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Abstract

Many infectious diseases have incidences that vary over time with
alternating high and low periods. A parametric model is formulated
that makes it possible to account for such variations. The model con-
tains parameters describing the time of the peak, and the duration and
amplitude of the high incidence period. The model is fitted to weekly
aggregated data on indigenous campylobacter infections reported to
the Swedish Institute for Infectious Disease Control. This analysis
is made with the reports geographically divided according to county
and with spatial smoothing. Estimation of parameters is done us-
ing Markov chain Monte Carlo methods based on both Poisson and
Negative binomial variation. The model fits data well. There are in-
dications that the concentration of the high incidence periods varies
geographically.
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1 Introduction

Infectious diseases are different from other diseases in many ways. One important charac-
teristic is that infections might be transferred to a person from another person, an animal
or the environment. All infections occur by contact in some way. Each disease has its own
paths of infection. Transmission can, for example, occur via sexual contacts (e.g., HIV,
chlamydia), the air (e.g., measles, influenza), contaminated food (e.g., salmonella infec-
tion, campylobacter infection) or some vector (e.g., malaria, dengue fever). The so called
infectious agent can be either a virus, bacteria or parasite. Infectious disease epidemiology
is in many ways similar to epidemiology in general but special attention is needed towards
the characteristics, of the infectious diseases, mentioned above. The book by Giesecke
(2002) gives a good introduction to the field of infectious disease epidemiology.

The Swedish Institute for Infectious Disease Control (Smittskyddsinstitutet, SMI) is
a governmental expert agency with the mission to protect the Swedish population from
communicable diseases (http://www.smittskyddsinstitutet.se). One of the main missions
is to follow and analyse the national and international situation regarding infectious dis-
eases and the protection against them. As a basis to carry out this mission, around fifty
infectious diseases are notifiable by law in Sweden. This means that if a physician or a
laboratory finds that a patient is infected with one of these diseases they are obliged to
notify SMI by sending in a report. Since 1996 a computerised reporting system is succes-
sively replacing the older paper based system. The reports mainly consist of basic personal
information about the patient (such as age, sex, place of residence etc.), information con-
cerning the time of infection and other disease specific information (time, place, exposure
to known risk factors etc.). In total, between 40 000 and 50 000 cases are reported each
year (cf. Smittskyddsinstitutet (1999)). Traditionally, the number of reports are summed
and basic statistics in form of time series or geographical distribution of the reported cases
are published in monthly and yearly reports.

As is the case with most reporting systems there are severe problems with the quality
of the reporting. Any analysis based on reported cases has to consider to what extent
important features of the disease are reflected in the available data. One should hope that
even if there is underreporting and biases in the reporting system some real effects such as
temporal and spatial patterns are still seen. Revealing such patterns can be an essential
contribution to the understanding of how the different infectious diseases are spread. At
best the reports can be used to derive important information about the occurrence and
aetiology of the notifiable infectious diseases.

When studying infectious diseases, time is often an important factor to consider. When

treating patients, knowledge about the length of the incubation period and the time of



infectiousness can be crucial. In the planning of public health measures (e.g., vaccination
campaigns) the time of immunity is also a factor to consider. From another perspective,
the individual risk of getting infected may vary over time. Seasonality is common for many
infectious diseases. It is almost certain that each year there will be a peak of influenza cases
at some point during the winter and a peak of salmonella and campylobacter infections
in the summer. However the exact time and size of the peak may, and will, vary from
year to year. Crude time series of aggregated cases often incorporates a large amount of
variation. In order to discern timely patterns in the incidence it is common to smooth the
time series by some function.

The geographical distribution of the disease incidence is also an important part of
the aetiology of the disease. Descriptive methods usually incorporate maps, with crude
incidences, divided in smaller geographical units. The purpose of the disease mapping
can be, e.g., to find geographical gradients of the incidence, to generate hypotheses about
disease patterns or to simply describe the geographical distribution of the disease. One
popular example of disease mapping is the search for disease clusters that might be linked
to some environmental source or to other sources of interest. This is used especially in the
field of cancer research.

Most applications in disease mapping focuses on the underlying relative risk of contract-
ing the disease and a common measure of interest is the standardised morbidity /mortality
ratio (SMR) defined as the observed number of cases divided by the expected number
of cases within a given geographical area. Often the disease under study is relatively
rare and /or the geographic areas are small (as regards to the number of inhabitants). In
such situations the sampling variability will be large due to a small expected number of
cases and there is a considerable risk that extreme observations will occur just by chance.
By smoothing the crude rates via hierarchical modelling, extreme observations can be
adjusted to reflect a more realistic situation. This smoothing procedure often leads to
rather complex models and parameter estimation is not straightforward. However, by us-
ing computer-intensive methods like the Markov chain Monte Carlo (MCMC), estimates
can be achieved by simulation. Most of these models are set up within a Bayesian frame-
work by putting prior distributions on the parameters, but can as well be interpreted as
a likelihood random effects model in a frequentist perspective. Wakefield et al. (2001)
discuss assumptions and mathematical details of Bayesian methods for disease mapping.

The aim of the present study is primarily to study how the information provided by
the Swedish reporting system, with its known shortcomings, can be used to learn more
about infectious diseases and their aetiology. In addition, we introduce a parametric model
giving a smoothed estimate of the crude number of reported cases. The model incorporate

parameters that take into account certain aspects of the seasonality of the incidence.



As a secondary aim of this study, we also have interest in a specific disease, namely
campylobacter infection. We here use data on reported indigenous campylobacter infec-
tions as an example to study some of the problems and possibilities of statistical analyses
regarding the kind of data discussed above.

Campylobacter infections in humans are part of a possibly complicated system of
spread of the bacteria Campylobacter. The bacteria has been found in humans, both wild
and domestic animals and in the environment. Many investigations, mainly case-control
studies, have been performed to asses the risk factors for sporadic cases of campylobacter
infections in humans (cf. Kapperud (1995)). However, no single risk factor appears to
be able to explain more than a small fraction of the cases. It is likely that the routes of
transmission differ over the year and more research is needed in this area to assess that.
An analysis of the seasonal distribution of campylobacter infections in nine European
countries and New Zealand was done by Nylén et al. (2002).

We fit the model to the reported data on indigenous campylobacter infections in Swe-
den. By studying seven years and 21 counties it is hopefully possible to discern both
temporal and spatial variations regarding the parameters in the model. Examining these
variations then might help in understanding the complex system of the spread of campy-
lobacter infections and can also serve as a help in the planning of future investigations of
risk factors.

From the perspective of the analysis, we do not focus on the absolute number of cases
or the SMR; our interest lies in studying the functional form of the incidence curve and
mainly the parameters describing it. As the resulting model is rather complex, estimation
of parameters is done by using Markov chain Monte Carlo (MCMC) methods.

The structure of the thesis is as follows. In Section 2 we shortly present some basic
facts about campylobacter infections. A more thorough presentation of the data is given
in Section 3 together with a description of the Swedish reporting system for infectious
diseases. Section 4 contains a crude analysis of temporal and spatial patterns of cases
while we in Section 5 introduce the parametric model for describing the incidence of
campylobacter infections and apply it to aggregated data for Sweden. We split the data
by county and fit the model to individual counties both independently and dependently
by geographical smoothing in Section 6. A short description of the MCMC estimation
procedure is given in Section 7. Some results are presented in Section 8 and the thesis is
concluded with a discussion in Section 9.

Some of the material in this thesis have been presented in a previous report (Lindb#ck
& Svensson (2001)). This thesis is an extension and a development of some of the ideas

in that report.



2 Campylobacter — infectious agent and disease

2.1 The agent

Campylobacter infection is a bacterial disease. There are over 20 subtypes of Campylobac-
ter but the main types causing gastrointestinal symptoms in humans are Campylobacter
jejuni and Campylobacter coli. The bacteria can survive four weeks in water at +4°C
but less than four days at +25°C (cf. Nothermans (1995) and Andersson & Gustavsson
(1998)). To be able to multiply, the bacteria requires a temperature of +40°C and a con-
centration of oxygen of at most 5 %. Therefore, the ideal place to grow is the intestines
in humans and warm-blooded animals. Hence, food items are not a good place for the
bacteria to grow but on the other hand, the critical infectious dose (i.e., the smallest dose

of the bacteria needed to cause the disease) is very low.

2.2 The disease

Campylobacter infection is a zoonosis, which means that it is naturally transmitted be-
tween animals and man. The symptoms characterising the disease are diarrhoea, abdom-
inal pain, malaise, fever, nausea and vomiting. The incubation period is usually one to
three days but can vary between one to ten days. The illness is acute and usually over
within two to five days. Campylobacter infection causes 5 %14 % of diarrhoea world-
wide and is an important cause of travellers’ diarrhoea (cf. Chin (2000)). In rare cases
the disease can lead to long-term consequences such as arthritis, a neurological syndrome
called Guillain-Barré syndrome and sometimes even death. There is no vaccine against

the disease.

2.3 The spread of the disease

Even a superficial study of statistics reveals that cases occur both in large outbreaks and
as sporadic cases. An outbreak occurs, when many individuals are exposed to the same
source of infection, and suffer from the disease at approximately the same time. The
sporadic cases involve only one or a few individuals that are infected simultaneously. The
cause of a large outbreak is often relatively easy to identify. During the period studied,

1992-1998, one can discern three major outbreaks in Sweden.

e In Kramfors (in the county Visternorrland) approximately 2 500 cases of campy-
lobacter infections occurred during May 1994. This outbreak was caused by conta-
minated water (cf. Andersson et al. (1994)). Of these cases, 64 were reported to
SMI (cf. Smittskyddsinstitutet (1995)).



e In Mark (in the county Vistra Goétaland) 3 000-4 000 campylobacter infections
occurred at the end of May 1995. The cause of the outbreak was contaminated
water (cf. Bresky et al. (1995)). Not more than 48 of the cases were reported to
SMI (cf. Smittskyddsinstitutet (1996)).

e The third outbreak took place at a training camp for young football players in the
summer of 1996. At least 123 out of 200 participants were infected after drinking un-
pasteurized milk. Of these cases 22 were reported to SMI (cf. Smittskyddsinstitutet

(1997)). The cases came from several counties in the south of Sweden.

Even if underreporting of cases in connection with large outbreaks is severe, they are
still identifiable in a crude time series of reported cases. In the following, we concentrate
on cases that appear to be sporadic. This means that we have removed observations from
the large outbreaks in the data we analyse.

In addition to these large outbreaks there may occur minor outbreaks involving only a
few individuals. Evidently, such minor outbreaks are much more difficult to identify. The
yearly report from SMI mentions seven such minor outbreaks in 1998 (cf. Smittskyddsin-
stitutet (1999)). These outbreaks resulted in 3-7 reported cases. The source of infection
varied. Identified or suspected causes were food (unpasteurized milk, chicken, paella) or
drinking contaminated water.

It has been discussed if campylobacter infections are communicable. The general un-
derstanding seems to be that there is a small risk of spread human to human, but that it
is rather limited (cf. Chin (2000)). We have chosen not to include effects of such spread
in the models and our analysis.

The substantial part of reported cases are sporadic, i.e., they cannot be seen to be
directly associated with other cases. As for cases during outbreaks, sporadic cases are
often not reported. However, one can expect the underreporting of sporadic cases to be
less severe. There exists no reliable investigation of the proportion of unreported cases in
Sweden. In an English study, it was established that for each reported case of Campylobac-
ter, in a laboratory based surveillance system, there were 7.6 cases in the community (cf.
Wheeler et al. (1999)). We cannot assume that this number is representative for Swedish
conditions due to the many differences between England and Sweden concerning both the
surveillance systems and the communities.

In some of the reports from the physicians, a suspected cause of the infection is men-
tioned. Such causes are badly prepared chicken, chicken prepared at home, eating at
restaurant, secondary infections, barbecue, contact with birds, drinking unpasteurized

milk or water from mountain brooks.



There are a number of investigations of risk factors associated with sporadic cases
(cf. Kapperud (1995)). Many of the studies are case-control studies. Comparing to
which extent cases and healthy controls have been exposed to potential risk factors one
tries to identify exposures that increase the risk of getting a campylobacter infection. A
few examples of risk factors studied are travel abroad, contacts with animals and food
consumption. There are of course severe difficulties in managing studies of this kind.
The quality of the study relies on that sufficiently good accounts of the exposures for the
cases before taking ill and similar reliable accounts of exposures for the controls can be
obtained. The results can be subject to recall bias since cases and controls remember
or report their true exposures with different accuracy. The danger of recall bias is even
larger when the participants in the study are asked to recall if they have been eating a
certain food item, and to make an evaluation of the exposure (e.g., if the chicken they
have consumed was undercooked or not). A well-established risk factor has been found
in a series of studies from Great Britain were humans were infected due to birds (mainly
magpies) pecking off the seals of milk bottles (cf. Lighton et al. (1991)). Otherwise the
results presented in published studies are, as can be expected, rather diffuse. Kapperud
(1995) lists identified risk factors in a number of case-control studies made in different
countries. The list contains travel abroad, eating chicken, handling raw chicken, eating
undercooked chicken, eating chicken at barbecues, eating poultry, eating at barbecues,
drinking surface water, drinking untreated water, drinking raw milk, drinking raw goat’s
milk, milk bottles pecked by magpies, contact with cats, presence of a puppy in the
household. This broad spectrum of risks can be taken as an indication that there are
several routes of transmission of campylobacter infections to humans. Due to the large
seasonal variations of (reported) campylobacter infections, it is possible that different
transmission routes are open at different times of the year. Even if Tauxe (1992) calculates
that 50 % of the cases are attributable to consumption of poultry products, there seems
to be no single risk factor that accounts for the most of the cases. Of course, it may be the

case that infections have different causes in different surroundings and at different times.

3 Description of the data and basic facts about the reporting

system

3.1 Incidence of campylobacter infections

From 1992 to 1997 on average 5 000 cases per year of campylobacter infections were
reported to SMI (Table 1). During 1998 and 1999, there was an increase in incidence.

In 1998, infections acquired in Sweden and abroad both increased as compared with the



previous year. However, the number of domestic cases was at the same level as 1994 and
1995. The increase in incidence in 1999 compared with 1998 was due to an increase in
cases infected abroad. The major part of the reported cases of campylobacter infections
related to persons travelling outside of Sweden. Between 31 % and 46 % of the cases each
year were infected in Sweden and the rest were infected abroad. In the following analysis,

we are only considering infections that have been acquired in Sweden.

Table 1: Number of reported cases of campylobacter infections in Sweden by origin of in-
fection

Place of Year of registration at SMI

infection 1992 1993 1994 1995 1996 1997 1998 1999
In Sweden | 1453 1825 2538 2551 1815 1828 2586 2209
Abroad 2998 2590 2764 2821 3131 3266 3816 4796
Unknown 24 70 227 208 136 212 142 132
Total 4475 4485 5529 5580 5082 5306 6544 7137

3.2 The reporting system

There are of course all kinds of quality problems associated with this compulsory notifica-
tion system. Even if a disease is notifiable by law not all cases are reported properly. Any
analysis of geographical and temporal patterns will rely on the precise information given
in the reports and how this information is processed at SMI.

From the time an individual is infected till a report of the resulting illness ends up in
the registers at SMI several steps have to be passed. First, the infected person has to go to
the doctor. For diseases with mild symptoms, this can lead to a substantial underreporting
because many infected persons will not seek medical help. Then the physician has to make
the correct diagnosis, which may be confirmed by a laboratory test. Subsequently a report
must be filled in, signed, and sent to SMI. At SMI, the reports are entered into a database.

Figure 1 illustrates some critical events in the notification system.

~

L
Infection Consulting physician Diagnosis Registration at SMI
Symptoms Laboratory testing ~ Report to SMI

Figure 1: Critical events in the reporting chain

The most interesting event is when the patient is infected. However, it is very difficult,



often impossible, to establish the exact time this event occurs, especially if the disease
has a very long incubation period. The event closest to infection is the onset of disease,
i.e., the first time when the patient experiences symptoms of the disease. The time of this
event can also be difficult to reconstruct and if the physician reporting the case is unable
to estimate the most probable time of onset, this information will be missing in the report.
The only reliable time in this procedure is the date of registration, i.e., the date when the
report arrives to SMI.

Of course there is a delay in reporting cases. In a register study of 20 selected notifiable
infectious diseases, the time from disease onset to registration at SMI was examined (cf.
Jormanainen et al. (1997)). Reporting delay was defined as the number of days between
disease onset, i.e., start of symptoms, and time of registration at SMI. The median de-
lay varied between diseases, from 15 days (meningococcal infection) to 91 days (atypical
mycobacterioses) and was generally shorter for diseases of acute type and longer for dis-
eases of more chronic type. For campylobacter infections, the median delay is 19 days
and within 64 days 95 % of all reports are registered. Reports with a delay of less than
one day or more than one year are considered as miscoded and therefore excluded from
further analysis. For this reason 0.4 % of the reports are excluded from the analysis.

Since we are studying variations of campylobacter infections in time we need to relate
each case with a date. The time of infection is what we actually are most interested in
but since that date is rarely known we have to use another date instead. The closest
known date to the time of infection is the time of disease onset. Because the disease
onset date is missing on some of the reports we will loose information if we choose this
as our time variable. The only date that is known for all cases is the date of registration
at SMI. However, because of the relatively long and highly dispersed reporting delay we
will in turn loose precision if we use the date of registration as time variable. There are
methods, e.g., back calculation, to estimate the missing onset dates from the registration
dates. However, we will, in the following analysis, use the date of onset, without trying
to recreate the missing observations. Approximately 11 % of the reports will be excluded

from the analysis for missing the onset date.

3.3 Age and sex

Of the 13 077 indigenous cases with information about date of onset between 1992 and
1998, about 47 % are women. The age distribution is the same for men and women with a
high incidence among the youngest children and the young adults (20-35 years), cf. Figure
2.
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Figure 2: Age and sex distribution of incidence per 100 000 person—years of reported in-

digenous campylobacter infections in Sweden 1992-1998.

For adults older than 35 years the incidence is decreasing with increasing age. Notable

is the dip in the incidence curve for children and youths between 5 and 20 years.

3.4 Geography

The geographical units of the analysis are counties. These are the major administra-
tive units of Sweden. The country is divided into 21 counties. The counties organise the
health care within their area. In each of these counties, a county medical officer (smittsky-
ddslékare) is responsible for the local supervision of infectious diseases. In Table 2 the
number of indigenous cases and incidences per 100 000 inhabitants and year during the
period under study are given for each county. The number of inhabitants is calculated
as the mean of the number of inhabitants the last of December each of the years 1992
through 1998.

The incidence varies between 10 and 40 cases per 100 000 person-years. The extremes
are Gotland with an incidence of 39.4 and Viarmland with an incidence of 10.4. For
most counties the population size is quite stable between and within years. However, for
Gotland this is not the case. Gotland has the smallest population size, with only about 58
000 inhabitants registered. Gotland is also one of the most popular counties to visit as a
tourist and many people living in other counties in Sweden have their summerhouse there.

This means that the actual population in Gotland is much higher in summer than in the



Table 2: Number of indigenous cases and incidence per 100 000 person-years of campy-
lobacter infections in Sweden, date of onset 1992-1998. (For eight of the cases the sex was
unknown. )

Incidence per

Population Number of cases 100 000 person-years

County x103 Women Men  Total Women Men Total

1 Stockholm 1717 1171 1351 2523 16.6 20.2 184
2 Uppsala 285 249 226 475 21.5 20.1 208
3 Sodermanland 258 190 216 406 18.3 21.1 19.7
4 Ostergstland 413 232 261 493 14.0 159 149
5 Jonkoping 328 206 140 447 15.6 184 17.0
6 Kronoberg 179 127 164 291 17.7 228  20.3
7 Kalmar 242 196 243 439 20.2 253 227
8 Gotland 58 84 98 182 36.0 42.8 394
9 Blekinge 152 85 86 171 14.0 142 14.1
10 Skane 1103 1140 1159 2302 25.3 26.8  26.1
11  Halland 267 211 308 519 19.7 29.0 243
12 Vistra Gotaland 1473 915 1120 2037 154 192 173
13 Virmland 283 106 130 236 9.3 11.6 104
14 Orebro 275 188 182 370 16.8 16.8  16.8
15  Vistmanland 260 149 157 306 14.3 151  14.7
16 Dalarna 289 198 209 408 17.1 182 17.7
17  Gévleborg 287 126 144 270 10.9 126  11.7
18 Visternorrland 258 190 230 420 18.3 224  20.3
19 Jamtland 135 79 79 158 14.7 14.6  14.6
20 Visterbotten 258 119 154 273 11.5 15.0 13.2
21 Norrbotten 265 138 213 351 13.2 19.8 16.6
Sweden 8 785 6099 6970 13077 17.2  20.1  18.6

rest of the year. The average number of visitors each year is approximately 600 000. This
is a contributing cause to why Gotland has so much higher incidence than other counties.
Another cause may be that the geological conditions of Gotland differ from the rest of the
country in a way that influence the quality of the drinking water (cf. Andersson et al.
(1998)).

In Figure 3 the counties and their incidences are indicated on a map of Sweden. At
a first glance it is not easy to discern any geographical pattern. Maybe one can say that
there is an over-representation of southern counties among those with higher incidence

and an over-representation of northern counties among those with lower incidence.
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3.5 Seasonality

In order to study the seasonality of the incidence of campylobacter infections we have
aggregated the reported data on a weekly level. We have chosen to define the weeks as
consecutive seven days periods from January 1 1992 rather than the actual week number
in the calendar. Choosing weeks as aggregation level we do not have to worry about the
within-week variation that might appear due to, e.g., different eating habits in weekends
and weekdays. In Figure 4 the time series of the number of reported campylobacter

infections in Sweden week by week during 1992-1998 is given.

140
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201
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Figure 4: Weekly number of reported cases of campylobacter infection in Sweden 1992-
1998.

The series reveals a large variation in the number of cases during the year and a rather
stable yearly pattern. There is a high incidence period peaking approximately in late
summer each year. The exact time of the peak and the duration of the high incidence
period seem to vary between years.

This pattern is not only seen in the aggregated data but also in the time series for the
separate counties. However, the time of the peak and the duration of the high incidence
period vary between the counties. This is illustrated in Figures 11, 12 and 13 below. There
the weekly number of cases is given for Stockholm, Visterbotten and Blekinge together

with a smooth estimate of the mean number of reports.

12



4 A crude analysis of spatial and temporal distribution of cases

The data used in the following analysis are the weekly number of reported cases by date
of onset in each of the 21 counties. The time series start with week 6 in 1992 and end with
week 5 in 1999. We have chosen to start the analysis with week 6 mainly for technical
reasons. The smoothing model used defines a yearly parameter for the lowest incidence.
It is thus convenient to relate a change of parameters to the time when the incidence
is lowest. This happens around week 6. The time span analysed consists of 365 weeks.
Accordingly, there are 365 observations for each county.

Data from the known large outbreaks (cf. Section 2.3) have been modified to reflect
a situation with only sporadic cases, i.e., the actual reported number of cases has been
substituted by a mean number of reported cases in the weeks before and after the outbreak.

The time series of cases (cf. Figure 4) show large random variations. To be able to
discern differences and to compare the patterns in different counties it is necessary to
calculate statistics that illustrate the important features of the regular patterns. We will
start by presenting some crude calculations, which are not based on any assumptions on
the nature of the random variations or of the form of the temporal and spatial variations.
The purpose of the analysis is to compare the time when the incidence peaks and when
the high incidence period starts for the different counties.

For each county the data has been aggregated on a yearly level. That is the number of
cases occurring during the i week within the year in the seven years under investigation
have been summed and a mean number of cases per week have been calculated. The
reports from different years are aggregated to weeks with the same position within the
year. Two statistics have been calculated. The first is the number of the mid-week in
the 9-week period (of consecutive weeks) with the largest number of cases. The second
statistic is the first week within the year of a consecutive period of 9 weeks which has
an incidence larger than the mean weekly incidence. The calculations are illustrated in
Figure 5 where the 9-week moving average is given for data from Sweden. The curve has
its peek in week 31 and it crosses the line indicating the mean number of reports per week
for the average number of reports during week 18 to 26.

Table 3 shows the result of the calculations for the individual counties.

A general impression is that the peak week occurs earlier in the southern part of
Sweden than in the northern part. The same seems to hold for the start of the high
incidence period. This impression is to some extent confirmed by calculations of rank
correlations between these numbers and the north-south position of the counties. The
counties have been ordered according to the relative positions of their residential cities (cf.

Table 3). The rank correlation between peek week and the relative north-south position of

13
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Figure 5: Nine-week centered mowving average for the number of cases of campylobacter
infection averaged over years for Sweden. The straight line indicates the mean number
of reported cases per week. The accentuated part of the curve shows the nine-week period
used for defining the start of the high incidence period.

the county is -0.42. The rank correlation for the start of the high incidence period is -0.65.
The second of these rank correlations differs significantly from zero on the 5 % level, but
not the first (p = 0.055 and p = 0.0013 respectively).

5 Parametric modelling for smoothing over time

There is evidently a large amount of randomness associated with the number of reported
cases. In order to discern patterns as regards to variations within a year and between
years we will have to smooth the time series in a convenient way. We will here do this
by applying a model that describes how the mean number of cases varies in time and
describes the random variations around this mean. The model that is used is in many
respects very crude. It should not be regarded as a realistic stochastic model but rather as
a model that produces a smoothed version of the time series. By studying the parameters
in this smoothed version, we may get a better view of underlying regularities in the spread

of campylobacter infections.

5.1 Model 1 — A model based on Poisson variation

The first model fitted to the data is one based on Poisson variation. This is a traditional

way of modelling disease incidence data. For a given week, the number of cases is assumed
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Table 3: Peak week and start of high incidence period in the counties.

The last column

show the relative rank of the north-south (N-S) position of the residential cities

Start of high Rank of N-S
County Peak week incidence period position
1 Stockholm 31 19 10
2 Uppsala 34 18 7
3 Sodermanland 27 17 12
4 Ostergotland 28 18 13
5 Jonkoping 30 18 14
6 Kronoberg 31 18 17
7 Kalmar 30 18 18
8 Gotland 29 18 16
9 DBlekinge 29 16 20
10 Skane 31 17 21
11 Halland 32 19 19
12 Viastra Gotaland 31 18 15
13 Virmland 33 20 9
14 Orebro 30 17 11
15 Vistmanland 28 18 8
16 Dalarna 32 18 6
17 Géivleborg 31 20 5
18 Visternorrland 32 20 4
19 Jamtland 32 21 3
20 Visterbotten 31 20 2
21 Norrbotten 32 19 1
Sweden 31 18

to follow a Poisson distribution with some intensity that might depend on covariates.

When the disease is rare, this is often a fair assumption. Allowing the intensity to vary

over time, we try to fit a model that takes the specific patterns seen in the data into

account. That is, the basic features are:

vary between years.

between years.

15

There is a flow of cases during the entire year.

Within each year there exists one high incidence period. The time of the peak may

The duration of the high incidence period may vary between years.

The ratio between the incidence in the high and low incidence periods may vary



Let Y; be the number of cases during week j. According to the assumptions above,
these numbers are stochastically independent and Poisson distributed with intensities that

might depend on time. That is:

Y} ~ Po(lu’j)a .7 = 1,2,...,Tl

where n is the number of weeks studied.
To be able to capture the features described above we have chosen the following model

for the intensities (i.e., the mean number of cases during a particular week j):

(COS(QT(('U]‘ 2— Oyr)) + 1 ) Ryr |

In(;) = In(I) + By, + Tyr (1)

I is the mean size of the population during the entire period (1992-1998). The term
In(I) serves as normation. The purpose of including I in the model is to make the pa-
rameters comparable between counties with different population sizes and is otherwise
redundant.

The index yr stands for the year to which week j belongs and v; stands for the relative

position of the week within that year, i.e.

v =7j- % — (yr —1992), yr =1992,1993, ...,1998.

The parameters B;T describe the incidence of sporadic cases during the low incidence
period of the year. In fact, I ePur is the average number of reported cases during the low
incidence period. Instead of having a jump function that changes value for each year we

have made this expression smooth by actually using a polynomial for this parameter, i.e.

ng’r‘ = 'Ujﬁyr + (1 - ’Uj)ﬁerrl'

The expression

Tyr

(eos(zﬁ(uj 2

—Oyr)) + 1)“‘”

describes the variation of the incidence over a year. It takes its highest value in year yr
at time 0y,. At that time the incidence is e"¥" higher than during a low incidence period
that year. The duration of the high incidence period is related to k.. A high value gives
a short duration and a low value a long duration of the high incidence period. A graphical

illustration showing what the parameters represents is shown in Figure 6.
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Figure 6: Graphical representation of the parameters in the model

5.2 Overdispersion

In Model 1, discussed in Section 5.1, we have assumed that the number of reported cases
each week is Poisson distributed. This assumption can be questioned for several reasons.
One important feature of the Poisson distribution is that its mean equals its variance,
i.e., the ratio between the variance and the mean is 1. A distribution with a ratio greater
than 1 is called overdispersed. There are strong reasons to believe that an overdispersed
distribution should be more appropriate than the Poisson distribution. Overdispersed

distributions can be motivated by the presence of

o Minor outbreaks

The campylobacter cases may occur simultaneous in several persons due to expo-
sure to the same infectious source. Even if we have discarded reported cases from
major outbreaks from our analysis, there still may be reported cases from minor
outbreaks. This should imply that there is dependence between cases. The most
natural assumption is that the number of events when campylobacter infections are
transmitted is Poisson distributed and the number of persons infected in such event
is a random. The number of reported cases should in that case be modelled as a
sum of a Poisson distributed number of independent random number of cases. This

will yield an overdispersed distribution.

e Secondary cases
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An infected person may spread the infection further to individuals in the neigh-
borhood. It is often claimed in the literature that such secondary infections are
uncommon. A mechanism of this kind would also cause some cases to depend on
each other and imply an overdispersed distribution rather than a Poisson distrib-
ution. Another consequence could be a (stochastic) dependence of observations in

subsequent weeks.

Dependent reporting

Dependencies between reported cases can also be the effect of the reporting system.
If the reporting of cases is not done independently but, e.g., the reporting medical of-
ficer reports several unrelated cases simultaneously an artificial clustering, as relates
reporting date, of cases occurs. Since we have chosen to use the date of the onset of
the disease as the time associated with the infection we have possibly avoided this
effect.

Heterogeneity

Another possible cause of overdispersion is that the relatively large areas for which
the data are presented in fact consist of several sub-areas that have different patterns
as regards to the temporal variation in the number of campylobacter cases. Such sub

areas could, e.g., be rural and urban areas or coastal and inland parts of a county.

Thinning due to underreporting

It is well established that the campylobacter cases are severely underreported. A
simple model for underreporting is that each case is reported with a certain probabil-
ity, independent of other cases being reported. The observed series of reported cases
is then a thinned version of the series of all campylobacter infections. A theoretical
analysis shows that this kind of underreporting results in observations that are more
Poisson-like than the unthinned series. Thus underreporting has an opposite effect
compared with the other problems mentioned since it will make the distribution less

overdispersed.

To account for overdispersion, we need to find a way to model the variance so it

is allowed to be greater than the mean. This can be done in different ways, see e.g.,
McCullagh & Nelder (1989) or Hinde & Demétrio (1998).

Let, again, Y}, j = 1,...,n, represent the number of observations within week j. Yj is

assumed to follow a Poisson distribution with mean y;. That is, E[Y; | p1;] =Var[Yj | p;] =

- One way of modelling extra variation is to simply assume a constant overdispersion

and replace the variance function with
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Var[Yj | p;] = op;.

Another way is to assume that the parameter itself, in the Poisson distribution, follows
a random distribution. This can for example be motivated by heterogeneity within the
population or clustering. A commonly used approach assumes a Gamma distribution for
the ;. This leads to a Negative binomial distribution for Y.

The relationship between the mean and the variance in the Negative binomial distrib-
ution can easily be derived in the following way. If we let ;1; be Gamma(c;, §) distributed,

with a parameterisation such that

E [“j] = % and Var [uj] = %-
Then
EY; =E[E[Y; | n]] =E[x] =3
Var[y;] = E[Var[Y;|u,]] + Var [E[Y; | 1]
= E ] +Var ]
Tt

- %(1-&-%). 2)

The factor (1 + 1/9) in (2) measures the overdispersion. When this factor is unity,
there is no overdispersion.

The choice of the way to model the overdispersion should be subject to the underlying
process generating the data. The Negative binomial distribution have the same mean
value structure but different variance structure than the Poisson distribution. Using the
Poisson model, we expect the same parameter estimates but underestimated variance.

To see whether it is necessary to incorporate a dispersion parameter in the model one

can check the Poisson model assumption by calculating the Pearson y2-statistic:

If the observations are in fact Poisson distributed this statistic should be approximately

x? distributed and approximately equal to n. The dispersion can be estimated by X?2/n.

19



The estimated dispersion is shown in Table 4 for individual counties and aggregated data
for Sweden. Due to heterogeneity the overdispersion for Sweden is, as expected, larger

than for the individual counties.

5.3 Model 2 — The Negative binomial model

The risk of being infected with Campylobacter is probably not equal across the country.
One can imagine differences between rural and urban areas as well as coastal and inland
areas. Clustering can occur from minor outbreaks and the possibility of person to person
transmission of the infection. Although we have tried to remove the major outbreaks
from the data it is impossible to identify the minor outbreaks. As previously mentioned,
secondary cases are uncommon according to the literature but can still occur. All these
factors can induce overdispersion.

Because of the reasons mentioned in the previous section and since there is evidence
suggesting overdispersion (cf. Table 4), we have chosen the Negative binomial approach,
described in Section 5.2, to extend our model to account for overdispersion. That is, the

model can now be formulated as

Yj | iy ~ Po(p;), j=1,2,..,n;

where

p; ~ Gamma(ay, 6).

Equation (1) is changed accordingly to

In(aj) = In(d) +1In(I) + By, + Tyr

<cos(27r(vj 3

o) 41y
5 .

The number of cases within a week j is still assumed to follow a Poisson distribution
initially but extra variation is allowed for by assuming that the mean value parameter p;
in the Poisson distribution is random. By assuming a Gamma distribution for x; we end
up with a Negative binomial distribution for the number of cases per week.

The mean of the Negative binomial model is the same as in the Poisson model but
now expressed in the parameters a; and ¢ as

B[] =2

and the variance is
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5.4 Prior distributions

Estimation of parameters is done within a Bayesian setting using Markov chain Monte
Carlo methods as described in Section 7. This means that we will apply prior distributions
to the parameters and use the means of the posterior distributions as parameter estimates.
If the prior distributions are vague enough, the posterior distributions will essentially
depend on the data. The following prior distributions was used for Model 2 in the final

simulations:

B ~ N(0,0%=1000)

6 ~ Uniform (0,1)

7~ Gamma (0.001,0.0005)
k ~ Gamma (0.001,0.001)
d ~ Gamma (0.001,0.01)

6 Geographic modelling

Until now, the models discussed have only regarded the aggregated data for the whole
country. However, when we look at individual counties, we can still see distinct patterns
in the time series of reported cases.

County wise, the problem of overdispersion is less than when the data are aggregated
for the whole country. This can partly be explained by that there should be less hetero-
geneity when the data are not aggregated. That is, the variation is greater between than
within counties. However, calculations of the Pearson statistic for each county still suggest
that there is overdispersion present when data are analysed by county. The overdispersion
seems to be larger for counties with larger population. The results from the calculations,
together with the estimated overdispersion, (14 1/4), from the Negative binomial model,
are presented in Table 4. As expected, the estimates of the dispersion parameter from the
Pearson statistic and the Negative binomial model are close to each other.

We have chosen to use the Negative binomial model (Model 2) in our continued analysis
of the county wise data. The cost of adding an extra parameter in the model is well

motivated by the gain in precision and model fit.
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Table 4: Overdispersion; as measured by the Pearson statistic and estimated from the Neg-
ative binomial (NB) model

Pearson Estimated from

County x%-statistic ~ the NB model

1 Stockholm 1.7571 1.8302
2 Uppsala 1.0943 1.0282
3 Sodermanland 1.1516 1.1492
4 Ostergstland 1.2812 1.0352
5 Jonkoping 1.4286 1.2915
6 Kronoberg 0.9717 1.0156
7 Kalmar 1.1645 1.0411
8 Gotland 1.1949 1.0307
9 DBlekinge 1.1384 1.0306
10 Skéne 1.5994 1.6133
11 Halland 1.3696 1.2494
12 Vistra Gotaland 1.5748 1.4398
13 Viarmland 1.0408 1.0278
14  Orebro 1.0677 1.0360
15 Vistmanland 1.0792 1.0396
16 Dalarna 1.1023 1.0424
17 Géavleborg 1.2640 1.1590
18 Visternorrland 1.4834 1.2811
19 Jamtland 1.1655 1.1608
20 Visterbotten 1.4356 1.4020
21 Norrbotten 1.0512 1.0399
Sweden 2.9354 3.0927

Fitting the model for the individual counties can simply be done by substituting the
data for the whole country by each county’s data respectively. This will give us, for each
county, parameter estimates which then can be compared in some way. Another way is
to extend the model to incorporate a geographic component by simply adding an extra
index on all parameters. We have used this latter approach because, as we will see, it is
then easy to modify the model to account for dependencies between the counties. Another
advantage is that we only need to fit one model including all counties instead of 21 separate
models. In this setting the counties are assumed to be independent of each other. Model

2 can now be expressed as:

Yij ~ Po(u;;), i=1,2,...,m, j=1,2,...,n

where 4 is indexing the m counties and
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pij ~ Gamma(aj, 6;).

The functional form describing the mean number of cases each week j is then:

2 P 91 » 1 Ki yr
In(aiy) = In(0;) +1n(L;) + By, + Tigr (COS( m(vj = Oiyr)) + ) .

2

6.1 Prior distributions

Using the same prior distributions for the individual counties as for the whole country was
not possible. Making the priors too vague caused the simulation to slow down considerably
and in most cases convergence was not reached. The problems occurred mainly for the
parameters 7 and k. In order to be able to run the simulations, the prior distributions
for those parameters had to be made more vague. The parameters had the following prior

distributions in the final simulations:

~ N (0,0% = 1000)
6 ~ Uniform (0,1)
7 ~ Gamma(4,2)
k ~ Gamma (0.3,0.3)
~ Gamma (0.001,0.01)

For counties with a large amount of data or with a strong structure in the observed
incidence the data dominates the prior. However, for counties with less data, the prior
distributions might strongly influence the parameter estimates. The problem of having a
too informative prior distribution will be more severe for the tails than for the center of
the distribution. Since we are mainly focusing on the estimates of the parameters, and not
on the variances, we have chosen to set the mean of the prior distributions to be, in some
sense, plausible and conservative. The prior mean for 7 is set to two, suggesting that the
peak incidence is exp{2} & 7 times larger than the basic low incidence. For x the prior
mean is set to one, making the assumption that the high incidence period is as long as
the low incidence period. The assumed means for 7 and k are actually not far from the

estimated national mean of these parameters.
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6.2 Model 3 — Spatial smoothing

When we split the data by counties the amount of information, per parameter to be
estimated, is reduced. Also, counties with small population sizes will during most weeks
have only few or no cases. It is likely that extreme observations will occur just by chance
and this will influence the parameter estimates. For counties with a small population
size extreme observations can easily occur just by chance but also from minor outbreaks
only involving a few cases which can be hard to detect by the reporting system. We can
partly overcome this problem by smoothing extreme observations towards some function
of the observations for other counties. This can be done in several ways. We are here only
looking at a couple of possibilities but others are easily imagined.

Assuming that all counties have some feature, regarding the flow of cases, in common,
e.g., the same baseline incidence of sporadic cases, extreme local observations could be
smoothed towards some global mean for all other counties. That is, if one county experi-
ences a much higher baseline incidence one year, it is smoothed towards the mean of all
other counties’ baseline incidences that year. This is sometimes referred to as unstructured
smoothing.

If we believe that there is a geographic component involved in the distribution of cases
we can try to incorporate this in the model. That is, geographically close counties are
assumed to have similar parameter values. In this case, each county’s incidence is shrunk
towards the mean of the neighboring counties’ incidences. This is then referred to as
spatially structured smoothing.

The idea, in both cases, is to punish extreme observations that might have arisen just
by chance. In this way, counties with few cases can, in some sense, borrow information
from other counties to possibly get better estimates of their true parameter values.

Of course, any one of the parameters in the model could be subject to smoothing. In
fact, one possibility is to smooth on all parameters simultaneously. However, as a start
we have chosen to look at only one parameter. The main reasons for this are the easier
understanding and also to save computational time. It would, of course, be more difficult
to study the effects of smoothing if we were smoothing several parameters at the same
time, especially if the parameters are correlated in some sense. Also, smoothing on several
parameters would increase the complexity of the model and hence probably require heavier
simulations to estimate the parameters.

We have focused on smoothing on the parameter ; y, describing the time of the peak
of the high incidence period for county ¢ in year yr. Reasons for choosing this parameter
is that it is easy to interpret and also that it is interesting to study from a practical point

of view.
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To achieve a smoothed estimate of 6;,,, we change the prior distribution from an
uninformative Uniform distribution to an informative Beta distribution. The reason for
choosing a Beta distribution is that we need a flexible distribution limited on the interval
(0,1), preventing estimation on the wrong year. In order to smooth using information
from other counties, the Beta distribution should have a mean and a variance depending
on this information. We can formulate all this in the following way:

The prior distribution for 6;, is now

0; yr ~ Beta(r, s).

The parameters r and s are chosen so that

S wiib;
A Ve YA
Elliy] = Oy =L and
Zj;éiwlj
2 2
o°> LW
J#i ig
Var [0, = 5
(Ej;éiwlj)
where
w1l w12 . Wip
w21 W22 ottt Wap
W =
Wnp1 Wp2 -+ Wnpn

is a weight matrix with entries w;; representing the weight that county j has on county 4.
Hence, this implies that , 9_2-7@” is the weighted average of all other counties’ 8 values. Note
that W is not necessarily symmetric. In words this means that county j has a different
influence on county ¢ than county ¢ has on county j.

The parameter o2 represents the overall variance of the smoothing function and is in
this setting assumed to be equal across counties. This parameter determines the degree
of smoothing between the counties. Smaller values of o2 increase the influence from the
other counties and hence gives a more smoothed map.

The Beta distribution is parameterised in a way that

r
E0iy] = s and

(r+s)2(r+s+1)

Var [0 ]
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which implies that » and s should be set to

(Ej;éi wz‘j)Q _

ro= AL (0iy)? (1 —O_iyr) —O_iyr  and (4)
0_2 Z];&z ,wZQJ Yy Y Y

s = 7@#"%)29 (=0 i) = (10 i) (5)
0_2 Z]#Z U)ZQJ —,Yyr —,Yyr —,yr

respectively.

6.2.1 Choosing a weight matrix

The weight matrix defines the mutual influence the counties have on each other. If all
weights are set to zero the counties are assumed to be spatially independent. On the other
hand, if all weights are equal and larger than zero, all counties are expected to have the
same mean and all estimates are shrunk towards that global mean. It is easy to think of
other structures allowing for different kinds of spatial dependencies. We have chosen to

look at two specific alternatives of weight matrices.

6.2.2 Model 3.1 — Neighbors

The first alternative for a weight matrix assumes that the parameter of interest for one
specific county depends on the corresponding parameter for neighboring counties. In this
setting, two counties are said to be neighbors if they share a common border. There are
exceptions like the island Gotland who does not in a strict sense share a border with any
county since it is surrounded by water. Gotland has as its neighbors the four counties
lying on the east coast of the part of the mainland lying closest to Gotland. The weights
in the weight matrix is defined, in this setting, by:

{ 1 if county ¢ and j are neighbors
Wi =

0 otherwise

It is easy to confirm that the expected value of the prior distribution for 6; is the
arithmetic average of the neighboring counties’ 6 values and that the variance is propor-
tional to the reciprocal of the number of neighbors. The more information we have about
the surrounding areas, i.e., the more neighboring counties we have, the smaller the vari-
ance of the prior distribution. In Appendix B the weight matrix showing the neighboring

structure is presented.
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6.2.3 Model 3.2 — Weights defined by distances

The second choice of weight matrix assumes that all counties depend on each other in a
direct way. Here the weights are proportional to some function of the distance between the
counties. Counties that are far apart have lower influence on each other than counties that
are close. Depending on the disease and its aetiology, there are many ways of measuring
the distance between two counties. If the disease is spread from man to man, one could
define the distance between two counties as some measure of the flow of people travelling
between the counties. This could, e.g., be realistic for a disease like influenza. Another
distance could be the number of borders one has to cross to get from one county to another.
In this case the dependence will diminish with the distance in some sense. This approach
would not consider the size of the counties. A third distance, the approach we have chosen,
is the Euclidian distance between the counties. This distance resembles the previous one
but will take the sizes of the counties into account. It is however, not trivial to define
the Euclidian distance between two counties. There are several possibilities such as the
distance between the geographical mid-points of the counties or between the geographical
means of the population densities. Both of these mid-points are difficult to establish and
the gain of finding them might not be worthwhile the effort. We have instead chosen the
Euclidian distance between the residential cities in the counties. In most counties (but
not all) the residential city can be viewed as the mode of the population density. The
weights are calculated in the following way. First the longitude/latitude position of the
residential cities is established. Each degree of longitude and latitude is approximately
50 km and 110 km respectively in Sweden. After the distance in longitude and latitude
has been transformed to kilometers the Euclidian distance is calculated using Pythagoras’
theorem. The weights are then simply the reciprocal of the distances. In order to avoid
calculating the normation constant, (Z ot wij) 2, in the simulation, we then chose to norm
the weights such that

Zwij =1.
J#i
As mentioned above there are other possibilities of weight matrices. Mollié (1996)
study how the relative risk of death from a rare disease vary between 94 geographic areas
(départements) in France. In that study she uses an intermediate, so called "convolution
Gaussian", distribution on log relative risks to accommodate both an unstructured prior

and a purely spatially structured prior.
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6.2.4 Choosing a prior distribution for o>

The Beta distribution has some properties that we need to consider in order to be able to
choose the limits of the prior for o2, If r = s the distribution is symmetric and the mean
will be 0.5. Particularly, if » = s = 1 we have a uniform distribution (cf. Figure 7b). If
both r and s are less than 1 the distribution is convex (Figure 7a) and if both are larger

than 1 it is concave (Figure 7c). Also, the larger values of  and s the smaller the variance

is.
Beta(0.2,0.5) Beta(1,1) Beta(3,2)
2 2 2
15 15 1.5
=z 1 1
05 0.5 05

0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
a b c

Figure 7: Examples of different beta distributions. A convex Beta(0.2,0.5) (a), a symmet-
ric, uniform Beta(1,1) (b) and a concave Beta(3,2) (c).

Since we are interested in weighting estimates towards the mean of other counties we
need a distribution with most its density close to the mean, not in the tails. This means
that we want a concave distribution and hence that r and s should both be greater than
1. Clearly the variance is also a function of the mean of the distribution, taking its largest
value when the mean is equal to 0.5. In fact, from Equations 4 and 5 we see that, to make

sure that the distribution will be concave, o should be selected to satisfy
(Sy)
i wia‘) - 2,1 7 -
S5 (O )" (1 — O ) — O, > 1
o2 237@ 'U)Z'Qj i,yr i,yr i,yr

(Zj;éi wz‘j) i _

e SR L Oiyr) = (1= 0ige) > 1.
j#i Vij

and

Solving both inequalities for o2 we see that o should be less than:

2

ézi,yr(l - éfi,yT) (Zj;éi wij)Q. éfi,yT(l - éfi,yr)Q (Zj;éi wij)

(1 + éfi,yT) Z

2
j#i Wij

Y
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In expression 6 it can be seen, as stated above, that the upper limit of 0> depends
on 9_@”. In fact, the farther away 9_1-7” is from 0.5, the smaller the upper limit of the
prior distribution for o2 should be to assure that we will have a concave distribution for
9_1-7“. As previously mentioned, the parameter estimation will be done using MCMC
methods. The procedure is described in detail in Section 7. Omne important step of
the MCMC procedure is to sample candidate points of the parameter vector from its
probability distribution. To allow different candidates of 6_;,, the upper limit of the
prior distribution of o2 must take this into account. In order to establish an appropriate
upper limit, several different prior distributions for o were tried. It turned out that a
Uniform(0,0.08) prior was appropriate for the "Neighbor model" (cf. Section 6.2.2) and
a Uniform(0,0.01) prior was appropriate for the model where the weights were defined by
the reciprocal of the distances being normed such that 3, ., wi; =1 (cf. Section 6.2.3).

7 Estimation with MCMC

In a situation with a high dimensional distribution, estimation of parameters is often not
straightforward. Integration over the distribution can be difficult or even impossible. The
idea behind Markov chain Monte Carlo (MCMC) is, as the name implies, Monte Carlo
integration using Markov chains. Following the notation in Gilks et al. (1996), let =(.)
denote the likelihood of our vector of observed data X. Suppose we are interested in

evaluating the expectation of some function f(X) of the data, i.e.

_ Ik f(m)ﬁ(m)dx

B0l = D

One way of evaluating this expression is by Monte Carlo integration. If it is possible

to draw samples {X;} from 7(.) one can approximate the mean by

n

B =~ 3 F (%),

t=1
If the samples are independent and n is large enough this sample mean is a good
approximation of the population mean of f(X). However, drawing independent samples
from 7(.) is often not so easy since 7(.) can be quite non-standard. MCMC uses the fact
that it turns out that the samples need not be drawn independently. If we can draw the
samples from a Markov chain which has 7(.) as its stationary distribution we can still use

Monte Carlo integration for estimation, hence the name Markov chain Monte Carlo.
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7.1 The Metropolis-Hastings algorithm

How can we then construct a Markov chain that has 7(.) as its stationary distribution? Tt
turns out that this can be done quite easily by the Metropolis-Hastings algorithm. Fifty
years ago Metropolis et al. (1953) proposed a method which later on was generalised by
Hastings (1970). The rather simple algorithm proceeds as follows:

We are interested in generating a sequence of random variables {Xo, X1, Xo,...} that
has the properties of a Markov chain with stationary distribution 7(.). That is, given that
we are in state X; the next state, X;11, is generated from a random distribution which
only depends on the state X; and not on the history {Xo, X1,..., X¢1}.

To construct such a chain according to the Metropolis-Hastings algorithm, a candidate
point Y is first drawn from a proposal distribution ¢(.|X). This point is then accepted as
the new state, X;y1, with probability:

a(X;,Y) = min <1 r(V)alXe | ¥) ) .

'm(Xe)g(Y | Xt)
Generating a uniformly distributed random number U ~ Uni form (0, 1), we can select

the next state as:

Y if U<a(X,Y)
Xip1 = ,
Xt ’Lf U > Oé(Xt,Y)

This "updating procedure" is then repeated a large number of times until the Markov
chain has converged. The initial state, Xy, can be given any value or chosen randomly
from a distribution. The choice of starting point might affect the time to convergence,
but when run long enough, the chain will eventually forget its initial phase. To be sure
that the Markov chain has converged to its stationary distribution, a long enough burn-in
period should be run before using the iterations for estimations. A discussion on how to
determine the burn-in period can be found in chapter one in Gilks et al. (1996).

All our simulations were done using the program WinBUGS (version 1.3; Spiegelhalter
et al. (2000) or http://www.mrc-bsu.cam.ac.uk/bugs). For the simplest models, i.e., Model
1 in Section 5.1 and Model 2 in Section 5.3, a slice-sampling method (cf. Neal (1997)) was
used. This method is appropriate when the density function is non log-concave but on
a restricted range. It has an adaptive phase of 500 iterations which will not be included
in the analysis. For the models in Section 6, a “current point Metropolis algorithm” was
used. This method uses a normal proposal distribution. The standard deviation is tuned
over the first 4 000 iterations and those will not be used in the analysis. For all models a

total of 30 000 iterations was run. The last 20 000 iterations was used in the analysis and
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the preceding served as burn-in.

7.2 Convergence diagnostic analysis

When using MCMC methods it is important that the Markov chain converge to its station-
ary distribution, or at least closely enough. There are several convergence diagnostic tools
developed to check whether convergence is achieved. We have not done any formal checks
for convergence using any of those tools. However, we have used some ad hoc approaches
to make sure that we have reached the stationary distribution and that the parameter
estimates are valid.

As mentioned in Section 5.4, we have used somewhat informative prior distributions for
the parameters in the modelling on the county level. There is evidently a strong structure
in the data. When there is a large amount of data the prior distributions will not have
as much influence on the parameter estimates as when there are less data. To illustrate
this, prior distributions from Model 3.1 for the parameters 3, 7 and k are plotted together
with their corresponding posterior distributions for Visterbotten and Stockholm 1995 in
Figure 8. Viisterbotten is a county with a relatively small population size while Stockholm
is the county with the largest population size.

Clearly, the posterior distribution is much narrower for Stockholm than for Visterbot-
ten due to more data. The normal prior for 5 is too flat to be able to even be seen in the
figure. That is, for 8 the posterior distribution is almost totally dominated by data.

During the updating procedure in WinBUGS it is relatively easy to plot the sequential
iteration history to see whether the Markov chain changes states frequently or if it stays
in the same state for long periods. The later would require more iterations for the chain
to converge. We have also visually checked the posterior distributions for the parameters.

The time to reach the stationary distribution is also depending on the starting point
for the chain. Starting points lying far away from the stationary distribution will require
more iterations. We have tried different starting points, even some extreme ones, but this
did not seem to affect the time to convergence.

Simulations took between 7 min (simplest model) and 6 h (most complex model) on
a PC with an AMD 1.4 GHz processor and 512 Mb RAM.
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p(B)~N(0,1000) p(v)~Ga(4,2) p(K)~Ga(0.3,0.3)

S
F

20. Vasterbotten

-2 0 2 0 2 4 6 0 2 4
1. Stockholm

Figure 8: Prior (thin line) and posterior (bold line) distributions for three parameters for
the county Visterbotten (top) and Stockholm (bottom) in 1995 from Model 3.1. Note that

the prior distribution for [ is too flat to even be seen in the figure.

8 Results

8.1 The fit of the models — aggregated data for Sweden

We fitted both the Poison and the Negative binomial model to the aggregated data for
Sweden. In Figure 9 (top) the crude number of cases together with the estimated mean
number of cases from both models are shown. Note that here and in the following analyses,
as in the crude analysis, the time series start with week 6 in 1992 and end with week 5
1999 due to computational reasons. It turns out that both models fit the data well. In
fact, it is almost impossible to discern any differences between the models by just looking
at the figure. To show that the models do not give exactly the same fit, the absolute
difference of the estimated mean number of cases between the models are also shown in

the figure (bottom). The parameter estimates from the two models are shown in Table 5.
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Figure 9: The two models fitted to the data (top) and the absolute difference between the

estimated Poisson model and the Negative binomial model (bottom).

The absolute difference of the estimated incidences from the two models is never more
than three cases and the relative difference is not more than five per cent at most. The
largest difference between the models appears right after the time for the peak incidence
in 1994. As can be seen in Figure 9 there appear to be a second peak during the decline
of the incidence curve in this year. This is probably caused by an undetected outbreak,
possibly occurring in more than just one county which would make it more difficult to
discover. In fact, by taking a closer look at individual time series, there actually appear to
be a second peak in late 1994 for some of the counties. Examples are Stockholm (Figure
11), Visterbotten (Figure 12), Sodermanland, Vistra Gotaland and Orebro (all counties
are shown in Appendix C). The positive differences at the time of the downslope of the
curve in 1994 indicates that the Poisson model is more affected by this second peak than
the Negative binomial model is.

As previously mentioned, if overdispersion is present we expect the estimates of the
incidence to be similar but the variance will be underestimated if we use the Poison model
instead of the Negative binomial model. This also has implications on the parameter

estimates. When we fit the Negative binomial model we end up with parameter estimates
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with larger variance than if we fit the Poison model. We illustrate this by plotting the

posterior distributions, from both models, of one of the parameters in Figure 10.

0.45 0.5 0.55 0.6 0.65

Figure 10: Posterior distributions for the parameter 61996. Thin line represents the Pois-

son model and bold line represents the Negative binomial model.

It is clearly seen that the Negative binomial model produce a wider posterior dis-
tribution than the Poison model. Posterior probability intervals for all parameters are
shown in Table 5. Also in the table, one can see that the Negative binomial model pro-
duces estimates with larger variation, indicating the need of a dispersion parameter in the

model.
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Table 5: Parameter estimates with empirical 95 per cent probability intervals for the Pois-

son and the Negative binomial models

Poisson model Negative binomial model

Parameter Year | Mean Prob. interval Mean Prob. interval
0 1992 | 0.512 (0.487 — 0.539) 0.516 (0.468 — 0.568)
1993 | 0.501 (0.484 — 0.517) 0.498 (0.469 — 0.530)

1994 | 0.519 (0.504 — 0.533) 0.514 (0.489 — 0.540)

1995 | 0.556 (0.538 — 0.573) 0.553 (0.524 — 0.584)

1996 | 0.565 (0.541 — 0.588) 0.562 (0.524 — 0.602)

1997 | 0.509 (0.489 — 0.529) 0.510 (0.472 — 0.543)

1998 | 0.504 (0.491 — 0.517) 0.504 (0.482 — 0.529)

T 1992 | 1.284 (1.240 — 1.450) 1.249 (0.987 — 1.555)
1993 | 1.417 (1.289 — 1.547) 1.396 (1.172 — 1.634)

1994 | 1.400 (1.295 — 1.507) 1.364 (1.187 — 1.542)

1995 | 1.539 (1.417 — 1.668) 1.516 (1.313 — 1.735)

1996 | 2.235 (1.999 - 2.529) 2.157 (1.812 — 2.696)

1997 | 2.345 (2.124 — 2.604) 2.273 (1.948 — 2.728)

1998 | 2.087 (1.938 — 2.245) 2.047 (1.806 — 2.315)

K 1992 | 1.276 (0.837 — 1.856) 1.217 (0.549 — 2.328)
1993 | 1.639 (1.233 — 2.142) 1.634 (0.955 — 2.658)

1994 | 1.482 (1.232 —1.761) 1.612 (1.131 — 2.220)

1995 | 0.967 (0.787 — 1.173) 1.004 (0.691 — 1.394)

1996 | 0.744 (0.578 —0.941) 0.799 (0.512 — 1.184)

1997 | 0.897 (0.702 — 1.119) 0.926 (0.594 — 1.331)

1998 | 1.344 (1.101 — 1.622) 1.394 (0.953 — 1.948)

0 0.478 (0.380 — 0.597)

8.2 The fit of the models — by county

By looking at the individual counties we see that the model still fits the data well even
though we in some cases have substantially less data than for the whole country. As
examples, the estimated mean incidence together with the observed data are shown for
Stockholm (Figure 11), Visterbotten (Figure 12) and Blekinge (Figure 13).
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Figure 11: Observed and estimated mean number of cases week by week for Stockholm.

Stockholm is the largest county constituting approximately 20 % of the population. As
a consequence of this, Stockholm is the county with the largest number of campylobacter
infections. As can be seen in Figure 11, the stable structure of the time series seen for
the whole country is also seen for Stockholm but he random variation around the mean is
larger for Stockholm due to fewer cases.

Visterbotten and Blekinge have relatively low incidences of campylobacter infections.
Still the model succeeds in finding a regular pattern in the observed time series with, in
some years, very marked peaks. However, note that the peaks in 1993 and 1994 are not
very prominent for Blekinge. At a first sight it may look as if the model fit the data poorly
for some years, but the distinction between the high and low incidence periods appears

clearer if one consider all the weeks with zero cases during the low incidence periods.
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Figure 12: Observed and estimated mean number of cases week by week for Visterbotten.
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Figure 13: Observed and estimated mean number of cases week by week for Blekinge.
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8.3 National results

The parameter estimates obtained from the model fitted to the aggregated data for the
entire country can be used to calculate some interesting functions of the parameters. The
average baseline incidence in year yr can, e.g., be calculated as I - exp{ByT} and the peak
week is simply given by:

Peak week = 3—$59yr + 5.
Again, remember that we need to add five weeks since we start the time series in week 6
due to computational reasons.

The amplitudes 7, measure the logarithm of the ratio between the highest incidence
in the model and the basic low incidence. That is, the actual ratio can be calculated as
exp{Tyr}.

In order to illustrate when the high incidence period starts we have calculated the
number of the week in which the incidence is twice the basic low incidence. A simple

calculation yields that this will be week no

1/k
@ (6’ — i arccos (2 <M> — 1)) + 5.
7 2T T

To calculate a statistic representing the concentration of the high incidence period, &,
we estimated, for each year, the proportion of cases occurring within +2 weeks of the peak
week. That is, the proportion is calculated as the estimated number of cases in the period
ranging from two weeks before till two weeks after the peak week divided by the estimated
total number of cases during that year. A large proportion implies a higher concentration
of the peak. This measure of the size of the peak is adopted from the study by Nylén et al.
(2002) in which they compared nine European countries and New Zealand regarding the
seasonal distribution of campylobacter infections. As opposed to our study they used a
non-parametric kernel smoother to smooth the crude observations and they also studied
all campylobacter infections registered and not only the indigenous cases. As they argue
in the discussion, the size of the peak can be influenced by the infections acquired abroad
during holiday season which may vary between countries.

The results of all the calculations are presented in Table 6.

In two of the years, 1996 and 1997, the start of the high incidence period is earlier than
in the other years. In spite of this the time of the peak does not occur sooner for these
years as compared with the other years. This can seem contradictory since one might
imagine that the two time points in some sense should be positively related, i.e., an early

start of the high incidence period would imply an early peak week. Also, 1996 and 1997
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Table 6: Baseline incidence, peak week, ratio between high and low incidence, start of high
incidence period and the proportion of all cases during a year that fall ill within + /- two
weeks of the peak week. Estimates from Model 2 for Sweden

Year

1992 1993 1994 1995 1996 1997 1998
Peak week 32 31 32 34 34 32 31
Ratio 35 40 39 46 86 97 1.7
Starting week 21 20 21 20 17 15 18
% cases in the 5 peak weeks 17 19 19 17 19 21 22

have the highest ratios between the high and low incidence periods.

The proportion of the yearly number of cases occurring within the five peak weeks
varies between years. The results presented in Table 6 suggests that the peak should be
more prominent in 1998 (22 % of the cases falling within the five week period) than in
1992 and 1995 (both 17 %). This can be verified by looking at Figure 9, where it is seen
that the peak in 1998 is indeed more concentrated than in 1992 and 1995.

8.4 Results by county — Geography

In the same way as for the whole country, the peak week, ratio between the high and low
incidence periods, the start of the high incidence period and the density of the peak are
calculated for each of the 21 separate counties. The results are presented in Tables 8-11
in Appendix A.

The time of the peak vary with a range of 13 weeks, between week 27 (Viisternorrland
1993, Blekinge 1996 and Sodermanland 1997) and week 40 (Vésterbotten 1994). The late
peak in week 40 for Viisterbotten is an extreme outlier. In 1994, Visterbotten actually
seem to have had two peaks. The first peak occurred approximately at the same time and
magnitude as in some of the other years (cf. Figure 12). The second peak was around
week 40 and had a larger magnitude than the first peak. This is actually the reason why
the model fitted the second peak. As argued above, possibly there was an outbreak late in
that year. The distribution of the counties’ peak weeks within years is displayed in Figure
14 (top left).
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Figure 14: Distribution of peak week (top left), ratio between highest and lowest incidence
(top right), start of high incidence period (bottom left) and the proportion of cases within
the five peak weeks (bottom right) for all counties per year. The boxes represents the
inter-quartile range and the median. Whiskers represents the minimum and the maximum

values apart from outliers. Circles indicates outliers.

Generally, looking at the distribution of all counties’ peak weeks per year there appear
to be some differences between the years with later peaks in 1995 and 1996. However,
there does not seem to be any sign of a specific trend over the years. A Friedman rank
sum test gives p = 0.072 for testing the hypothesis of no difference in median peak week
between the years.

The ratio between the highest and the lowest incidence differs significantly (p < 0.001)
between the years (cf. Figure 14, top right) with an increasing trend over the years.

The start of the high incidence period does not seem to vary much between the years
(cf. Figure 14, bottom left) and as expected, the Friedman test fails to reject the hypothesis
of no difference between the years (p = 0.9).

Regarding the forth statistic, the proportion of cases occurring within the five peak
weeks, there appear to be a trend towards higher proportions and hence more marked
peaks in later years (cf. Figure 14, bottom left). As for the ratio between the high and

low incidence the difference between the years was strongly significant (p < 0.001).
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If we, instead of looking at the distribution of counties within years, look at the distrib-
ution of the yearly estimates within each county; we end up with similar boxplots but with
21 boxes, each representing the distribution for seven years (not shown). The Friedman
tests in this setting suggest that there is a difference between the counties concerning the
ratio (p = 0.002) and the density of the peak (p < 0.001). On the other hand, there does
not appear to be any large differences between the years concerning the time of the peak
(p = 0.13) and the start of the high incidence period (p = 0.44). There is no clear pattern
regarding which counties are different from others with one exception; the concentration
of the peak is higher for the most northern counties.

Since there might be heterogeneity in the geographical patterns between the years it
is interesting to study the years separately. In Table 7 the relative north-south position of
the counties are related to the estimated statistics within each year by a rank correlation

coefficient.

Table 7: Spearman rank correlation between estimated functions of the parameters (peak
week (peak), ratio between higest and lowest incidence (ratio), start of high incidens period
(start) and proportion of cases within the five peak weeks (conc)) and the relative north-
south (ns) position

Spearman rank correlation
Year p(peak,ns) p(ratio,ns) p(start,ns) p(conc,ns)

1992 0.42 -0.42 0.35 -0.48
1993 0.03 -0.31 -0.48 -0.65
1994 -0.21 -0.74 0.24 -0.52
1995 0.26 -0.34 0.19 -0.22
1996 -0.64 -0.28 -0.40 -0.32
1997 0.24 -0.05 -0.11 0.14
1998 0.24 -0.46 -0.33 -0.64

The only function of the parameters that seem to be somewhat consistent over the years
regarding the correlation with the relative north-south position are the ratio between the
highest and the baseline incidences and the density of the peak. The negative signs of the
correlation coefficients means that northern counties tend to have more marked peaks than
southern counties. The exception is the year 1997 in which the north-south position have
a low positive correlation with the density and basically no correlation with the ratio. The
differences between the years regarding the correlation of the north-south position with
both the time of the peak and the start of the high incidence period explains the results
of the Friedman tests for these statistics. Apparently, some years there appear to be a

positive correlation while other years there seem to be a negative one.
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8.5 Spatial smoothing

The spatial smoothing on the parameter 6, representing the time of the peak incidence,
is done in two ways. The first (Model 3.1) is described in Section 6.2.2 and assumes that
the time of the peak for a given county depends on the time of the peak for the neighbors
of that county. The second (Model 3.2), described in Section 6.2.3, assumes that each
county is affected by a function of all other counties depending on the relative distance
between the county and the other counties. The degree of smoothing, in both models, is

2_in the prior distribution for 4. If the dispersion

represented by a dispersion parameter, o
parameter is large the degree of smoothing is small and the estimate of € is dominated
by the data from the county. On the other hand, if the dispersion parameter is small,
the variance of the prior distribution will be small and hence the estimate of 6 will be
dominated by the other counties’ 8 values.

2 i.e., the dispersion is estimated from

Model 3.1 is first run with no constraint on o
the data. The estimate is 6% = 0.0015. It might be difficult to interpret this value; but in
order to see the effect of the smoothing, the estimates of # in this model is plotted against
the estimates of # in the model without smoothing (Model 2, cf. Section 6) in Figure 15

(left).

Model 3.1: 62 = 0.001 Model 3.1: 6% = 0.01 Model 3.2
E’ 0.7 0.7 0.7
<
©
o
£0.6 0.6 0.6
2}
=
s
505 0.5 0.5
o
o
1S
£04 0.4 0.4
= ,
04 05 06 07 04 05 06 07 04 05 06 07
6 in model without smoothing 6 in model without smoothing 6 in model without smoothing

Figure 15: The effect of smoothing on the parameter 6. FEstimates from Model 3.1 with
0% = 0.001 (left), Model 3.1 with 0® = 0.01 (middle) and Model 3.2 (right) against the
estimates from the model without smoothing (Model 2).

The degree of smoothing appears to be quite large. The estimates from the smoothed
model is much less spread than the estimates from the unsmoothed model. In fact, the
variance of the estimated s is reduced by 73 % for Model 3.1 as compared with the
unsmoothed Model 2. Also, the largest part of the variance for the smoothed model

can be explained by differences between years. Taking that into account the within year
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variance is reduced by 96 %.
The same model was also run with a fixed value of 0. We chose to fix the dispersion

to 02 = 0.01, which is about seven times larger than when o

was estimated from the data,
in order to show the effect of reducing the degree of smoothing. The result of this can be
seen in Figure 15 (middle). The estimates are still less spread than in the unsmoothed
model but not as much as for the unconstrained model.

When the same plot is done for the model with weights based on distances between
the counties (Model 3.2) (cf. Figure 15 (right)) we end up with almost the same effect of
the smoothing as for the model with smoothing according to the neighbors (Model 3.1).
In fact, by plotting the estimates from Model 3.2 against the estimates from Model 3.1 we

see that they actually are very similar (cf. Figure 16).
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Figure 16: Estimates of 6 from Model 3.2 against estimates of 6 from Model 3.1. The
two outliers are Norrbotten and Visterbotten, both in year 1994, for which the two models

smooth the estimated time for peak incidence by a different amount.

Wakefield et al. (2001) states that using neighbors is reasonable if all regions are of
similar size and arranged in a regular pattern. Our results suggest that the smoothing for
the time of the peak, using neighbors works as well as using the distances between the
counties, even though the regions in Sweden neither are arranged in a regular pattern nor

are of the same size.
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9 Discussion

Spatial and temporal modelling of disease incidence can be of great importance for a better
understanding of the aetiology of a disease. Some diseases have a more or less stable
seasonal pattern with alternating high and low incidence periods. This is especially true
for many of the infectious diseases. Commonly, there is a yearly cycle (e.g., campylobacter
infection, salmonella infection or influenza) but other cycle lengths have been observed.
One famous example of the latter is the incidence of measles in Great Britain before the
start of vaccination, with large outbreaks every fourth year (cf. e.g., Anderson & May
(1991)).

Evidently, there is a large amount of randomness in observed data. To be able to
study the seasonal patterns and make comparisons, e.g., between different geographical
areas or between different periods of time, it is helpful to smooth the data in some way. One
approach is to use a non-parametric method such as a moving average or a kernel smoother.
For instance, Nylén et al. (2002) used a kernel smoother in their study. Non-parametric
methods are very straightforward to use but lack the interpretability and flexibility of
parametric models. The advantage of a parametric model is that, at best, one can represent
disease specific patterns in the incidence with a small number of parameters.

We have introduced a parametric model accounting for the special aspects of diseases
with the kind of seasonal pattern discussed above. The model incorporates as few as four
parameters describing the functional form of the incidence curve within each cycle (e.g.,
year). These four parameters together with the functional form describing the incidence
patterns make the model very flexible. There are of course room for improvement of the
model to get an even better fit. The cosine part of the model makes the assumption that
the high incidence period is symmetric around the peak week. Nevertheless, some of our
data on campylobacter infections suggest that there might be a slower decline than incline
around the peak incidence in some years for some counties. Therefore, another function
taking this into account might result in a better fit. Figure 5 shows how this asymmetry
might look. However, when data are aggregated over different areas, as in that case,
the asymmetry might as well have been caused by the aggregation of several symmetric
incidence curves peaking at different times.

We have also made the assumption of independence between years. In a previous
report (Lindbéck & Svensson (2001)) another parameterisation of the model was tried by
splitting the parameters into two parts; one that represented the average over the years
and another that represented a random effect for each year. On the other hand, such
parameterisation would not necessarily lead to a better model. In many situations it is

more appropriate to assume complete independence between years.
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This study was partially initiated due to an increasing interest in the spread of campy-
lobacter infections. There is a need to understand the seasonal patterns seen in the
observed data in order to further investigate risk factors for the disease. It is likely that
the spectrum of risk factors is different during different times of the year and possibly in
different geographical areas. By understanding the geographical and temporal patterns of
the incidence it is maybe possible to improve the design of studies performed to investigate
risk factors for sporadic cases of campylobacter infections.

The model fitted the data well. The yearly pattern of campylobacter infections is rather
stable, even for areas with few cases and in spite of a possibly substantial underreporting.
To make sure that the model was flexible enough to detect a peak during a period far
from the expected, i.e., in late summer, we moved some of the data from late summer
to early spring. The model succeeded in finding this early peak. This indicates that the
model is not too constrained and that even when data are sparse there is a stable structure
regarding the incidence of campylobacter infections with a peak in late summer.

Modelling disease incidence data often assumes rather simple models either based
on the Poisson (aggregated data) or the binomial distribution (individual data). Often
these distributional assumptions are valid or at least approximately so. However, in some
situations the data tend to be overdispersed relative the assumed distribution leading to
underestimation of the variance. This is perhaps even more common for infectious diseases
where clustering of cases might occur easily by secondary infections. When we looked at
the aggregated data for Sweden there were convincing evidence of overdispersion when we
fitted the model assuming Poisson variation. To overcome the problem of overdispersion
we reformulated the model to include a dispersion parameter, assuming Negative binomial
variation. There appeared to be no substantial bias in parameter estimates or estimated
incidence when using the Poisson model instead of the Negative binomial model but the
variance was clearly underestimated. These results stress the importance to check the
model assumptions regarding overdispersion in the modelling process of these kinds of
data.

We have established a model to describe the incidence of campylobacter infections but
no attempt have yet been made to link the different properties of the model to external
factors. It is rather straightforward to incorporate other information in the model. County
wise information, such as the proportion of inhabitants living in rural areas or information
about the water supply, can easily be added as a county factor. Time-specific information
such as the yearly (or monthly/weekly) incidence of campylobacter infections acquired
abroad can also easily be added. It would also be interesting to add information about
temperature and precipitation to see to which extent the climate influences the spread of

Campylobacter. Climate data could thus be entered as a factor varying both in time and
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space.

The number of inhabitants differ between the counties in Sweden. As a consequence
of this, variances also differs between counties. It is likely that extreme observations or
extreme parameter estimates will occur in smaller areas (i.e., areas with fewer inhabi-
tants) purely due to chance. It is possible to smooth the estimates by assuming spatial
dependencies. We studied the effect of spatial smoothing on the parameter describing the
time of the peak incidence. When we let the degree of smoothing be estimated from the
data, the variance between the counties’ estimates was substantially reduced. The results
implied that all estimates were more or less smoothed towards a global mean, although the
model assumed local smoothing. We tried two different kinds of spatial dependence when
we performed the smoothing. The first assumed that each county’s parameter value was
smoothed towards the mean of the neighboring counties’ parameter values. Two counties
were assumed to be neighbors if they shared a common border. The second assumed
smoothing towards a weighted mean of all other counties’ parameter values where the
weights were defined by the distance to each respective county. Both these methods gave
basically the same results. Dividing Sweden by counties results in relatively few sub-areas
(only 21). With too few areas it is difficult to achieve a genuine local smoothing. Smooth-
ing one county will have effects on a relatively large proportion of the other counties as
compared with a situation with more areas. This might lead to a situation where all
counties are having a relatively large effect on each other and consequently all counties
are smoothed towards the same value.

Estimations of the parameters in the models were done within a Bayesian setting
using Markov chain Monte Carlo simulation. In order to carry out the simulations, prior
distributions had to be specified for all parameters. The objective was to make the prior
distributions as uninformative as possible to have the parameter estimates dominated by
the data. Due to the complexity of the model, making the prior distributions too vague
resulted in problems in the updating process. The somewhat informative priors, for the
parameters 7 and k, is thus a weakness in this study. Nevertheless, by looking at the fit of
the models and by trying different priors and starting values in the simulation process we
believe that the estimates are not too much affected by the priors and that the conclusions
drawn should be valid.

We have, in this report, only applied the models described on campylobacter infection
data. Moreover, Model 1, the Poisson model, has also been fitted to weekly mortality data

to evaluate excess mortality in relation to influenza epidemics in Sweden (cf. Figure 17).
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Figure 17: Excess mortality due to influenza in Sweden week 40 1993 to week 39 1998.
Solid thin line represents the number of deaths per week. Bold line represents the estimated
weekly mean number of deaths during weeks with no influenza diagnoses. Dashed line

represents the weekly number of laboratory diagnoses of influenza.

On the side of that study, an informal comparison was done between our model and
another model used to describe the variation in mortality in Scotland (cf. Gemmel et al.
(2000)). By including the parameter k, allowing for both shorter and longer peaks, our
model seemed to give a better fit to the data. However, as stated above, no formal
comparison was done.

A conclusion from this study is that it is indeed possible to derive interesting infor-
mation from the reported data with its known shortcomings. Regarding the data on
campylobacter infections it is believed that there is possibly a severe underreporting. In
spite of this, there is still a very strong structure in the data. The model has also suc-
cessfully been fitted to Influenza data but it should be possible to fit the model to data
regarding other diseases with a similar structure of the incidence. Of course, beware of
applying the model to another disease without thinking of the special characteristics of

that disease.
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A Interesting parameters

Table §: Peak week by county

County 1992 1993 1994 1995 1996 1997 1998

1 Stockholm 29 34 32 35 34 34 32
2 Uppsala 31 36 31 30 36 34 32
3 Sodermanland 32 31 28 32 33 27 36
4 Ostergotland 33 33 33 32 32 36 28
5 Jonkoping 32 30 30 35 34 31 31
6 Kronoberg 34 33 35 36 32 33 32
7 Kalmar 35 31 31 31 31 28 30
8 Gotland 33 28 30 30 30 33 31
9 Blekinge 29 33 31 33 27 34 33
10 Skane 36 29 30 32 32 32 33
11 Halland 29 32 36 39 31 32 32
12 Vistra Gotaland 35 31 31 34 36 32 31
13 Viarmland 29 32 33 36 33 33 31
14 Orebro 32 28 30 35 30 31 34
15 Vistmanland 28 29 30 34 33 31 28
16 Dalarna 32 33 33 31 37 28 32
17 Géavleborg 30 30 31 31 31 32 31
18 Visternorrland 30 27 32 34 34 31 30
19 Jamtland 31 29 31 30 34 31 31
20 Visterbotten 30 31 40 34 35 31 31
21 Norrbotten 30 32 34 32 36 32 32
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Table 9: Ratio between high and low incidence by county

County 1992 1993 1994 1995 1996 1997 1998

1 Stockholm 6.0 3.3 3.8 6.6 9.2 112 114
2 Uppsala 3.6 5.0 9.1 10.6 6.2 6.9 7.4
3 Sodermanland 10.3  11.3 6.4 9.1 109 9.3 14.2
4 Ostergotland 2.8 8.5 6.2 3.7 88 4.4 5.1
5 Jonkoping 3.6 6.4 3.4 5.4 7.0 8.8 6.7
6 Kronoberg 5.0 7.1 4.9 5.1 16.7 121 14.1
7 Kalmar 3.8 3.5 4.7 5.7 6.3 6.7 6.5
8 Gotland 6.0 13.6 4.4 8.5 5.4 7.6 9.1
9 Blekinge 10.5 6.5 3.3 124 8.2 8.3 159
10  Skane 3.8 4.4 4.6 2.6 5.2 9.4 5.9
11 Halland 5.0 3.3 5.0 9.8 9.7 8.3 6.7
12 Vistra Gotaland 3.1 4.6 3.4 4.3 104 124 9.2
13 Viarmland 12.3 4.7 6.1 4.0 6.1 14.6 24.3
14 Orebro 6.3 93 43 48 6.8 56 15.1
15  Vistmanland 5.2 5.5 7.6 70 142 194 21.2
16 Dalarna 5.5 6.1 6.9 7.3 224 127 11.2
17  Gévleborg 10.8 3.9 5.9 8.7 186 10.0 10.6
18 Visternorrland 14.6 6.6 12.1 8.7 134 94 12.1
19 Jamtland 81 10.8 204 104 11.8 3.9 143
20 Visterbotten 5.7 7.7 6.9 10.9 5.9 6.4 129
21  Norrbotten 9.5 13.3 8.6 7.8 8.5 10.2 254
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Table 10: Start of high incidence period by county

County 1992 1993 1994 1995 1996 1997 1998

1 Stockholm 19 20 22 21 15 16 12
2 Uppsala 19 18 5 5 20 20 18
3 Sodermanland 15 15 14 12 14 16 20
4 Ostergotland 18 15 17 17 20 19 19
5 Jonkoping 19 18 16 23 18 16 18
6 Kronoberg 21 17 21 13 15 15 13
7 Kalmar 21 6 20 17 15 20 20
8 Gotland 16 9 21 19 23 19 16
9 Blekinge 18 8 22 13 18 22 14
10 Skane 21 18 19 21 19 18 21
11 Halland 14 24 24 18 11 18 20
12 Vistra Gotaland 25 21 20 22 16 15 16
13 Virmland 15 20 25 27 19 11 16
14 Orebro 12 15 15 22 18 17T 16
15 Vistmanland 17 21 19 18 16 13 16
16 Dalarna 16 19 20 14 14 10 20
17  Gévleborg 13 22 19 12 14 23 21
18 Visternorrland 16 18 20 22 23 19 22
19 Jiamtland 19 20 13 8 23 18 23
20 Visterbotten 15 23 31 18 23 19 22
21  Norrbotten 18 22 17 14 25 17 17
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Table 11: Proportion cases within +/- 2 weeks of the peak week during each year by county

County 1992 1993 1994 1995 1996 1997 1998
1 Stockholm 24 15 19 20 19 21 19
2 Uppsala 16 15 12 15 19 21 22
3 Sodermanland 22 23 20 18 19 24 23
4 Ostergstland 13 19 18 15 26 16 22
5 Jonkoping 16 23 15 20 19 22 21
6 Kronoberg 18 19 18 13 24 22 21
7 Kalmar 16 11 20 20 19 28 26
8 Gotland 18 21 21 27 26 21 22
9 Blekinge 28 13 17 20 28 25 22
10 Skane 15 19 20 14 19 24 22
11 Halland 17 18 19 17 18 23 22
12 Vistra Gotaland 16 20 17 18 18 23 23
13 Vérmland 26 19 27 19 20 19 32
14 Orebro 6 24 16 18 23 19 23
15 Vistmanland 21 25 26 19 23 25 34
16 Dalarna 18 20 22 19 18 21 28
17  Gévleborg 22 20 21 18 26 31 32
18  Visternorrland 29 24 31 26 31 26 37
19 Jamtland 25 33 26 17 30 16 39
20 Visterbotten 18 28 25 23 21 22 35
21 Norrbotten 25 35 20 19 26 24 31
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B Weight matrix for Model 3.1
Table 12: Weight matriz for Model 3.1.
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 Stockholm - 11 0 0 0 0O 1 0 0O O O O O O 0 0 O 0 0 O
2 Uppsala i -1 0 0 0O O O 0 o0 O 0O o0 O 1 0 1 0 0 0 0
3 Sodermanland 1t 1 - 1 0 0 0O 1 0 O o o0 o0 1 1 O O 0 0 0 0
4 Ostergstland o 0 1 -1 0 1 1 0 0 0 1 0 1 0 0 0O 0 0 0 O
5  Jonkoping o 60 o0 1 - 1 1 0 0 0O 1 1 0 0O 0 0 0 0 0 0 O
6  Kronoberg o 0 o o 1 - 1 0 1 1 1 0 0 0O 0 0 0O 0O 0 0 O
7  Kalmar o 60 0 1 1 1 - 1 1 0 0 0 0 0 0 0 0 0 0 0 O
8  Gotland 160 1 1 0 0 1 - 0 0O 0O 0O O 0O 0O 0 0O O 0 0 O
9  Blekinge o 0 o o o0 1 1 0 - 1 0 0O 0O O 0O 0O O 0O 0 0 O
10 Skane o 0 o o o0 1 0 o0 1 - 1 0 0 0O 0 0o 0O 0 0 0 O
11  Halland o 60 o o0 1 1 0 0 0O 1 - 1 0 0O 0 0 0 0 0 0 O
12 Vistra Gotaland 0 0 0 1 1 o0 0 0 0 o0 1 - 1 1 0 0O 0 0O 0O 0 O
13 Virmland o 0 o o o o0 o0 o0 o0 o0 0 1 - 1 0 1 0 0 0 0 O
14 Orebro o 0 1 1 0 0 0 o0 o0 001 1 - 1 1 0 0 0 0 O
15  Vistmanland o 1 1 0 o0 0O 0O 0O o0 OO0 o0 01 - 1 1 0 0 0 o0
16  Dalarna o 0 o o o o0 o0 o0 o0 0O o0 o0 1 1 1 - 1 0 1 0 O
17 Giévleborg o 1 0 0 o0 O 0O o0 o0 o0 o0 o0 o0 0 1 1 - 1 1 0 0
18  Visternorrland o o0 o0 o o o o o o0 o0 o o o0 o o0 o0 1 - 1 1 0
19 Jamtland o 0 o o o o0 o0 o0 o0 o0 o0 o0 o0 o0 o0 1 1 1 - 1 0
20 Visterbotten o 0 o o o o0 o0 o0 o0 o0 o0 o o0 o0 o0 o0 o0 1 1 - 1
21  Norrbotten o 0 o o o0 o0 o0 o o o0 o o o0 o o o 0 0 0 1 -



C Model 2 fitted to data — Individual counties
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