for the ”high”
precision observations. Performing the data assimilation with the ”short”
assimilation time window the comparison is performed between the ex-
tended Kalman filter (SEKF ), the bias corrected Kalman filter (SEbc), the
double ensemble Kalman filter with an ensemble of size Nsample = 100
(SEeKF,100(2 s. m.)), the double ensemble Kalman filter with an ensem-
ble of size Nsample = 12 (SEeKF,12(2 s. m.)), the single ensemble Kalman
filter with an ensemble of size Nsample = 12 (SEeKF,12(1 s. m.)) and the

time-window smoother (S̃E). Performing the data assimilation with the
”long” assimilation time window, the comparison is performed between the
extended Kalman filter (SEKF ), the bias corrected Kalman filter (SEbc),
the double ensemble Kalman filter with an ensemble of size Nsample = 100
(SEeKF,100(2 s. m.)), the double ensemble Kalman filter with an ensemble
of size Nsample = 12 (SEeKF,12(2 s. m.)), the single ensemble Kalman filter
with an ensemble of size Nsample = 12 (SEeKF,12(1 s. m.)), the time-window

smoother in Configuration a(S̃E(Config. a)), the time-window smoother in
Configuration b (S̃E(Config. b)) and the time-window smoother in Configu-
ration c (S̃E(Config. c)). The observations were simulated by the non-linear
observation operator nlZ3.
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in a more realistic model with stronger non-linearity in the dynamical evolution, the im-
provement of the estimation of the ”true” model state by the bias-corrected Kalman filter
would be even higher compared to the extended Kalman filter.

In fact, both the extended Kalman filter and the bias-corrected Kalman filter slightly
over-fit data. The analysed state provided by both two filters comes closer to the ob-
servations than the ”true” model state would have done, especially in the beginning of
the data assimilation procedure. As an indication of the distance of an estimator to the
observations we use the quantity

(157) dobs(X̂, Nass) =
Nass∑
j=1

(yj − Z(X̂(tj)))
T H−1(yj − Z(X̂(tj)))

where Nass is the number of observation windows during the time-window.

Applying the time-window smoother in Configuration a, the distance dobs( ˆalpha,Nass)
is close to the distance dobs(X̄,Nass). But the time window smoother has one serious

limitation. The iteratively determined posterior mode of X̂(t0) is much noisier than the
”true” state X̄(t0), if the amount of the assimilated data (i.e. the length of the time-
window) is small. The larger the amount of assimilated data, the better the noise due
to observation errors is filtered out, especially if some strongly erroneous data have fallen
into the time-window. In the sequential application of the time-window smoother, the
dynamical updating of the initial forecast error covariance matrix at the beginning of
each time window (Configuration b) takes care of the problem. This dynamical updating
controls the distribution of the spectral energy among different wave numbers. When
the initial forecast error covariance matrix was left unchanged at the beginning of each
data assimilation window (Configuration c), a very noisy field was obtained after several
sequential applications of the time-window smoother. The problem became acute for
assimilation of ”high” precision data. (After 5 sequential applications of the time-window
smoother in Configuration c, the data assimilation procedure corrupted when the ”high”
precision observations simulated with nlZ1 were assimilated). An additional constraint
on the smoothness of the posterior mode estimate must be imposed on the time-window
smoother if Configuration c is going to be used. The ”long” time-window smoother is
very expensive computationally, and it is unfeasible for a full scale model. The sequential
application of the ”short” time-window smoother with an updated initial forecast error
covariance matrix (Configuration b) gives very good results and estimates X̄(t) almost
as well as the ”long” time-window smoother does. Besides that, as we have stressed
in the previous section, the posterior mean at the beginning of the last time-window
estimated through importance sampling provides an even better estimate of X̄(t) in the
case Configuration b for the time-window smoother is used. However, as we can see
from Table 6 the application of the time-window smoother does not give the significant
improvement in the estimation of the ”true” model state. When the assimilation was
performed during the ”short” time window, the time window smoother gave even worse
estimation (with respect to the space averaged squared error) than the extended Kalman
filter.

The ensemble Kalman filter is the cheapest and the most feasible method for a full scale
problem, because the whole necessary information is stored in the ensembles themselves.
The ensemble Kalman filter allows for a non-linear dynamical evolution, as the time
window smoother does through the iterative adjustment to observations assimilated at
different time moments, but it makes an implicit linearisation of the observation operator
with the improved estimate of the innovation vector (as the bias corrected Kalman filter
does). However, a large sample size is required in order to achieve a good quality of
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an estimation of the ”true” model state X̄(t) by means of the ensemble Kalman filter.
For example, the estimation of X̄(t) provided by the double ensemble Kalman filter with
a sample of size Nsample = 100 (a large value compared to the dimensionality of the
model state variable ) is close to the estimation of X̄(t) provided by the extended Kalman
filter. Using the single ensemble Kalman filter with such a large sample, the result would
be nearly the same. The quality of the estimation of X̄(t) is nearly the same as using
the extended Kalman filter, which requires an explicit time propagation of the forecast
error covariance matrix. From a computational point of view, an even worse situation
occurs when the time-window smoother is applied. The large dimensional forecast error
covariance matrix, as well as the tangent-linear propagators from one observation window
to another must be stored during the assimilation time-window. Taking into account
these problems, the ensemble Kalman filter becomes even more attractive. However, if
the estimation of X̄(t) is to be based on a small sample (Nsample = 12 here), the result can
be misleading. The double ensemble Kalman filter over-fits observations of geopotential,
and describes dynamics poorly. The single ensemble Kalman filter with a small sample,
due to the heavy underestimation of the forecast error covariance matrix, does not extract
enough information from the observations, and does not provide an acceptable estimation
of the ”true” model state.

In conclusion, we would like to stress that the results represented in Table 6 correspond
to a particular realisation of the sampling. Certainly, for some another realisations the
estimation of the ”true” model state can look much better for the small size ensemble
Kalman filter. The results shown in Table 6, are valid given the particular realisation of
the initial first-guess field a0. But the relative behaviour of these different ”deterministic”
estimators of the ”true” model state does not seem to depend (or depends very weakly)
on the particular realisation of a0.

5.5. Validation of the future forecasts of the ”true” model state obtained by
means of the different data assimilation approaches. In the previous subsections
we have tried to validate the different data assimilation approaches (the extended Kalman
filter, the bias corrected Kalman filter, the ensemble Kalman filter and the time-window
smoother) from the perspective of the estimation of the ”true” model state at the end
of the assimilation time window, i.e. the time moment up to which observations from
the ”true” model state are available. The aim of the data assimilation procedure is
to extract the best possible amount of information about the underlying ”true” model
state from the available observations, to merge the observed information with theoretical
knowledge about the ”true” model state and to construct an estimate of the ”true” model
state. To construct an accurate estimate of the unobservable model state variable is an
important task by itself. In addition, this estimate is used as an initial model state for
the future forecasting based on the same available observations. The performance of the
forecasts constructed by the different data assimilation approaches is probably an even
more important measure of how good the particular data assimilation approach is.

In Figure 31 the performance of the future forecast of the ”true” model state, obtained by
the different ”deterministic” data assimilation approaches discussed above, is illustrated.
Values of the spatial average squared error of prediction for the ”u”-wind component, the
”v”-wind component and the geopotential are represented by bars in the diagrams. The
groups of bars correspond to the time at the end of the different prediction periods. The
time is measured in the number of the observation windows falling into the prediction
period, and this number is indicated on the horizontal axes. So the first groups of bars
show the errors of prediction based on the different approaches evaluated at the end of
the prediction period corresponding to four observation windows, the second groups of
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bars are evaluated at the end of the prediction period corresponding to eight observation
windows (the length of the ”short” time window). Totally the evaluation of the prediction
is made at the end of five different prediction periods, corresponding to the lengths of 4,
8, 20, 40, and 76 observation time windows. The diagrams to the left illustrate the per-
formance of the forecast based on the analysed state obtained when data assimilation was
performed during a period corresponding to the ”long” time window, which contains 40
observation windows. The 6 bars in each group represent the space averaged squared error
of the prediction in the following order: the extended Kalman filter, the bias corrected
Kalman filter, the time-window smoother in Configuration a, the time window smoother
in Configuration b, the double ensemble Kalman filter with Nsample = 100 ensemble mem-
bers and the double ensemble Kalman filter with Nsample = 12 ensemble members. The
diagrams to the right illustrate the performance of the forecasts based on the analysed
state obtained when data assimilation was performed during the ”short” time window,
which contains only Nass = 8 observation windows. The 5 bars in each group represent
the spatial average squared error of the prediction in the following order: the extended
Kalman filter, the bias corrected Kalman filter, the time-window smoother, the double
ensemble Kalman filter with Nsample = 100 ensemble members and the double ensemble
Kalman filter with Nsample = 12 ensemble members.

The assimilated observations were of ”low” precision and were simulated using the non-
linear observation operator nlZ3.

When the construction of the initial state for the prediction was based on the observations
assimilated during the ”long” time window, the best verification scores with respect to the
spatial average error were obtained with the time window smoother in Configuration a (the
third bar in each group on the left diagrams). This is the result we can expect under the
perfect model assumption. When such a large amount of data is assimilated, the posterior
pdf is very sharp and the posterior mode is indeed located close to the ”true” model state.
The behaviour of the time window smoother in Configuration b (the fourth bar in each
group) is slightly worse compared to the time window smoother in Configuration a. But
still during all these long periods of prediction, the time window smoother in Configuration
b remains superior compared to the extended Kalman filter (the first bar in each group).
The bias corrected Kalman filter (the second bar in each group) provides a slightly better
prediction of the geopotential, with respect to the spatial average squared error, compared
to the time window smoother in Configuration b. However, the prediction of the dynamics
(the wind components) becomes worse. We consider, that a better prediction of dynamics
has a higher priority than a better prediction of the geopotential for the one dimensional
shallow water model. The prediction performed by the means of the ensemble Kalman
filter has large errors for the dynamics of the model. For the double ensemble Kalman filter
with an ensemble of size Nsample = 12 (the sixth bar in each group), the spatial average
squared errors of the u-wind and the v-wind components are several times larger than
for the extended Kalman filter. We could expect this due to the strong overestimation of
the forecast error covariance matrix that we have noticed. The behaviour of the double
ensemble Kalman filter with an ensemble of size Nsample = 100 (the fifth bar in each group)
is reasonably good taking the computational cheapness of the method into account. We
have not compared the quality of the prediction performed by means of the time-window
smoother in Configuration c and the one performed by means of the single ensemble
Kalman filter with a small size ensemble. Already when the validation of the estimation
of the ”true” model state at the end of the data assimilation window was performed, it
was clear that these methods are outlyers.
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Figure 31. The spatial average squared error of prediction for the u-wind
component, the v-wind component and the geopotential obtained by the
different data assimilation approaches. The bar diagrams represent the
squared errors of prediction at the end of the different prediction periods.
The length of the prediction period is measured in the number of observation
windows falling into the prediction period and this number is indicated on
the horizontal axes. The diagrams to the left illustrate the performance
of forecasts based on the analysed state obtained with data assimilation
over the ”long” time window. The 6 bars in each group represent the
spatial average squared error of the prediction in the following order: the
extended Kalman filter, the bias corrected Kalman filter, the time-window
smoother in Configuration a, the time window smoother in Configuration b,
the ensemble double Kalman filter with Nsample = 100 ensemble members,
the double ensemble Kalman filter with Nsample = 12 ensemble members.
In the diagrams to the right the initial state for the prediction is based
on the data assimilated during the ”short” time window. The 5 bars in
each group represent the spatial average squared error of the prediction in
the following order: the extended Kalman filter, the bias corrected Kalman
filter, the time-window smoother, the double ensemble Kalman filter with
Nsample = 100 ensemble members and the double ensemble Kalman filter
with Nsample = 12 ensemble members.

When the initial state for the prediction is based on the observations assimilated during
the ”short” time window, containing only Nass = 8 observation windows, the relative
performance of the different approaches changes (the right diagrams). The amount of
assimilated observations is not large, and even with the perfect model assumption, the
mass of the posterior pdf of X̂(t0) is not concentrated around a mode. As it is indicated
by the large eigenvalues of the matrix of curvature around the mode of the posterior pdf,
the posterior mode can be located far away from the ”true” model state X̄(t0). The
time-window smoother (the third bar in each group) does not provide the best prediction
anymore. Being quite good for the short prediction period, it becomes worse with in-
creasing prediction length. High values of the prediction error for the u-wind component
indicate that the predicted model state is noisier that the ”true” model state. As we have
noticed, the iterative adjustment to the observations creates a noisier estimate of the
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”true” model state than the one obtained with the extended Kalman filter (the first bar
in each group), if a small amount of data is assimilated. An additional constraint on the
smoothness of the estimate is needed. In fact, the normal mode initialisation procedure
we have used to filter out the shallow water gravity waves, is not the only one which can
be used to balance the estimate of the model state. Dealing with a realistic full-scale
model, a digital filter is often used. Probably, such a filter would take better care of the
noise generated during the construction of the estimate of the model state. Now the best
prediction with respect to the space averaged squared error is given by the bias corrected
Kalman filter (the second bar in each group). Again the behaviour of the double ensemble
Kalman filter with an ensemble of size Nsample = 100 (the fourth bar in each group) is
very reasonable, and it is much better than of the double ensemble Kalman filter with an
ensemble of size Nsample = 12 (the fifth bar in each group).
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Figure 32. The spatial average squared error of prediction for the u-wind
component, the v-wind component and the geopotential based on the pos-
terior mode and the posterior mean estimates. The bar diagrams represent
the squared errors at the end of the different prediction periods. The length
of the prediction periods is measured in the number of the observation win-
dows falling into the prediction period, and this number is indicated on the
horizontal axes. The diagrams to the left illustrate the performance of fore-
cast based on the analysed state obtained with data assimilation over the
”long” time window. The 4 bars in each group represent the spatial average
squared error of the prediction in the following order: the posterior mode
estimate propagated in time from the time window smoother in Configu-
ration a, the posterior predictive mean estimate using importance sample
from the time window smoother in Configuration a, the posterior mode es-
timate propagated in time from the time window smoother in Configuration
b and the posterior predictive mean estimate using importance sample from
the time window smoother in Configuration b. In the diagrams to the right
the initial state for the prediction was based on data assimilation during
the ”short” time window. The 2 bars in each group represent the spatial
average squared error of the prediction in the following order: the posterior
mode estimate propagated in time from the time window smoother and the
posterior predictive mean estimate using importance sample from the time
window smoother.
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We would finally like to refer to Figure 32, where the prediction obtained by the pos-
terior predictive mean estimated from the importance sampling is validated against the
prediction given by the time propagation of the posterior mode of X̂(t0). The structure
of the diagrams in Figure 32 is the same as in Figure 31. The left diagrams illustrate the
performance of the prediction for which the initial model state was based on observations
assimilated during the ”long” assimilation window, which contains Nass = 40 observation
windows. A bar in each group represents the spatial average squared error of the pre-
diction. The bars in each group on the left diagrams are ordered as follows: the time
propagation of the posterior mode obtained with the time window smoother in Configu-
ration a, the posterior predictive mean estimated by Nsample = 100 members importance
sampling using the time window smoother in Configuration a, the time propagation of
the posterior mode obtained with the time window smoother in Configuration b and the
posterior predictive mean estimated by Nsample = 100 members importance sampling
using the time window smoother in Configuration b. The right diagram illustrate the
performance of the prediction for which the initial model state was based on observations
assimilated during the ”short” assimilation window, which contains only Nass = 8 obser-
vation windows. The bars in each group on the left diagrams are ordered as follows: the
time propagation of the posterior mode obtained with the time window smoother and
the posterior predictive mean estimated by Nsample = 100 members importance sampling
using the time window smoother.

We can easily see that as soon as the posterior mode estimate comes close enough to
the ”true” model state, the construction of the posterior predictive mean estimate (the
second and the fourth bars in the left diagrams) does not help to improve the prediction
of the ”true” model state. However, considering the possible application to more realistic
models without the perfect model assumption, it is likely that the posterior pdf of X̂(t0)
would never be so sharp around its mode and that the mode would not come so close
to the X̄(t0). When the posterior mode of X̂(t0) does not come close to the its ”true”
value, the deviation of the propagated posterior mode from the ”true” model state will
just increase in time.

It must be mentioned, that the reduction of height of the error bars with increased length
of the prediction in the diagrams does not mean that the prediction becomes better.
This simply indicates a problem with the dynamical development by the one-dimensional
shallow water model, as it has been implemented for this study. The total model state
energy is not conserved. The posterior predictive mean (the second bar in each group
to the right), estimated by importance sampling, helps to improve the prediction as
compared to the one obtained by propagation of the posterior mode. The situation is
similar to the one we observed when the aspects of estimation of a strongly non-linear
transform of the model state was discussed. However, accepting the posterior predictive
mean as a point estimate of the model state, we need always to be aware of the problem
that the estimate is not at all supposed to provide an existing model state, satisfying
the physical balance requirements. The possibility to construct an estimate of a small-
dimensional quantity of interest by itself is a much stronger feature of the importance
sampling than the construction of the posterior predictive mean estimate of the whole
model state variable.

6. Conclusions

The main aim of this thesis was to investigate possibilities and limitations of certain
extensions of the Kalman filter idea for improved treatment of non-linearities with appli-
cation to meteorological data assimilation. We have studied five different approaches: the
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extended Kalman filter, the bias corrected Kalman filter, the time-window smoother, the
ensemble Kalman filter and the importance sampling estimate of the posterior predictive
mean of the model state variable. We have applied these different approaches for meteoro-
logical data assimilation within the framework of a one-dimensional shallow water model
under the perfect model assumption. The observations were simulated by linear as well as
non-linear observation operators. The choice of a one- dimensional shallow water model
as a framework for meteorological data assimilation have had negative as well as positive
influences on the study. The one-dimensional shallow water model is a very simplified
atmospheric model, and does not describe many important features of the atmospheric
development. It simulates, however, important characteristics of large-scale atmospheric
flow, and the interpretation of results is easier than in a more complex model. Two main
parts of the wave motion, the geostrophic and the ageostrophic flows, are clearly sepa-
rated into the v- and u- wind components. Other limitations of the study are the perfect
model assumption, the model dynamics that does not preserve total energy and the use
of simulated observations only.

In the comparison between the different approaches, the extended Kalman filter was used
as a reference. The bias corrected Kalman filter can be considered as a refinement of
the extended Kalman filter with possibilities to handle non-linearities in the dynamics as
well as in the observation operators. The second order closure is used to estimate the
dynamical evolution of the posterior predictive mean of the model state variable and also
to correct the bias of the innovation vector. The analysed state obtained with the bias
corrected Kalman filter comes closer to the observations as compared to the analysed state
obtained with the extended Kalman filter in a general sense due to bias correction of the
innovation vector. This gives a positive effect for estimation of the ”true” model state,
when assimilated observations are of lower precision than the first-guess state projected
to the space of observations. The forecast provided by the bias corrected Kalman filter
is closer to the ”true” state with respect to a spatial average squared prediction error
compared with the forecast provided by the extended Kalman filter. It is difficult to
judge about the positive effect of the second order closure applied in the estimation of the
dynamical propagation of the posterior predictive mean, due to the weak non-linearity of
the chosen dynamical model. We would like to stress that the bias corrected Kalman filter,
as well as the extended Kalman filter and the ensemble Kalman filter, provide estimates
of the posterior predictive mode of the model state variable rather than estimates of the
posterior predictive mean of the model state variable. All these methods make explicit or
implicit use of a linearization of the observation operator.

Among the methods considered in this study, the time-window smoother provides the
best filtering of observation errors, if the amount of assimilated observations is large. The
time window smoother estimates the posterior mode of the model state variable valid at
the beginning of the time window as a result of an iterative adjustment to the available
observations. Under the perfect model assumption, if the amount of assimilated data
is large, the time development of the posterior mode of the model state estimated by
the time-window smoother is the best estimate of the ”true” model state with respect
to the spatial average squared error. If the amount of assimilated data is small, the
estimate of the posterior mode of the model state as well as its dynamical evolution
appears to be too noisy. However, the reason of the problem could lie not only in the
time smoother itself, but mainly in the normal mode initialisation procedure that we have
used to filter out gravity waves from the analysed state. The normal mode initialisation
procedure could possibly work as a noise amplifier. When the time-window smoother is
applied sequentially, under the perfect model assumption and on the ”short” assimilation
windows, the dynamical updating of the initial forecast error covariance matrix at the
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beginning of each time window seems to be very important. The dynamical updating of
the initial forecast error covariance matrix at the beginning of each assimilation window
improves the noise filtering.

The ensemble Kalman filter is a very attractive method because it is very cheap from
a computational point of view, and it still provides a comparably good estimate of the
”true” state. However, the data assimilation must be performed with a relatively large
ensemble size. The sample size must be large enough to represent well the properties
of the whole population. The single ensemble Kalman filter with a small size sample
underestimates the posterior predictive variance of the model state and the assimilation
is insensitive to the observations. The double ensemble Kalman filter with a small size
sample tends to overestimate the posterior predictive variance of the model state and
therefore it tends to over-fit the observations, if the estimates of the population variance
provided by the two samples differ strongly. When a relatively large ensemble size is
used, such that the ensemble represents well the properties of the population, both the
double and the single ensemble Kalman filter provides comparably good estimates of the
”true” model state. The ensemble Kalman filter constructs the analysed state with use
of an implicit linearisation of the observation operator, while it preserves the non-linear
dynamics. With the one-dimensional shallow water model, the dynamical development
from one observation window to another one is close to the linear one. After a large
number of observations have been assimilated, the ensemble Kalman filter gives very
similar results to the ones obtained by using the extended Kalman filter. The ensemble
members of the analysed state come close in distribution to the Gaussian approximation
of the posterior predictive pdf of the model state provided by the extended Kalman filter.
The members of the ensemble are not sampled from the posterior pdf exactly and therefore
the ensemble Kalman filter is not good for a probabilistic inference about the model state.

The importance sampling uses the results provided by the time-window smoother (the
posterior mode and the curvature around it) and gives wide possibilities for probabilistic
inference about smaller dimensional non-linear transforms of the model state variable. In
a certain sense the importance sampling can be used as a diagnostic tool to detect essen-
tial deviations of the posterior pdf of the model state from its Gaussian approximation
provided by the time-window smoother. Again, for a good quality of the inference, a
relatively large sample size is required, large enough to pick up essential particularities of
the posterior pdf compared to its Gaussian approximation. The estimate of the posterior
predictive mean of the model state variable appears to be a less efficient estimate of the
”true” model state than the posterior mode propagated in time. One reason is that the
posterior pdf of the model state, with non-linear observation operators, can appear to be
non-symmetric and/or to have a heavy tail. The posterior mean can be displaced away
from the posterior mode toward the heavy tail. Thus, it can be located far away from the
most believable location of the ”true” model state. Another reason is that the posterior
mode, under the perfect model assumption, comes indeed very close to the ”true” model
state if a large amount of data is assimilated. However, if the amount of assimilated data
is small and the posterior mode does not came very close to the ”true” model state, the
posterior predictive mean estimated by the importance sampling provides a more efficient
forecast of the ”true” model state also after a relatively long integration time compared
to the posterior mode propagated in time.

The importance sampling provides one more powerful approach for the probabilistic in-
ference about smaller dimensional quantities of interest (through smaller dimensional
transforms of the model state variable), not presented in the thesis. The importance sam-
pling weights can be used in rejection re-sampling, which provides a possibility to obtain
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an over-dispersed small size sample from the posterior pdf of interest. This sample can
be used later in Monte Carlo Markov Chain (MCMC) simulations, which allow genera-
tion of a large dimensional sample from the pdf. The MCMC simulations require huge
computer power. For full size models, MCMC simulations are not applicable for weather
forecasting at present, but they can still can be useful for application in diagnostics of the
atmospheric development.

My main ambition was to look inside the mechanisms of different extensions of the Kalman
filter idea for assimilation of non-linear observations into a non-linear dynamical model
of the atmosphere. Out of a number of questions which arose in the beginning of the
study, some questions I have managed to answer, some of the questions appeared to be
irrelevant, while the answers for some of them I have not yet found. But even a much
larger number of new questions arose. And this seems to be a good sign. ”The more I
know, the more I do not know”.
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