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Abstract

The first passage time of a random walk to a barrier is of great impor-
tance in many areas, such as insurance, finance and sequential analysis.
The barrier used in these areas is usually constant or slowly varying. Here,
the barrier cb(n/c) is convex, where c is a scale parameter and n is time.
It is shown by large deviation techniques that the limit distribution of
the first passage time decays exponentially in c. The exponential part is
multiplied by a slowly changing function which is computed by means of
a tilt of measure. Under the tilted measure, which changes the drift, it is
proved that: The limit distribution of the overshoot is distributed as an
overshoot over a linear barrier. Properly normalized the stopping time is
shown to be asymptotically normally distributed. The overshoot and the
asymptotic normal part are asymptotically independent. The combina-
tion of these three building blocks gives the slowly changing constant.

Mathematics Subject Classification 2000: 60F10, 60G50,60G40,62L10
Key words and phrases: First passage time, stopping time, large deviation, rate
function, sequential analysis

1 Introduction

A sum Sn, that starts in zero, of independent, identically distributed random
variables makes the unlikely event that it hits a distant upper convex barrier
cb(n/c). What is the asymptotic distribution of the stopping time, when the
scale parameter c goes to infinity?

Early on in insurance, Cramér [3] and Lundberg [11] studied the probability
of ever hitting a constant barrier, a prospect which meant ruin. The probability
of ruin (also before a finite time) has been analyzed by the use of many different
techniques; two dimensional renewal theory Höglund [10], ladder variables von
Bahr [1], integral equation Segerdahl [13] and martingale techniques Grandell
[6]. More recently ruin probability has become an interest in finance, when
handling credit risk in a loan or bond portfolio Dembo, Deuschel and Duffie [5].

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-
mail: olah@math.su.se.



Tools to estimate the first passage time to a convex barrier 2

We will use large deviation techniques which loosely state that P (Sn/n ≈
x) ≈ exp(−nI(x)) for x > µ, where µ is the mean and I(x) is called the rate
function. Hitting the barrier at the stopping time N implies a drift SN/N ≈
(c/N)b(N/c) and a rate I[(c/N)b(N/c)]. Therefore we expect an estimate of

P (N/c ≈ s) ≈ K(c) exp(−csI(b(s)/s)) = K(c) exp(−cR(s)),

where R(s) = sI(b(s)/s) and K(c) is slowly changing compared to the ex-
ponential part. When the scale parameter is large, the time T , defined by
R(T ) = infs R(s), will dominate, such that

P (N/c < ∞) ≈
∑

s

K(c) exp(−cR(s)) ≈ K(c) exp(−cR(T ))).

Furthermore, for t ≥ T , by the same type of argument, we have P (N/c < t) ≈
K(c) exp(−cR(T )). When t < T then the dominating time is t and P (N/c <
t) ≈ K(c) exp[−cR(t)].

Martin-Löf [12] studied t ≥ T , using Wald’s identity and large deviation
techniques. We will use a more probabilistic approach and study in more depth
the properties in both t ≥ T and t < T .

The Esscher transform tilts the true distribution P to a distribution Pθ, so
that the drift changes. The drift is changed to the tilted drift b(T )/T , by a
appropriate choice of θ. The variance of the increments, σ2, is unchanged by
the tilt of measure. Then we use Anscombe’s theorem, an idea borrowed from
Gut [7], to prove,

lim
c→∞ c−1/2(N − cT ) Pθ= Y ∼ N(0, a2),

where a2 = σ2T 3(b(T )− b′(T )T )−2. Furthermore, the overshoot is proved to be
asymptotically independent of Y and converges in distribution to an overshoot
over a linear barrier. In sequential analysis you find similar results of asymptotic
normality, distribution of the overshoot and asymptotic independence for per-
turbed random walks, or for a random walk passing a slowly changing barrier,
Gut [7] and Siegmund [14].

We want to estimate P (N ≤ cT +c1/2y), and therefore introduce the indica-
tor function 1(N ≤ cT + c1/2y) and write Z = SN − cb(N/c) for the overshoot.
After expressing the probability as an expectation of the indicator function,
tilting the distribution, Taylor expanding the barrier and use the asymptotic
independence we get,

ecR(T )P (N ≤ cT +c1/2y) = Eθ

[
e−θZ

]
Eθ

[
1(N ≤ cT + c1/2y)e−θ

b′′(T )
2c (N−cT )2

]
.

The quadratic part 0.5c−1b′′(T )(N−cT )2 is incorporated by a change of variance
of the limiting normal random variable Y , to η−2 = a−2 + b′′(T )θ. Combining
this, the asymptotic normality and the convergence in distribution to a linear
overshoot gives that, for some real y

lim
c→∞ ecR(T )P (N ≤ cT +

√
cy) =

η

a
Eθ[e−θZl ]Φ(y/η),

where Zl is the overshoot over the linear barrier cb(T ) + b′(T )(n − cT ).
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In the finite time horizon case, when t < T asymptotic normality, weak
convergence of the distribution of the overshoot to the distribution of the over-
shoot over a linear barrier and asymptotic independence are also proved under
the tilted distribution. The tilt of the distribution is however not the same as
before, the drift is now changed to b(t)/t, by another choice of θ.

The slowly changing function is in the finite time horizon case not that easy
to compute. It is only made likely that

K(c) ≈ Eθ

[
e−θZl

]
(
1 − eR′(t)

)√
2πca

,

where a2 = σ2t3(b(t) − b′(t)t)−2. Thus

lim
c→∞ c1/2ecR(t)P (N ≤ ct) =

Eθ

[
e−θZl

]
(
1 − eR′(t)

)√
2πa

.

This conjecture is proven right in Hammarlid [8]. It is probably possible to make
a unified formulation of K(c) for the two cases t < T and t ≥ T as Höglund did
in the case of a sum of independent random variables [9].

The outline of the article is as follows. Section 2 gives a brief introduction to
large deviations and the properties of the rate function. The properties are then
used to derive the equations determining the dominating point of the barrier
and the exponential rate of decrease and its properties. In Section 3 the tilting
of a distribution and its implications for the rate function and convergence of the
normalized stopping time are presented. All the results regarding asymptotic
normality, independence and the distribution of the overshoot are proved in
Section 4. A formal proof of the main theorem is given in Section 5.

2 Large deviations and a first passage time es-
timate

We will start to introduce the large deviation tools needed. Let Sn =
∑n

i=1 Xi,
where Xi are independent identically distributed with E[Xi] = µ. It is also
assumed that the cumulant function g(θ) = log(E[eθXi ]) exists for θ in some
open set. Then, for b > µ and θ > 0,

P

(
Sn

n
> b

)
=

∫
s>nb

dPSn(s) ≤ e−bnθ

∫
s>nb

eθsdPSn(s). (1)

If the domain of integration, of the integral on the right hand side, is extended
to the real line, then P (Sn > nb) ≤ exp[−n(bθ − g(θ))]. To make the best
possible approximation we minimize this over θ and define a rate function I(x) =
supθ(xθ − g(θ)) to get

P (Sn > nb) ≤ exp
(
−n sup

θ
(bθ − g(θ))

)
= exp(−nI(b)). (2)

This bound is called the Chernoff bound. There is also a lower bound such that
for any convex set B,

lim
n→∞ n−1 log

(
P

(
Sn

n
∈ B

))
= − inf

x∈B
I(x). (3)
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This result is usually stated as two separate limit theorems, one upper bound
for closed sets, and one lower bound for open sets. It is only when working with
nice sets, such as intervals and convex sets, that it is guaranteed that the upper
bound equals the lower bound. We will work with nice sets. The rate function
has some well known properties:

I(x) ≥ 0, ∀x and I(µ) = 0,
I(x) = θx − g(θ) where g′(θ) = x,
I ′(x) = θ and θ′ = 1/g′′(θ).

(4)

All of these properties follow from manipulations of the definition of rate func-
tion, see for example Bucklew [2] or Dembo and Zeitouni [4].

We will now continue by specifying the problem mathematically and see
how large deviations fit in. The distant barrier that the process tries to pass is
cb(n/c), where c is a scale parameter tending to infinity. The barrier is convex,
three times continuously differentiable and satisfying b(0) > 0.

Definition 1 The time when the process Sn for the first time passes or hits
cb(n/c) is denoted by N = inf{n : Sn ≥ cb(n/c)}.
There is a counterpart to the rate function of a sum, a Cramér-Lundberg type
of constant, for the stopping time.

Lemma 1 Let µ = E[Xi] and assume that µs < b(s) for all s. Then the
function R(s) = sI(b(s)/s) is convex and it attains its minimum at T , which is
determined by

g(θ) = b′(T )θ and g′(θ) = b(T )/T. (5)

The function R(s) = θb(s) − g(θ)s, where g′(θ) = b(s)/s so that

lim
c→∞ c−1 log (P (N ≤ ct)) =

{ −R(t) for t < T
−R(T ) for t ≥ T.

(6)

Remark: In the case t ≥ T it is possible to write R(T ) = θ(b(T )−Tb′(T )) =
T (θg′(θ) − g(θ)).

Remark: When c is large we write that P (N ≤ ct) ≈ K(c) exp(−cR(t)), where
K(c) is some slowly changing function in comparison to the exponential part.

Proof. The proof is carried out in two steps. First we show that c−1 log[P (N ≤
ct)] has an upper and a lower bound that in the limit are equal. Then the first
and second order derivatives of R(s) are computed, where R′′(s) ≥ 0 and the
optimal time T is the unique solution to R′(s) = 0.

The probability we want to estimate is

P (N ≤ ct) = P
(
∪[ct]

n=1{Sn ≥ cb(n/c)}
)

,

where [·] denotes the integer part. This probability has an upper bound, derived
from the Chernoff’s bound (2), since (c/n)b(n/c) > µ for all n,

P (Sn ≥ cb(n/c)) = P (Sn/n ≥ (c/n)b(n/c)) ≤ exp (−c(n/c)I[(c/n)b(n/c)]) .
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By Boole’s inequality,

P
(
∪[ct]

n=1{Sn ≥ cb(n/c)}
)
≤

[ct]∑
n=1

P (Sn ≥ cb(n/c)) ≤
[ct]∑
n=1

e−c(n/c)I[(c/n)b(n/c)].

Only the largest probability in the sum on the right will contribute to the total
probability. Hence if s = n/c then,

P
(
∪[ct]

n=1Sn ≥ cb(n/c)
)
≤ ct exp

(
−c inf

0≤s≤t
sI(b(s)/s)

)
. (7)

Let us turn to the lower bound of P (N ≤ ct). It is always true that for any
n ≤ ct,

P

(
Sn

n
≥ c

n
b(n/c)

)
≤ P

(
∪[ct]

n=1{Sn ≥ cb(n/c)}
)

. (8)

Then the lower bound assures that

−sI(b(s)/s) ≤ lim
c→∞ c−1 log

(
P

(
Sn

n
≥ c

n
b(n/c)

))
, s = n/c. (9)

The right choice of s is to chose the time that maximizes the probability on the
left hand side of (9), which is the dominating point in (7). Take the logarithm
on both sides of (7) and divide by c, then in the limit in combination with the
lower bound (9) we have that,

lim
c→∞ c−1 log (P (N ≤ ct)) = − inf

0≤s≤t
sI(b(s)/s) = − inf

0≤s≤t
R(s).

The second step of the proof is to compute the first and second order deriva-
tive of R(s) in order to find the unique optimal point. The first order derivative
is R′(s) = I(b(s)/s) + I ′(b(s)/s)[b′(s)s − b(s)]/s, which we simplified by the
properties of the rate function (4) to

R′(s) = θb′(s) − g(θ). (10)

Without restrictions on s the minimum of R(s) is attained when R′(s) = 0, and
hence by (10) we have that b′(T )θ = g(θ), where g′(θ) = b(T )/T.

The second order derivative of R(s) is by (10), R′′(s) = d
ds(θb′(s) − g(θ)).

Use the chain rule where θ′ = 1/g′′(θ) and exchange g′(θ) = b(s)/s to get

R′′(s) =
(b′(s)s − b(s))2

g′′(θ)s3
+ θb′′(s). (11)

The barrier and the cumulant function are convex and hence b′′(s) ≥ 0 for
all s and g′′(θ) ≥ 0 for all θ in the definition set. We know that g′(θ) is non-
decreasing since g′′(θ) ≥ 0 and that g′(0) = µ. This implies that the θ that
solves g′(θ) = b(s)/s must be greater than zero when b(s)/s > µ and less than
zero when b(s)/s < µ. Therefore, since b(s)/s > µ for all s and s > 0 have that
R′′(s) ≥ 0.

If t < T then the optimal solution is not feasible, and the solution has
to be on the boundary. The function R(s) is decreasing in s ≤ T so that
infs≤t(R(s)) = R(t). �
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Remark: Note if s = T in equation (11), then by the remark under Lemma 1,

R′′(T ) =
R(T )2

g′′(θ)θ2T 3
+ θb′′(T ). (12)

Every point s > T ∗ is on the ’shadow side’ where T ∗ solves b′(s) = b(s)/s
and T ∗ = ∞ is allowed. We call it the shadow side because every point on that
side cannot be reached by a straight line from zero without passing the barrier
along the way. The barrier is convex and therefore

b(s)/s > b′(s), for every s ≤ T ∗. (13)

When the barrier is crossed by the drift line the function R(s) is not convex
anymore.

Lemma 2 Assume that the convex barrier b(s) is three times continuously dif-
ferentiable, b(0) > 0 and that there is a T that solves µT = b(T ). Then
R(T ) = R′(T ) = 0 and the function R(s) is not convex. More precisely,
R′′(s) ≥ 0 for all s ≤ T and R′′(T ∗) ≤ 0.

Proof. The minimum of I(µ) = 0, by the properties of the rate function (4) and
the assumption µT = b(T ). Therefore R(T ) = TI(b(T )/T ) = 0 and θ = 0 solves
g′(θ) = b(T )/T which by (10) gives R′(T ) = 0. When s ≤ T then b(s)/s ≥ µ,
which implies that θ ≥ 0 and therefore R′′(s) ≥ 0, see the discussion under
equation (11). On the other hand θ < 0 when g′(θ) = b(T ∗)/T ∗ < µ and
R′′(T ∗) = θb′′(T ∗) ≤ 0. Hence the function R(s) is not convex. �

Remark: What is the relationship of the rate function between two points
u < T ∗ < v that are the crossing times of a line from origin to the barrier b(s)?
The relation is linear, because the slope is the same, that is b(v)/v = b(u)/u
and

vI(b(v)/v) = uI

(
b(u)
u

)
+ (v − u)I

(
b(u)
u

)
.

If b(s)/s → η when s → ∞ and inf{s|ηs = b(s)/s} then asymptotically the
function R(s) will grow linearly sI(b(s)/s) = uI(η) + (s − u)I(η). By this, one
realizes that T ≤ T ∗.

3 Tilted distribution

One important tool is the tilted distribution, sometimes called an exponential
change of measure or the Esscher transform, see for example Bucklew [2] and
Martin-Löf [12]. For every θ in the open definition set, a tilting of a distribution
F (x) is defined as, dFθ(x) = exp(θx− g(θ))dF (x). The tilted expectation is de-
noted Eθ[·] and the tilted cumulant function gθ(γ) = Eθ[exp(γX)]. It can easily
be shown that gθ(γ) = g(γ + θ) − g(θ). The expected value and variance under
the tilted measure is therefore derived by the first and second order derivative
of the tilted cumulant at zero,

Eθ[X ] = g′(θ) and V arθ(X) = g′′(θ). (14)

The tilted rate function is Iθ(x) = γx − gθ(γ), where γ solves g′
θ(γ) = x and

Iθ(g′(θ)) = 0 since g′(θ) = Eθ[X ]. Also I ′θ(g
′(θ)) = 0, since I ′

θ(x) = γ according
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to the properties of the rate function (4) and that γ = 0 solves g′
θ(γ) = g′(θ) =

Eθ[X ] = µθ.

Lemma 3 Fix ε > 0 and let θ solve g′(θ) = b(t)/t. The function Rθ(s) =
sIθ(b(s)/s), is not generally convex, but Rθ(t) = 0, R′

θ(t) = 0 and R′′
θ (t) ≥ 0.

Furthermore, there is a constant d > 0 such that, Rθ(t ± ε) ≤ dε2. Especially

Pθ(Sn ≥ cb(n/c), for some n ≤ c(t − ε)) ≤ cte−cdε2
,

Pθ(Sn < cb(n/c), for all n ≤ c(t + ε)) ≤ e−cdε2
.

(15)

Remark: The most important case is when t = T .

Proof. The tilted drift is µθ = g′(θ) = b(t)/t, which crosses the barrier at
time t. The minimum Rθ(t) = R′

θ(t) = 0 and that Rθ(t) is not generally
convex but R′′

θ (t) ≥ 0, follows by Lemma 2. Therefore, the Taylor expansion of
Rθ(t ± ε) = R′′

θ (ξ)ε2/2, where |ξ − t| ≤ ε. Chose therefore d ≤ R′′
θ (s)/2, for all

|s − t| ≤ ε.
By the same large deviation estimates as before and Boole’s inequality,

Pθ(Sn ≥ cb(n/c), for some n ≤ c(t − ε)) ≤ ct exp (−c inf0≤s≤t−ε sIθ(b(s)/s)) ,
Pθ(Sn < cb(n/c), for all n ≤ c(t + ε)) ≤ exp (−c infs≥t+ε sIθ(b(s)/s)) .

The definition of Rθ(s) = sIθ(b(s)/s) and the Taylor expansion give equation
(15). �

Lemma 4 Fix ε > 0 and let γ > 0 and α > 0 such that α < 2γ. Then under
the tilted distribution there is a d > 0 so that,

Pθ

(∣∣∣∣ (N − ct)α

cγ

∣∣∣∣ > ε

)
≤ 2ct exp

(
−c2γ/α−1dε2/α

)
,

where g′(θ) = b(t)/t. Also, c−γ(N − ct)α a.s−→ 0, as c → ∞.

Proof. The set {ω : |N/c− t| > ε} is the union of the two disjoint sets A′ = {ω :
Sn ≥ cb(n/c), for some n ≤ c(t − ε)} and A′′ = {ω : Sn < cb(n/c), for all n ≤
c(t + ε)}, hence Pθ(|N/c − t| > ε) = Pθ(A′) + Pθ(A′′). Therefore, by the large
deviation estimates of these probabilities in Lemma 3, we have,

Pθ(|N/c − t| > ε) ≤ 2cte−cdε2
.

Take ε > 0, then by the last equation,

Pθ

(∣∣∣∣(N − ct)α

cγ

∣∣∣∣ > ε

)
= Pθ

(∣∣∣∣N − ct

c

∣∣∣∣ > cγ/α−1ε1/α

)
≤ 2ct exp

(
−c2γ/α−1dε2/α

)
.

If 2γ > α then ct exp
(−dε2/αc2γ/α−1

) → 0 as c goes to infinity. Choose ε = c−η

where η > 0 fulfills γ − η > α/2, then

∞∑
c=1

Pθ

(∣∣∣∣(N − ct)α

cγ

∣∣∣∣ >
1
cη

)
≤ 2

∞∑
c=1

ct exp
(
−c2(γ−η)/α−1d

)
< ∞.

Borel-Cantelli lemma states that the convergence is almost sure. �
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Corollary 1 Fix ε. There is a constant d > 0 such that under the tilted dis-
tribution Pθ(|N − cT | > cε) ≤ 2cte−cdε2

, where g′(θ) = b(T )/T and N/c
a.s−→

T, as c → ∞.

Proof. This is a direct consequence of Lemma 4 where t = T , γ = 1 and α = 1. �

We will need that the overshoot, defined as the difference between the
stopped random walk and the barrier, converges to zero when scaled by c−α.
The overshoot is always, however, less than or equal to the last increment.

Lemma 5 Let α > 0 then under the tilted distribution

XN

cα

a.s−→ 0, as c → ∞.

Proof. Take an ε > 0 and a γ > 0 such that gθ(γ) < ∞ and gθ(−γ) < ∞. Split
the probability Pθ (|Xn| > εnα) = Pθ (Xn > εnα)+ Pθ(Xn < −εnα) and use on
each of these probabilities the technique deriving the Chernoff bound, equation
(2), to get

Pθ (|Xn| > εnα) ≤
(
egθ(γ) + egθ(−γ)

)
e−nαγε.

Let ε = n−α/2 and sum for all n

∞∑
n=1

Pθ(|Xn| > nα/2) ≤
(
egθ(γ) + egθ(−γ)

) ∞∑
n=1

e−nα/2γ < ∞.

The sum is convergent and therefore by the Borel-Cantelli lemma is n−αXn
a.s−→

0 when n tends to infinity. When c goes to infinity then Nα → ∞ and there-
fore N−αXN

a.s−→ 0. We have limc→∞ c−1N = t by Lemma 4 and hence
limc→∞ c−αNαN−αXN

a.s= 0. �

4 Normality, overshoot and independence

4.1 Asymptotic normality

Gut [7] uses Anscombe’s theorem as key factor in proving asymptotic normality
for stopping times of random walks hitting a linear or slowly varying boundary.
We will use the same technique.

Theorem 1 (Anscombe’s Theorem) Let {Xi, i ≥ 1} be a sequence of inde-
pendent, identically distributed random variables with mean 0 and variance σ2

and let {Sn, n ≥ 1} denote their partial sums. Further, assume that N/c
P−→

T, as c → ∞. Then

lim
c→∞P

(
SN ≤ yσ

√
N

)
= Φ(y)

lim
c→∞P

(
SN ≤ yσ

√
cT

)
= Φ(y).

The formulation of the theorem is changed to this context. For a proof see Gut
[7].
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Theorem 2 Assume that V arθ(Xi) = σ2 = g′′(θ) < ∞ and g′(θ) = b(t)/t,
then for t ≤ T ∗

lim
c→∞Pθ

(
b(t) − b′(t)t

t
(N − ct) ≤ yσ

√
ct

)
= Φ(y).

In the special case g′(θ) = b(T )/T , we have b(T ) − b′(T )T = θ−1R(T ) and

lim
c→∞Pθ

(
R(T )
θT

(N − cT ) ≤ yσ
√

cT

)
= Φ(y).

Proof. Start with Anscombe’s theorem,

lim
c→∞Pθ

(
SN − g′(θ)N ≤ yσ

√
ct

)
= Φ(y).

The stopped process is by Definition 1 greater than or equal to the barrier.
Furthermore the overshoot Z ≤ XN , so that

cb(N/c) − g′(θ)N
σ
√

ct
≤ SN − g′(θ)N

σ
√

ct
≤ cb(N/c) − g′(θ)N

σ
√

ct
+

XN

σ
√

ct
. (16)

The last term on the right hand side converges to zero in probability by Lemma
5. Taylor expand cb(N/c) = cb(t) + b′(t)(N − ct) + b′′(ξ)

2c (N − ct)2, where ξ is
between t and N/c, and plug the expansion in (16) and use that g′(θ) = b(t)/t,
which gives

cb(N/c) − g′(θ)N
σ
√

ct
=

cb(t) + b′(t)(N − ct) + b′′(ξ)
2c (N − ct)2 − g′(θ)N

σ
√

ct

=
cb(t) + b′(t)(N − ct) + b′′(ξ)

2c (N − ct)2

σ
√

ct

−g′(θ)(N − ct) + cb(t)
σ
√

ct

= − (b(t) − b′(t)t)(N − ct)
σt
√

ct
+

b′′(ξ)(N − ct)2

2c3/2t1/2σ
.

When s ≤ T ∗ then b′′(s) is bounded and c−3/2(N−ct)2 Pθ→ 0, as c goes to infinity
by Lemma 4. Hence the quadratic part converges to zero. The theorem follows
by the symmetry of the normal distribution. In the special case g′(θ) = b(T )/T
then by the remark in connection to Lemma 1, imply that,

(b(T ) − b′(T )T )(N − cT )
σT

√
cT

=
R(T )(N − cT )

θTσ
√

cT
.

�

Note that for arbitrary 0 < η �= 1/2 it is easy to show that c−η(N − ct) and
the overshoot are asymptotically independent.
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4.2 Overshoot

In this section we show that the overshoot is distributed as an overshoot over a
linear barrier. In our case the linear barrier of interest is

cl(n/c) = cb(t) + b′(t)(n − ct). (17)

Assume that Xi are non-arithmetic and let

N+ = inf{n : n ≥ 1, Sn − nb′(t) > 0}
N− = inf{n : n ≥ 1, Sn − nb′(t) < 0}
M = inf{m : Sm ≥ cl(m/c)}.

Define the linear overshoot as

Zl = SM − cl(M/c). (18)

Lemma 6 Assume that 0 < Eθ[Xi] = b(t)/t < ∞, for t ≤ T ∗. Then

lim
c→∞Pθ(Zl > z) =

1
Eθ[SN+ − b′(t)N+]

∫
(z,∞)

Pθ(SN+ − b′(t)N+ > x)dx.

= Qθ(z)

where g′(θ) = b(t)/t.

Proof. It is well known, that when b′(t) = 0 then

Qθ(z) = lim
c→∞Pθ(SM − cb(t) > z) =

1
Eθ[SN+ ]

∫
(z,∞)

Pθ(SN+ > x)dx, (19)

see Siegmund [14]. In our case the overshoot is over a linear barrier cb(t) −
b′(t)(n− ct) and the drift has to be changed to g′(θ)− b′(t) to fit (19). The drift
is still positive toward the barrier due to the fact that t is not on the shadow
side (13) and g′(θ) = b(t)/t ≥ b′(t). The barrier the process has to pass is
c(b(t) − b′(t)t), which in the case t = T is equal to cR(T )/θ. �

Lemma 7 Assume that 0 < Eθ[Xi] = g′(θ). Then for θ > 0 and t ≤ T ∗

lim
c→∞Eθ

[
e−θZl

]
=

Pθ(N− = ∞)
(b(t)/t − b′(t))θ

(
1 − E

[
exp

(
θ(SN − SN+) − g(θ)N + θb′(t)N+

)])
= 1 + O(θ),

where g′(θ) = b(t)/t.

Proof. We start by using the distribution of the overshoot Lemma 6 and partially
integrate to get

lim
c→∞Eθ

[
e−θZl

]
=

1
Eθ[SN+ − b′(t)N+]

∫
(0,∞)

e−θxPθ(SN+ − b′(t)N+ > x)dx

=
1 − Eθ

[
exp

(−θ(SN+ − b′(t)N+)
)]

θEθ[SN+ − b′(t)N+]
. (20)
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Corollary 8.39 in [14] provides us with Eθ[N+] = 1/Pθ(N− = ∞). This and
Wald’s identity, g′(θ) = b(t)/t, imply that

Eθ[SN+ − b′(t)N+] = (g′(θ) − b′(t))Eθ [N+] =
b(t)/t − b′(t)
Pθ(N− = ∞)

. (21)

Now a change back to the original measure gives,

Eθ

[
exp

(−θ(SN+ − b′(t)N+)
)]

= E
[
exp

(
θ(SN − SN+) − g(θ)N + θb′(t)N+

)]
.

(22)
For θ close to zero we can approximate

1 − Eθ

[
exp

(−θ(SN+ − b′(t)N+)
)] ≈

≈ Eθ[N+]θ(b(t)/t − b′(t)) − θ2

2
Eθ[(SN+ − b′(t)N+)2]

=
θ(b(t)/t − b′(t))
Pθ(N− = ∞)

+ O(θ2).

By this and (21) plugged into (20) we see that limc→∞ Eθ

[
e−θZl

]
= 1 + O(θ).

�

We now turn to the overshoot Z = SN − cb(N/c). The aim is to show that
the overshoot converges in distribution to the overshoot over the linear barrier
cl(n/c). This could be proved by a transformation to a perturbed random
walk and use of the results in Siegmund [14] and then transforming back. The
intuition and simplicity of the idea is then however lost.

Define the auxiliary stopping time, for any t ≤ T ∗

Nα = inf{n : Sn > (c − cα)b(t) + b′(t)(n − (c − cα)t)} (23)

and denote by ∆N = N − Nα.
The choice of the constant α > 0 will later be such that the distance left to

the true barrier can be neglected in limit on the scale c, but far enough for the
overshoot to gain the asymptotic properties.

The overshoot over the auxiliary barrier is called Zα. The probability that

Pθ(N = Nα) ≤ Pθ(Zα > cα(b(t) − b′(t)t))

≤ exp
(
−cαγ(b(t) − b′(t)t) + gZα

θ (γ)
)

, (24)

where γ > 0 is such that gZα

θ (γ) = log (Eθ[exp(γZ)]) < ∞. The proof that such
a γ exists can be found in Hammarlid [8]. Furthermore, b(t) − b′(t)t > 0 for all
t ≤ T ∗, which follows by equation (13).

Lemma 8 Assume that 0 < α < 1. Then under the tilted distribution for
arbitrary 0 < δ < b(t)− b′(t)t, there is a time t̂ ≤ T ∗ and a constant d > 0 such
that

Pθ

(|∆N − cαt̂| > cαδ|Nα = nα, Zα = z
) ≤ 3cαt̂e−cαdδ2

,

where g′(θ) = b(t)/t and c−α∆N
a.s−→ t as c → ∞.
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Proof. The idea of the proof is that when the auxiliary barrier is passed then
the remaining distance is of order cα and therefore also the remaining time.

The set
{
ω : |∆N − cαt̂| > cαδ

}
= A′ ∪ A′′ where

A′ = {Sn ≥ cb(n/c), for some n ≤ Nα + cα(t̂ − δ)},
A′′ = {Sn < cb(n/c), for all n ≤ Nα + cα(t̂ + δ)}.

Write ∆n = n−Nα when n > Nα and denote by ∆Sn = Sn −SNα . The partial
sum can in this notation be written as

Sn = ∆Sn + SNα = ∆Sn + (c − cα)b(t) + b′(t)(Nα − (c − cα)t) + Zα.

Hence if cαh(∆n/cα) = cb(n/c) − SNα then,

A′ = {∆Sn ≥ cαh(∆n/cα), for some ∆n ≤ cα(t̂ − δ)},
A′′ = {∆Sn ≥ cαh(∆n/cα), for all ∆n ≤ cα(t̂ + δ)}.

Expand cαh(∆n/cα) around t,

cαh(∆n/cα) = cαb(t) + b′(t)(∆n − cαt) +
b′′(t)
2c

(n − ct)2 − Zα.

The most probable time of hitting cαh(∆n/cα) is when the barrier is crossed
by the drift line g′(θ)∆n. The most probable time t̂ = ∆n/cα is the solution to

g′(θ)
∆n

cα
= b(t) + b′(t)

(
∆n

cα
− t

)
+

b′′(t)
2c1+α

(n − ct)2 − Zα

cα
.

The overshoot part converges almost surely to zero by combining Zα ≤ XNα

and Lemma 5. The quadratic term converges to zero since Nα ≤ n ≤ N and
c−(1+α)(n−ct)2 ≤ c−(1+α)((Nα−ct)2+(N −ct)2), which by Lemma 4 converges
almost surely to zero. The equation

g′(θ)t̂ = b(t) + b′(t)(t̂ − t) + O(1/cα) (25)

does always have a solution when c is large enough, because t ≤ T ∗ and therefore
g′(θ) = b(t)/t > b′(t) and b(0) > 0, see the implication of not being on the
shadow side, equation (13). Take a d ≤ γ where gZα

θ (γ) < ∞ and let c be such

that cαt ≥ exp
(
gZα

θ (γ)
)
. Then by Lemma 3 and the law of total probability in

combination with equation (24) imply that

Pθ

(|∆N − cαt̂| > cαδ|Nα, Zα

) ≤ Pθ (A′ ∪ A′′) + Pθ (N = Nα) ≤ 3cαt̂e−cαdδ2
.

We use the equation determining the dominating point (5) to find the solution
t̂ = t + O(1/cα) to (25). Now if we put δ = c−α/4 and sum over c,

∞∑
c=1

Pθ

(
|∆N − cαt| >

cα

cα/4

∣∣∣∣ Nα = nα, Zα = zα

)
≤ 3

∞∑
c=1

cα t̂e−cα/2d < ∞.

Borel-Cantelli lemma assures the almost sure convergence. �
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Lemma 9 Let 0 < α < 1/4 and g′(θ) = b(t)/t, where t ≤ T ∗. Then under the
tilted distribution

lim
c→∞ c−1

(
(N − ct)2 − (Nα − (c − cα)t)2

) a.s= 0.

Proof. The trick of the proof is to split the sample space into two sets, the likely
event A and its complement A∗. The probability of the unlikely event converges
to zero, and on the likely event the distance between the two quadratic terms
converges to zero.

Denote ĉ = c − cα and take arbitrary ε > 0, η > 0 and 0 < δ < 1 to define
the set

A = {ω : |Nα − ĉt| < ĉε} ∩ {|∆N − cαt̂| < cαδ
} ∩ {|N − ct| < cε} . (26)

On the set A we have by the conjugate rule that,∣∣(N − ct)2 − (Nα − ĉt)2
∣∣ = |N − Nα − cαt| |N − ct + Nα − ĉt|

≤ cαδε(c + ĉ) ≤ 2cα+1ε.

We chose ε = c−2α/2 then

c−1
∣∣(N − ct)2 − (Nα − ĉt)2

∣∣ ≤ c−α ≤ η when c > η−1/α. (27)

Hence Pθ

(∣∣(N − ct)2 − (Nα − ĉt)2
∣∣ > cη, A

)
= 0. By this, the law of total prob-

ability, Lemma 4 and Lemma 8 we have for c ≥ η−1/α,

Pθ

(∣∣(N − ct)2 − (Nα − ĉt)2
∣∣ > cη

) ≤
≤ Pθ(A∗)

≤ 3cαt̂e−cαdδ2
+ 2ĉte−ĉc−4αd + 2cte−c1−4αd

≤ 4ct
(
e−cαdδ2

+ e−ĉc−4αd
)

.

In the last inequality we used ĉ ≤ c and assumed that t̂ ≤ t. There could as
well be the other way around, t̂ ≥ t, which causes no practical change.

Let η = c−1/4. Then since α < 1/4 we have c1/4α ≤ c , which imply a
convergent sum,
∞∑

c=1

Pθ

(
c−1

∣∣(N − ct)2 − (Nα − ĉt)2
∣∣ > 1/c1/4

)
≤ 4

∞∑
c=1

ct
(
e−cαdδ2

+ e−ĉc−4αd
)

.

The convergence is therefore almost sure by Borel-Cantelli lemma.

�
The idea now is to look at a stopping time of the process to a barrier that

is just before the true barrier. This barrier does not have any contribution to
the curvature part after Nα. This auxiliary stopping time is defined as

Nl = inf{n : Sn > cl(n/c) + b′′(t)(Nα − (c − cα)t)2/2c− b′′(t)/2cα}
and corresponding auxiliary overshoot

Z̃l = SNl
− cl(Nl/c) − b′′(t)(Nα − (c − cα)t)2/2c + b′′(t)/2cα,

where t ≤ T ∗. The extra term b′′(t)/2cα is added to make sure that this auxiliary
barrier is in front of the true barrier on a certain set and therefore Nl ≤ N .
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Lemma 10 Under the tilted distribution where g′(θ) = b(t)/t,

N − Nl
Pθ−→ 0, as c → ∞.

Proof. Denote as before ĉ = (c − cα). On the set A defined in (26) with
ε = c−2α/2 and α < 1/4 we have for Nα ≤ n ≤ N that

b′′(t)
2c

(
(n − ct)2 − (Nα − ĉt)2

)
+

b′′(t)
2cα

≥ b′′(t)
2cα

− b′′(t)
2cα

= 0,

by the same reasoning that lead to equation (27), hence Nl ≤ N. Let us now
study when the stopping times are not equal on A. That is the set

{ω : N > Nl} =
{

ω : cl(Nl/c) +
b′′(t)
2c

(Nα − ĉt)2 − b′′(t)
2cα

≤ SNl
< cb(Nl/c)

}

=
{

ω : 0 ≤ Z̃l <
b′′(t)
2c

(
(Nl − ct)2 − (Nα − ĉt)2

)
+

b′′(t)
2cα

}

⊆
{

ω : 0 ≤ Z̃l <
b′′(t)
cα

}
.

We have by the law of total probability, equation (24) and limc→∞ Pθ(A∗) = 0
that,

lim
c→∞Pθ(N �= Nl) ≤ lim

c→∞Pθ(N > Nl, A) + Pθ(A∗) + P (N = Nα)

≤ lim
c→∞Pθ(0 ≤ Zl < c−αb′′(t)) = lim

c→∞F c
Zl

(c−αb′′(t)),

where F c
Zl

(z) is the distribution function of the overshoot for a fixed c. The
limit distribution FZl

(z) is continuous, Lemma 6. Therefore, for fixed ν > 0,
there is a c such that c−αb′′(t) < ν and F c

Zl
(c−αb′′(t)) ≤ F c

Zl
(ν). The limit

limc→∞ F c
Zl

(c−αb′′(t)) ≤ FZl
(ν) ≤ ν, but ν is arbitrary. �

Theorem 3 The distribution of the overshoot under the tilted distribution, where
g′(θ) = b(t)/t and t ≤ T ∗ satisfy,

lim
c→∞Pθ(Z ≤ z) = lim

c→∞Pθ(SM − cb(t) − b′(t)(M − ct) ≤ z) = Qθ(z).

Qθ(z) is the asymptotic distribution of the overshoot given in Lemma 6 and M
is the stopping time to the linear barrier.

Proof. The idea of the proof is to condition on when and where the process
crosses the auxiliary barrier cl(n/c). This barrier is close enough to capture the
curvature of the real barrier at the stopping time, distant to keep the asymptotic
properties of the overshoot. The real barrier is then exchanged to a linear barrier
translated by the curvature at the stopping time of the auxiliary barrier.

In the Taylor expansion of the barrier the remainder, the third order term, is
ignored because, according to Lemma 4 it converges to zero. Thus, cb(N/c) Pθ=
cb(t) + b′(t)(N − ct) + c−1b′′(t)(N − ct)2, when the scale parameter c goes to
infinity. The partial sum hits the auxiliary barrier before the original barrier
at Nα. The difference in curvature is vanishing almost surely, so that c−1(N −
ct)2 can be exchanged by c−1(Nα − (c − cα)t)2 according to Lemma 9 and the
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difference between N and Nl equals zero almost surely as c → ∞ by Lemma 8.
We have

SN − cb(N/c) Pθ= SNl
− cb(t) − b′(t)(Nl − ct) − b′′(t)

2c
(Nα − ct)2 +

b′′(t)
2cα

,

when c goes to infinity. The quadratic term on the right hand side is asymptot-
ically a χ2-distributed random variable. Therefore we have

SNl
− cb(t) − b′(t)(Nl − ct) − b′′(t)

2c
(Nα − ct)2 d= SM − cb(t) − b′(t)(M − ct),

when c goes to infinity. �

4.3 Asymptotic independence

Theorem 4 Under the tilted distribution, when g′(θ) = b(t)/t and t ≤ T ∗,
then the overshoot Z and Y = a−1c−1/2(N −ct) are asymptotically independent,
where the variance a2 = g′′(θ)t3(b(t) − b′(t)t)−2, so that

lim
c→∞Pθ(Z ≤ z, Y ≤ y) = Qθ(z)Φ(y).

When t = T then a2 = g′′(θ)θ2T 3/R(T )2.

Proof. Take 0 < α < 1/2. When we condition on Nα and SNα it is possible to
write

Z = ∆SN − cαh(∆N/cα),
Y = a−1c−1/2(N − ct).

Write Yα = a−1c−1/2(Nα − ct) and define

A = {ω : |Yα − Y | < ε} = {ω : |∆N − cαt| < c1/2ε}.
Note that limc→∞ Pθ(A∗) = 0 by Lemma 8. By the law of total probability

Pθ(Z ≤ z, Y ≤ y) ≤ Pθ(Z ≤ z, Yα ≤ y + ε, A) + P (A∗).

We use Bayes’ theorem and that Yα and Z = ∆SN − cαh(∆N/cα) are condi-
tionally independent by construction to get an upper bound,

Pθ(Z ≤ z, Y ≤ y, A) ≤
∫

A,Yα≤y+ε

Pθ(Z ≤ z|Nα, SNα)dPθ(Nα, SNα).

Therefore by Theorem 2, Theorem 3, limc→∞ P (A) = 1 and the Bounded con-
vergence theorem we have

lim
c→∞Pθ(Z ≤ z, Y ≤ y) ≤ Qθ(z)Φ(y + ε).

A lower bound Qθ(z)Φ(y − ε) ≤ limc→∞ Pθ(Z ≤ z, Y ≤ y) is found in a
similar way. Thus

Qθ(z)Φ(y − ε) ≤ lim
c→∞Pθ(Z ≤ z, Y ≤ y) ≤ Qθ(z)Φ(y + ε),

but ε is arbitrary and limc→∞ Pθ(Z ≤ z, Y ≤ y) = Qθ(z)Φ(y). �
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5 Main result

We will start by a heuristic large deviation argument, in the spirit of the intro-
duction. The expansion of R(s) = R(T ) + 0.5R′′(T )(s − T )2 since R′(T ) = 0
and

P (N ≈ cT + c1/2y) ≈ constant · exp
(−cR(T )− R′′(T )y2/2

)
,

where R′′(T ) = R(T )2/g′′(θ)2θ2T 3 + θb′′(T ) according to (12). The quadratic
part is almost the density of a normal distribution and therefore one would
expect that

P (N ≤ cT + c1/2y) ≈ constant · e−cR(T )Φ
(√

R′′(T )y
)

.

Theorem 5 Assume that the barrier b(s) is convex, three times continuously
differentiable, satisfies b(0) > 0 and that µs < b(s) for all s. The rate of the
stopping time N is R(T ) = θb′(T ) − g(θ)T, where the parameters solve,

g′(θ) =
b(T )
T

and g(θ) = θb′(T ).

Then the asymptotic distribution of the first passage time,

lim
c→∞ ecR(T )P

(
N ≤ cT +

√
cy

)
= a−1ηEθ

[
e−θZl

]
Φ(y/η),

where a2 = g′′(θ)2θ2T 3/R(T )2, the variance η−2 = a−2 + b′′(T )θ = R′′(T ) and
Zl is the overshoot over the barrier cb(T ) + b′(T )(n − cT ).

Proof. Denote the indicator function 1 = 1(N ≤ cT +
√

cy), then

ecR(T )P
(
N ≤ cT +

√
cy

)
= E

[
1ecR(T )

]
.

Tilt the distribution by adding and subtracting θSN and g(θ)N in the exponent,
E[1 exp(cR(T ))] = Eθ[1 exp(cR(T ) + g(θ)N − θSN )], where g′(θ) = b(T )/T .
Expand SN to order three around cT ,

SN = cb(T ) + b′(T )(N − cT ) + b′′(T )
(N − cT )2

2c
+ b′′′(ξ)

(N − cT )3

3!c2
+ Z. (28)

We will skip the rest term since it converges to zero by Lemma 4, since ξ is
between t and N/c and that b′′′(s) is bounded for all s ≤ T ∗.

The rate R(T ) = θb(T ) − g(θ)T and the first derivative R′(T ) = θb′(T ) −
g(θ) = 0. Therefore,

Eθ [1 exp (cR(T ) + g(θ)N − θSN )] = Eθ

[
1 exp

(
−θ

b′′(T )
2c

(N − cT )2 − θZ

)]
.

(29)
Write Y = c−1/2(N − cT ), which by Theorem 2 converges in probability to a
normal random variable Y , with variance a2 = R(T )−2g′′(θ)2θ2T 3. Theorem 4
gives that Y and the overshoot Z are asymptotically independent. Furthermore
the overshoot converges to the overshoot over a linear barrier Zl by Theorem 3.
We have that by the bounded convergence Theorem,

lim
c→∞Eθ

[
1 exp

(
−θb′′(T )

(N − cT )2

2c
− θZ

)]
= Eθ

[
e−θZl

]
Eθ

[
1 exp

(
−θb′′(T )

Y 2

2

)]
. (30)
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To handle the squared normal distributed random variable, we will change vari-
ance,

Eθ

[
1 exp

(
−θb′′(T )

Y 2

2

)]
=

1√
2πa

∫ y

−∞
exp

(
−θ

b′′(T )u2

2
− u2

2a2

)
du.

The goal is to be able to write the probability in terms of a standard normal
distribution. As a start towards this goal let η2 be the variance of a new normal
distribution, where

η−2 = θb′′(T ) + a−2 = θb′′(T ) +
R(T )2

g′′(θ)2θ2T 3
= R′′(T )

according to (12). Then after a change of variables,

1√
2πa

∫ y

−∞
exp

(
−θ

b′′(T )u2

2
− u2

2a2

)
du =

η

a

∫ y/η

−∞

1√
2π

exp
(
−v2

2

)
dv

=
η

a
Φ(y/η).

�

When t < T then R′(t) �= 0 and the equivalent to equation (29) then becomes

ecR(t)P (N ≤ ct) = Eθ

[
1 exp

(
−R′(t)(N − ct) − θ

b′′(t)
2c

(N − ct)2 − θZ

)]
,

where now g′(θ) = b(t)/t. The overshoot still factors out by asymptotic inde-
pendence, but the rest of the slowly changing function is not easily handled.
Heuristically, if we write this expectation as a sum and exchange the probabil-
ity by its Fourier inversion of the characteristic function, then since the central
part converges to the characteristic function of a normally distributed random
variable, we can after some calculations believe that

lim
c→∞ c1/2ecR(t)P (N ≤ ct) =

Eθ

[
e−θZl

]
(
1 − eR′(t)

)√
2πa

, a2 = g′′(θ)t3(b(t)− b′(t)t)−2.

This conjecture is proved to be right in Hammarlid [8] by use of a sequence of
auxiliary stopping times.
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Abstract

The asymptotic distribution of the first passage time of a random walk
to a scaled convex barrier decays exponentially in the scale parameter
multiplied by a slowly changing function. The exponential rate of decay
is connected to the most probable time of passing the barrier. The rate
and the slowly changing function alters for stopping times strictly before
the most probable time. Here the slowly changing function is shown to
be a constant multiplied by the square root of the scale parameter. This
is proved using large deviation techniques and the characteristic function.
A small but difficult technicality in the computations is to show that the
integral of the non central parts of the characteristic function multiplied
by the square root of the scale parameter vanishes. The convergence of
this integral is proved with the help of some auxiliary stopping times who’s
sum equals the true stopping time and that are conditionally independent.
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1 Introduction

A sum Sn =
∑n

i=1 Xi that starts at zero and where the increments are inde-
pendent identically distributed, makes the unlikely event that it hits a distant
upper convex barrier cb(n/c). The barrier is convex, three times continuously
differentiable, b(0) > 0 and c is a scale parameter.

Definition 1.1 The time when the process Sn, for the first time, passes or hits
cb(n/c) is denoted by N = inf{n : Sn ≥ cb(n/c)}.
What is the asymptotic distribution of the stopping time, when the scale pa-
rameter c goes to infinity?

∗Postal address: Mathematical Statistics, Stockholm University, SE-106 91, Sweden. E-
mail: olah@math.su.se.



A large deviation estimate of the first passage time to a convex barrier 2

Assume that the cumulant generating function g(θ) = log
(
E
[
eθX
])

exists
for all θ in some open set. In the field of large deviations the rate function
I(x) = supθ(xθ − g(θ)) is central and for any convex set B,

lim
n→∞

1
n

log
(

P

(
Sn

n
∈ B

))
= − inf

x∈B
I(x), (1)

see Bucklew [2] or Dembo and Zeitouni [4].
There is also a rate function for the asymptotic distribution of the stopping

time to a convex barrier. Martin-Löf used large deviation techniques and Wald’s
identity to prove the exponential decay when t ≥ T . Hammarlid [5] used a more
probabilistic approach to compute the rate function for the two cases t < T and
t ≥ T and proved the following lemma.

Lemma 1.2 Let µ = E[Xi] and assume that µs < b(s) for all s. Then the
function R(s) = sI(b(s)/s) is convex and it attains its minimum at T , which is
determined by

g(θ) = b′(T )θ and g′(θ) = b(T )/T. (2)

The function R(s) = θb(s) − g(θ)s, where g′(θ) = b(s)/s and

lim
c→∞ c−1 log (P (N ≤ ct)) =

{ −R(t) for t < T
−R(T ) for t ≥ T.

(3)

Furthermore, under a tilted measure Pθ, which changes the drift to b(T )/T ,
it is proved in Hammarlid [5] that: The limit distribution of the overshoot
Z = SN − cb(N/c) is distributed as an overshoot over a linear barrier, Zl =
SN − cb(T ) − b′(t)(N − cT ), when c goes to infinity. Properly normalized the
stopping time is asymptotically normally distributed. The overshoot and the
asymptotic normal part are asymptotically independent. These results were
then used to prove that, when g′(θ) = b(T )/T , then

lim
c→∞ ecR(T )P

(
N ≤ cT +

√
cy
)

= a−1ηEθ

[
e−θZl

]
Φ(y/η),

where η−2 = a−2 + b′′(T )θ and a2 = g′′(θ)2θ2T 3/R(T ).
We write when c is large that P (N ≤ ct) ≈ K(c) exp(−cR(t)), where K(c)

is some slowly changing function in comparison to the exponential part.
This article is dedicated to show that K(c) ≈ constant · c−1/2 in the case

t < T . That is when g′(θ) = b(t)/t and Zl = SN − cb(t) − b′(t)(N − ct) then

lim
c→∞ c1/2ecR(t)P (N ≤ ct) =

Eθ

[
e−θZl

]
(
1 − eR′(t)

)√
2πa

,

where a2 = σ2t3(b(t)/t − b′(t))−2 and R′(t) = θb′(t) − g(θ) < 0.
The proof of the this result, that is found in Section 2, involves the inversion

formula of the characteristic function. The essential observation of the proof is
that the central part of the characteristic function multiplied by c1/2 converges
to the characteristic function of a normally distributed random variable and
that the remaining part vanishes, when c goes to infinity. The convergence to
zero of the noncentral part is proved by the help of some auxiliary stopping
times that are conditionally independent. These auxiliary stopping times have
the properties one would expect, compared to the properties of N . The lemmas
describing these properties are therefore put in Appendix A.
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2 Main result

It is useful to tilt the distribution of SN such that the drift changes to b(t)/t,
which means that the most likely time to hit the barrier under the tilted measure
is t. Tilting a distribution F (x) is defined by dFθ(x) = exp(θx − g(θ))dF (x),
for every θ in the open set of definition, see Bucklew [2] or Martin-Löf [8]. The
tilted expectation is denoted Eθ[·] and the tilted cumulant function gθ(γ) =
Eθ[exp(γX)]. It can easily be shown that gθ(γ) = g(γ + θ)− g(θ) and therefore,
from the first and second order derivative of the tilted cumulant function at
zero,

Eθ[X ] = g′(θ) and V arθ(X) = g′′(θ). (4)

The tilted rate function is Iθ(b(t)/t) = γb(t)/t − gθ(γ), where γ solves g′
θ(γ) =

b(t)/t and Iθ(g′(θ)) = Iθ(b(t)/t) = I ′
θ(b(t)/t) = 0. The following lemma and

corollary were shown in Hammarlid [5].

Lemma 2.1 Fix ε > 0 and let γ > 0 and α > 0 such that α < 2γ. Then under
the tilted distribution there is a d > 0 so that,

Pθ

(∣∣∣∣ (N − ct)α

cγ

∣∣∣∣ > ε

)
≤ 2ct exp

(
−dε2/αc2γ/α−1

)
,

where g′(θ) = b(t)/t. Also, c−γ(N − ct)α a.s−→ 0, as c → ∞.

Corollary 2.2 Fix ε > 0. Then under the tilted distribution there is a constant
d > 0 such that, Pθ(|N − ct| > cε) ≤ 2cte−cdε2

, where g′(θ) = b(t)/t and
N/c

a.s−→ t, as c → ∞.

We will split the stopping time N into some convenient auxiliary stopping
times.

Definition 2.3 Let 0 < α < 2/3 and N1 = inf
{
n : Sn ≥ cα/2b(t) + b′(t)(n − cα/2t)

}
.

Denote the auxiliary stopping times and the overshoots by

Nk = inf


n > Nk−1 : Sn ≥ kcα/2b(t) + b′(t)(n − kcα/2t) +

k−1∑
j=1

Zj


 , (5)

Zj = SNj − kcα/2b(t) − b′(t)(Nj − kcα/2t) −
j−1∑
i=1

Zi, (6)

where Z1 = SN1 − cα/2b(t) − b′(t)(N1 − cα/2t).

We are first and foremost interested in N[cα/2], where [cα/2] is the integer part
of cα/2. Call the difference ∆nj = nj − Nj−1 and the partial sum ∆Snj =
Snj − SNj−1 , then

N[cα/2] =
[cα/2]∑
j=1

∆Nj , where ∆Nj = Nj − Nj−1,

∆Nj = inf
{
∆nj : ∆Snj ≥ cα/2b(t) + b′(t)(∆nj − cα/2t)

}
.
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One important observation is that ∆Nj are independent by construction. The
sequence of overshoots can also be rewritten,

Zj = ∆SNj − cα/2b(t) − b′(t)(∆Nj − cα/2t). (7)

In Appendix A it is shown that N[cα/2] ∼ cαt, Lemma A.2 and that the
probability of N[cα/2] > N is decreasing exponentially to zero in c, Lemma A.3.

The idea of the next auxiliary stopping time, Ñ , is that it is equal to to N in
the limit. The difference between the two, is that Ñ is not dependent of N[cα/2]

from the curvature part of the Taylor expansion of the barrier.

Definition 2.4 Fix ν > 0 that fulfills 0 < 1 − 3α/2 − 2ν and define a function
h(c) = 3b′′(t)c−ν/2/2. The first time the process passes or hits the barrier

cb̃(n/c) = cb(t) + b′(t)(n − ct) +
b′′(t)
2c

(
n − N[cα/2] − (c − cα) t

)2 − h(c)

is denoted by Ñ = inf
{

n : Sn ≥ cb̃(n/c)
}

and the overshoot is written ZÑ =

SÑ − cb̃(Ñ/c).

The function h(c) guarantees that the probability of Ñ ≤ N converges to one.
How this works will be evident later in the proof of Lemma A.6. The probability
of N[cα/2] > Ñ converges to to zero when c goes to infinity by Lemma A.4.

The main theorem is proved by the help of conditional independence, where
the unconditioned dependence is through the overshoots. To see how this depen-
dence comes about put ĉ = c − cα and let ∆Sn = Sn − SN[cα/2] for n ≥ N[cα/2].
Then

Ñ − N[cα/2] = inf

{
m = n − N[cα/2] : ∆Sn ≥ ĉb(t) + b′(t)(m − ĉt)

+
b′′(t)
2c

(m − ĉt)2 −
[cα/2]∑
j=1

Zj − h(c)

}
, (8)

which follows from the Definition 2.3 and Definition 2.4.
The distribution of the overshoot Z under the tilted measure converges in

distribution to the distribution Qθ(z) of the overshoot Zl = SN−cb(t)−b′(t)(N−
ct). The overshoot is also for η > 0 asymptotically independent of c−η(N − ct),
see Hammarlid [5]. A consequence of this result is that c−η(∆Nj − cα/2t) and
Zj are asymptotically independent, which implies that N[cα/2] and

∑[cα/2]
j=1 Zj

are asymptotically independent.
We can now split the stopping time

N = N − Ñ + Ñ − N[cα/2] + N[cα/2],

where the different parts are conditionally independent by the following lemma.

Lemma 2.5 The differences of the stopping times N − Ñ , Ñ − N[cα/2] and
N[cα/2] are conditionally independent, conditioned on Z∩A, where Z = {Z0, . . . , Z[cα/2], ZÑ}
and A = {N[cα/2] < Ñ < N}, so that

Eθ

[
eiζN

∣∣Z ∩ A
]

= Eθ

[
eiζ(N−Ñ)

∣∣∣Z ∩ A
]
Eθ

[
e

iζ(Ñ−N
[cα/2]

)
∣∣∣Z ∩A

]
×Eθ

[
e

iζN
[cα/2]

∣∣∣Z ∩A
]
.
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The stopping times are asymptotically independent, that is

lim
c→∞Eθ

[
eiζN

]
= lim

c→∞Eθ

[
eiζ(N−Ñ)

]
Eθ

[
e

iζ(Ñ−N
[cα/2]

)
]
Eθ

[
e

iζN
[cα/2]

]
.

Proof. The pair ∆Nj and Zj are by construction independent of another pair
∆Ni and Zi, where i 
= j, since ∆SNi is independent of ∆SNj . Furthermore,
the overshoot and the auxiliary stopping time are asymptotically independent.
This implies that N[cα/2] and

∑[cα/2]
j=1 Zj are asymptotically independent.

The dependence between Ñ −N[cα/2] and N[cα/2] is according to equation (8)

only through
∑[cα/2]

j=1 Zj, if SN
[cα/2]

and SÑ − SN
[cα/2]

are independent. These

partial sums are independent because N[cα/2] < Ñ on A. Thus, Ñ −N[cα/2] and
N[cα/2] are conditionally independent.

The overshoot ZÑ determines if N = Ñ or not, which is asymptotically in-
dependent of Ñ . The partial sum SN −SÑ and SÑ −SN

[cα/2]
are independent on

A. Therefore since N − Ñ and Ñ − N[cα/2] only depend through the overshoot
they are conditionally independent. �

Lemma 2.6 Let δ > 0, 0 < α < 1 and δ < |ζ| < π. Then the characteristic
function

∣∣Eθ

[
eiζN

]∣∣ ≤ |1 − Dδ|[cα/2] + 2 exp
(
−(c − cα)γ(b(t) − b′(t)t) + cα/2gZ

θ (γ)
)

,

where γ > 0 is such that gZ
θ (γ) < ∞ and b(t) − b′(t)t > 0.

Proof. The law of total probability and that the absolute value of a characteristic
function is less than or equal to one give∣∣Eθ

[
eiζN

]∣∣ ≤ ∣∣Eθ

[
eiζN ,A

]∣∣+ Pθ(A∗),

where the set A is defined in Lemma 2.5 and A∗ is its complement. We have
by Lemma 2.5 and P (A) ≤ 1 that when we condition on Z, then

∣∣Eθ

[
eiζN

]∣∣ ≤
∣∣∣∣∣Eθ

[
Eθ

[
eiζ(N−Ñ)

∣∣∣Z ∩ A
]
Eθ

[
e

iζ(Ñ−N
[cα/2]

)
∣∣∣Z ∩A

]

×Eθ

[
e

iζN
[cα/2]

∣∣∣Z ∩A
] ]∣∣∣∣∣+ Pθ(A∗).

The increments of N[cα/2] =
∑[cα/2]

j=1 ∆Nj are independent identically distributed,
see the discussion after Definition 2.3 and thus,

Eθ[exp(iζN[cα/2])|Z ∩ A] = Eθ[exp(iζ∆N1)|Z ∩ A][c
α/2].

Both the auxiliary stopping times and N are lattice random variables. It
is well established that the absolute value of the characteristic function of a
lattice random variable full fills maxδ<|ζ|≤π |f(ζ)| ≤ 1 − Dδ2, where D is some
constant, Chung [3]. Benedicks [1] shows how a D > 0 can be determined from



A large deviation estimate of the first passage time to a convex barrier 6

the distribution. The absolute value of a characteristic function is less or equal
to one, so that

∣∣Eθ

[
eiζN

]∣∣ ≤ Eθ

[∣∣Eθ

[
eiζ∆N1

∣∣Z ∩A
]∣∣[cα/2]

]
+ P (A∗)

≤ |1 − Dδ2|[cα/2] + P (A∗).

The lemma follows from the large deviation estimate of P (A∗) derived by
Lemma A.3 and Lemma A.4. �

Theorem 2.7 Assume that the barrier b(s) is convex, three times continuously
differentiable, satisfies b(0) > 0 and that µs < b(s) for all s. The rate of the
stopping time N is R(t) = θb(t) − g(θ)t and R′(t) = θb′(t) − g(θ) < 0, where
g′(θ) = b(t)/t and t < T.

Then the asymptotic distribution of the first passage time is given by

lim
c→∞ c1/2ecR(t)P (N ≤ ct) =

Eθ

[
e−θZl

]
(
1 − eR′(t)

)√
2πa

,

where a2 = g′′(θ)t3(b(t) − b′(t)t)−2 and Zl is the overshoot over the barrier
cb(t) + b′(t)(n − ct).

Proof : Introduce the indicator function 1 = 1(N ≤ ct) and tilt the distri-
bution so that

c1/2ecR(t)P (N ≤ ct) = c1/2Eθ [1 exp (cR(t) + g(θ)N − θSN )] .

Expand SN up to order three around ct,

SN = cb(t) + b′(t)(N − ct) + b′′(t)
(N − ct)2

2c
+ b′′′(ξ)

(N − ct)3

3!c2
+ Z, (9)

where ξ is between t and N/c. We will skip the remainder since it converges to
zero by Lemma 2.1 (b′′′(s) is bounded for all s ≤ T ).

The first order derivative, R′(t) = θb′(t) − g(θ) 
= 0, is easily derived from
R(s) = sI(b(s)/s) and the properties of the rate function, see the proof of
Lemma 1 in Hammarlid [5]. The first order derivative is negative because the
rate R(s) is convex and attains its minimum at T and t < T . After some
computations we get that

c1/2ecR(t)P (N ≤ ct) = c1/2Eθ

[
1 exp

(
−R′(t)(N − ct) − θ

b′′(t)
2c

(N − ct)2 − θZ

)]
.

The part exp(−θZ) can be handled separately because the overshoot Z and
N are asymptotically independent, see Hammarlid [5]. The expectation is by
definition

c1/2Eθ

[
1 exp

(
−R′(t)(N − ct) − θb′′(t)

(N − ct)2

2c

)]
= (10)

= c1/2
ct∑

n=1

exp
(
−R′(t)(n − ct) − θb′′(t)

(n − ct)2

2c

)
Pθ(N = n).
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The characteristic function of N , for a fixed c, is denoted by fc(ζ) =∑∞
n=1 eiζnPθ(N = n). The stopping time N is an integer lattice variable, for

which the following inversion formula holds,

Pθ(N = n) =
1
2π

∫ π

−π

e−iζnfc(ζ)dζ,

see for example Chung [3]. Insert the inversion formula in (10), change order of
summation and integration in accordance to Fubini’s theorem

c1/2Eθ

[
1 exp

(
−R′(t)(N − ct) − θ

b′′(t)(N − ct)2

2c

)]
=

=
c1/2

2π

∫ π

−π

eR′(t)ct
ct∑

n=1

exp
(
−n(R′(t) + iζ) − θ

b′′(t)(n − ct)2

2c

)
fc(ζ)dζ

=
c1/2

2π

∫ π

−π

kc(ζ)e−ictζfc(ζ)dζ, (11)

where

kc(ζ) = exp (ct(R′(t) + iζ))
ct∑

n=1

exp
(
−n(R′(t) + iζ) − θ

b′′(t)(n − ct)2

2c

)
.

We will now show that limc→∞ kc(c−1/2ζ) =
(
1 − eR′(t)

)−1

. The barrier is
convex and b′′(t) > 0. The θ that solves g′(θ) = b(t)/t have to be positive.
Therefore, ignore the quadratic part of the sum and we take the absolute value
of the terms. Then the resulting geometric series is an upper bound, that is

∣∣∣kc(c−1/2ζ)
∣∣∣ ≤ eR′(t)cte−R′(t) 1 − e−R′(t)ct

1 − e−R′(t) .

We can therefore put c−1/2ζ = 0 in the computations by the Bounded conver-
gence theorem and we have

lim
c→∞ kc(c−1/2ζ) = lim

c→∞ kc(0) ≤ e−R′(t)

e−R′(t) − 1
.

We delete the sum up to c(t − ε), to construct a lower bound of the limit,

ectR′(t)
ct∑

n=1

exp
(
−nR′(t) − θ

b′′(t)(n − ct)2

2c

)
≥

≥ exp
(

ctR′(t) − θc
b′′(t)ε2

2

) ct∑
n=c(t−ε)

e−nR′(t)

= exp
(
−θc

b′′(t)ε2

2

)
eR′(t)cε − eR′(t)

1 − e−R′(t) .

The choice of ε = c−3/4 and the fact that R′(t) is negative leads to

lim
c→∞

ct∑
n=1

exp
(
−nR′(t) − θ

b′′(t)(n − ct)2

2c

)
≥
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≥ lim
c→∞ exp

(
−θ

b′′(t)
2c1/2

)
eR′(t)c1/4 − e−R′(t)

1 − e−R′(t)

=
e−R′(t)

e−R′(t) − 1
.

The limit of kc(ζ/c1/2) is sandwiched between two equal limits and hence

lim
c→∞kc(ζ/c1/2) =

e−R′(t)

e−R′(t) − 1
=
(
1 − eR′(t)

)−1

. (12)

Let us now return to the integral in equation (11). The integral can be
split into two regions of integration, one central region {|ζ| ≤ δ} where δ > 0,
is assumed small, and the complement {|ζ| > δ}. The idea is to exchange the
characteristic function with the characteristic function of a normally distributed
random variable in the central part and show that the integral over the comple-
ment vanishes when c goes to infinity.

We start analyzing the central part. The expansion of the logarithm of a
characteristic function on {|ζ| ≤ δ},

log (fc(ζ)) = iζct − 1
2
ζ2ca2 + O(iζ3),

where a2 = t3g′′(θ)(b(t) − b′(t)t)−2 by Theorem 1 in Hammarlid [5]. Plug in
the expansion of the characteristic function in the integral over the central part
and substitute ζ = ξ/c1/2,

c1/2

2π

∫
|ζ|≤δ

e−ictζfc(ζ)kc(ζ)dζ =
1
2π

∫
|ξ|≤c1/2δ

e−a2ξ2/2kc(ξ/c1/2)dξ + c1/2O(iδ4).

Let us chose δ = c−1/7, then by the Dominated convergence theorem and the
fact that the exponential part is the density of the normal distribution we have

lim
c→∞

1
2π

∫
|ξ|≤δc1/2

e−a2ξ2/2kc(ξ/c1/2)dξ+c1/2O(c−4/7) =
((

1 − eR′(t)
)√

2πa
)−1

.

(13)
Left to show is that the second integral,∣∣∣∣∣c

1/2

2π

∫
δ<|ζ|<π

e−ictζfc(ζ)kc(ζ)dζ

∣∣∣∣∣ ≤ constant
∫

δ<|ζ|<π

c1/2 |fc(ζ)| dζ

converges to zero. Assume that γ > 0 is such that gZ
θ (γ) < ∞. Then there is

constants D computed from the distribution so that

|fc(ζ)| ≤ ∣∣1 − Dδ2
∣∣[cα/2]

+ P (A∗),

where P (A∗) ≤ 2 exp
(−(c − cα)γ(b(t) − b′(t)t) + cα/2gZ

θ (γ)
)
, by Lemma 2.6.

Substitute the characteristic function by this bound,∫
δ<|ζ|<π

c1/2 |fc(ζ)| dζ ≤ 2πc1/2

(∣∣1 − Dδ2
∣∣[cα/2]

+ P (A∗)
)

.
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If chose α = 13/21 < 2/3. Then since δ = c−1/7

∫
c−1/7<|ζ|<π

c1/2 |fc(ζ)| dζ ≤ 2πc1/2

(∣∣∣1 − Dc−12/42
∣∣∣c[13/42]

+ P (A∗)
)

−→ 0

as c goes to infinity. �
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A

In this appendix we show that the tilted probability of N[cα/2] > N converges to
zero, c−α

∑k
j=1 Zj → 0 as c goes to infinity and that the tail of the distribution

of the auxiliary stopping times, properly scaled, decay exponentially.
First note that c−α/2∆Nj

a.s→ t as c goes to infinity, by corollary 2.2. Lemma
2.1 is also applicable on ∆Nj . The recursive formulation of N[cα/2], equation (5),
involved the sum of the overshoots. We need therefore to know the asymptotic
behavior of the sum of overshoots.

Lemma A.1 Fix ε > 0 and assume that g′(θ) = b(t)/t. Let α > 0 and

{Zj}[cα/2]
j=1 be the sequence of overshoots over the auxiliary barriers. Then under

the tilted distribution there is a constant γ > 0 so that,

Pθ


[cα/2]∑

j=1

Zj > cαε


 ≤ exp

(
−cαγε + cα/2gZ

θ (γ)
)

,

where γ is such that,

gZ
θ (γ) = log

(
Eθ

[
eγZj

])
< ∞.

Furthermore, c−α
∑[cα/2]

j=1 Zj
a.s−→ 0, as c → ∞.

Proof. The overshoots are independent identically distributed by construction
and by the same type of argument leading to the Chernoff bound, see Bucklew
[2] or Hammarlid [5], we have that

Pθ


 k∑

j=1

Zj > cαε


 ≤ exp

(
−cαγε + cα/2gZ

θ (γ)
)

. (14)

For the moment, assume that there is a γ such that gZ
θ (γ) is finite and let

ε = c−α/4, then

∞∑
c=1

Pθ


 k∑

j=1

Zj > cαε


 ≤

∞∑
c=1

exp
(
−c3α/4γ + cα/2gZ

θ (γ)
)

< ∞.
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Hence c−α
∑k

j=1 Zj
a.s→ 0, as c goes to infinity by Borel-Cantelli lemma.

We now prove that there is a γ > 0 such that gZ
θ (γ) < ∞. Without loss of

generality, assume that b′(t) = 0, since we can always change drift. Define the
stopping times

N+ = inf{n : n ≥ 1, Sn > 0}
N− = inf{n : n ≥ 1, Sn < 0}.

and denote by Mθ(λ) = Eθ [exp (λX1)] and M±
θ (λ) = Eθ

[
exp
(
λSN±

)]
. Then

by Theorem 8.41 in Siegmund [9],

1 − Mθ(λ) =
(
1 − M+

θ (λ)
) (

1 − M−
θ (λ)

)
, for |λ| < ∞. (15)

We now use the law of total probability to split the moment generating function,

M−
θ (λ) =

∞∑
n=1

Eθ [exp (λSn) , N− = n] ≤
∞∑

n=1

Pθ(Sn < 0).

The drift is greater than zero under the tilted distribution, which implies that
Iθ(0) > 0. Hence

M−
θ (λ) ≤

∞∑
n=0

exp (−nIθ(0)) = (1 − exp (−Iθ(0)))−1
.

For some λ̄ we have that Mθ(λ) exists when |λ| < λ̄. These facts and equation
(15) give that M+

θ (λ) exists. Define the sequence of ladder variables as Wk =∑k
j=1 SN+(j), where SN+(j) are independent identically distributed uprisings.

Then the overshoot Z1 = Wk − cα/2b(t) for some k.
The idea now is to show that P (Z1 > z) ≤ constant · e−λz for some λ > 0.

The distribution of SN+ and Wk is written Fθ(ds) and F k∗
θ (dw) respectively and

P (Z1 > z) =
∞∑

k=1

∫
w≤cb(t)

F k∗
θ (dw) (1 − Fθ(cb(t) − w + z)) .

We can, since M+
θ (λ) exists for λ < λ̄, estimate

P (SN+ > z) ≤ exp
(−λz + g+

θ (λ)
)
,

where g+
θ (λ) = log

(
M+

θ (λ)
)
. Thus

P (Z1 > z) ≤ exp (−λz)
∞∑

k=1

∫
w≤cb(t)

F k∗
θ (dw) exp

(−λ(cb(t) − w) + g+
θ (λ)

)
,

where the sum part is uniformly bounded in c by the renewal theorem. �

It is easy to believe that there are equivalent results of exponential decay,
like Lemma 2.1, for Ñ and N[cα/2].

Lemma A.2 Fix arbitrary ε > 0 and let β > 0, η > 0 and α > 0. Then under
the tilted distribution there is a constant γ > 0 such that gZ

θ (γ) < ∞ and

Pθ

(∣∣∣∣∣
(
N[cα/2] − cαt

)η
cβ

∣∣∣∣∣ > ε

)
≤ 2cα/2t exp

(
−c2β/η−αγε2/η + cα/2gZ

θ (γ)
)

.
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where g′(θ) = b(t)/t and gZ
θ (γ) is defined in Lemma A.1. If 4β > 3αη then,

(N[cα/2] − ct)η

cβ

a.s−→ 0, as c → ∞.

Proof. The set {ω : |N[cα/2]/cα − t| > ε} is the union of the two disjoint sets

A′ =


ω : Sn ≥ cαb(t) + b′(t)(n − cαt) +

[cα/2]−1∑
j=1

Zj, for some n ≤ cα(t − ε)




A′′ =


ω : Sn < cαb(t) + b′(t)(n − cαt) +

[cα/2]−1∑
j=1

Zj, for all n ≤ cα(t + ε)


 ,

and Pθ(|N[cα/2]/cα − t| > ε) = Pθ(A′) + Pθ(A′′). These probabilities can be
dominated by large deviation estimates.

Fix δ > 0 such that (b(t − ε) + δ)(t − ε)−1 < b(t)/t, for example δ =

ε2, where ε is small enough. Denote the set D =
{∑[cα/2]−1

j=1 Zj < cαδ
}

and
Pθ (A′) ≤ Pθ (A′, D) + Pθ(D∗) where D∗ is the complement to D. By Booles
inequality and the Chernoff bound we have that,

Pθ (A′, D) ≤ Eθ


cαt exp


−cα inf

0<s≤t−ε
sIθ


b(s) + c−α

∑[cα/2]−1
j=1 Zj

s




 , D




≤ cαt exp
(
−cα inf

0<s≤t−ε
sIθ

(
b(s) + δ

s

))
.

The last inequality is true because Iθ(x) is decreasing for x ≤ b(t)/t.
The tilted rate function satisfies Iθ(b(t)/t) = 0 and the first order derivative

I ′θ(b(t)/t) = 0. The choice δ = ε2 gives after a Taylor expansion that,

inf
0<s≤t−ε

sIθ

(
b(s) + δ

s

)
=

(b′(t)t − b(t))2

2g′′(θ)t3
ε2 + O(ε3).

Hence, P (A′, D) ≤ cαt exp
(−cαdε2

)
, for some d < (b′(t)t − b(t))2

(
2g′′(θ)t3

)−1

and we have an estimate of P (D∗) by Lemma A.1. Let γ be such that γ ≤ d
and gZ

θ (γ) < ∞ then,

Pθ(A′) ≤ cαt exp
(−cαγε2

)
+ exp

(
−cαγε2 + cα/2gZ

θ (γ)
)

.

Almost identical calculations give

Pθ(A′′) ≤ exp
(−cαγε2

)
+ exp

(
−cαγε2 + cα/2gZ

θ (γ)
)

.

This together with the fact that the second term in the upper bound of P (A′)
(or P (A′′)) dominates the first imply that,

Pθ(|N[cα/2]/cα − t| > ε) ≤ 2cαt exp
(
−cαγε2 + cα/2gZ

θ (γ)
)

.
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Take ε > 0, then by the last equation,

Pθ

(∣∣∣∣ (N[cα/2] − cαt)η

cβ

∣∣∣∣ > ε

)
= Pθ

(∣∣∣∣N[cα/2]

cα
− t

∣∣∣∣ > c−α
(
cβε
)1/η
)

≤ 2cαt exp
(
−c2β/η−αγε2/η + cα/2gZ

θ (γ)
)

.

If 4β > 3αη then the right hand side converges to zero as c goes to infinity.
Let υ > 0 and 4(β − υ) > 3αη then

∞∑
c=1

Pθ

(∣∣∣∣(N[cα/2] − ct)η

cβ

∣∣∣∣ > c−υ

)
≤ 2

∞∑
c=1

cαt exp
(
−c(2β−αη−2υ)/ηγ + cα/2gZ

θ (γ)
)

,

is convergent. Hence the convergence is, by Borel-Cantelli lemma, almost sure.
�

One concern is the possibility that Nk > N or N[cα/2] > Ñ , that is that the
process hits the auxiliary barrier after the true barrier. The construction is such
that the probability of this event is vanishing.

Lemma A.3 Fix 0 < ε. Let g′(θ) = b(t)/t and 0 < α < 1. Then under the
tilted distribution

Pθ(N[cα/2] > N) ≤ exp
(
−(c − cα)γ(b(t) − b′(t)t) + cα/2gZ

θ (γ)
)

,

for some γ > 0 that fulfills gZ
θ (γ) < ∞. The cumlant generating function gZ

θ (γ)
is defined in Lemma A.1 and b(t) − b′(t)t > 0.

Lemma A.4 Fix 0 < ε. Let g′(θ) = b(t)/t and 0 < α < 1. Then under the
tilted distribution

Pθ(N[cα/2] > Ñ) ≤ exp
(
−(c − cα)γ(b(t) − b′(t)t) + cα/2gZ

θ (γ)
)

,

for some γ > 0 that fulfills gZ
θ (γ) < ∞. The cumlant generating function gZ

θ (γ)
is defined in Lemma A.1.

The proof of Lemma A.4 and Lemma A.3 is almost identical. Therefore is only
the first of the two Lemmas proved.

Proof. The linear barrier, defined by the first two terms of the Taylor ex-
pansion of cb(n/c), is passed before the original barrier. We have therefore by
the definition of N[cα/2] and by Lemma A.1 that

P (N[cα/2] > N) ≤ P


[cα/2]∑

j=1

Zj > (c − cα)(b(t) − b′(t)t)


 (16)

≤ exp
(
−(c − cα)γ(b(t) − b′(t)t) + cα/2gZ

θ (γ)
)

, (17)

where γ is such that gZ
θ (γ) < ∞ by Lemma A.3. The fact t ≤ T assure that

b(t) > b′(t)t. �

The auxiliary stopping time Ñ is very close to N , and the same type of
technique that is used to derive Lemma 2.1, see Hammarlid [5], can be used for
Ñ . We state the following lemma without proof.
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Lemma A.5 Let η > 0 and α > 0 such that α < 2η. Then under the tilted
distribution for arbitrary ε > 0,

Pθ

(∣∣∣∣∣ (Ñ − ct)α

cη

∣∣∣∣∣ > ε

)
≤ 2ct exp

(
−c2η/α−1dε2/α

)
,

where g′(θ) = b(t)/t. Also, c−η(Ñ − ct)α a.s−→ 0, as c → ∞.

Lemma A.6 Fix η > 0 and 0 < α < 2/3. Then under the tilted distribution,
where g′(θ) = b(t)/t, there are γ > 0 and ν > 0 such that 0 < 1−3/2α−2ν and

Pθ

(∣∣∣(Ñ − ct)2 − (Ñ − N[cα/2] − (c − cα)t)2
∣∣∣ > cη

)
≤

≤ 2
(
exp
(
−cα/2+νγ + cα/2gZ

θ (γ)
)

+ ct exp
(
−c1−3/2α−2νγ

))
,

for all c > 3η−2/ν . Furthermore,

lim
c→∞ c−1

(
(Ñ − ct)2 − (Ñ − N[cα/2] − (c − cα)t)2

)
a.s= 0.

Proof. The trick of the proof is to split the sample space into two sets, the
likely event A and the unlikely event A∗. On A the distance between the two
quadratic terms is converging to zero and limc→∞ P (A∗) = 0.

Fix ε = c−3α/4−ν and δ2 = c−α/2+ν to define the set

A = {ω : |N[cα/2] − cαt| < cαδ}
⋂

{|Ñ − ct| < cε}. (18)

On the set A, by the conjugate rule,

c−1
∣∣∣(Ñ − ct)2 − (Ñ − N[cα/2] − (c − cα)t)2

∣∣∣ =
= c−1

∣∣N[cα/2] − cαt
∣∣ ∣∣∣2(Ñ − ct) − N[cα/2] + cαt

∣∣∣
≤ c2α−1δ2 + 2cαδε

≤ c3α/2+ν−1 + 2c−ν/2

≤ 3c−ν/2 < η. (19)

for c > 3η−2/ν . Therefore, by the law of total probability,

Pθ

(∣∣∣(Ñ − ct)2 − (Ñ − N[cα/2] − (c − cα)t)2
∣∣∣ > cη

)
≤ P (A∗), when c ≥ 3η−2/ν .

We have by Lemma A.2 and Lemma A.5 that there is a γ ≤ d so that

Pθ(A∗) ≤ 2cαt exp
(
−cαγδ2 + cα/2gZ

θ (γ)
)

+ 2ct exp
(−cγε2

)
= 2cαt

(
exp
(
−cα/2+νγ + cα/2gZ

θ (γ)
)

+ 2ct exp
(
−c1−3/2α−2νγ

))
.

Let η = c−ν/4/3 then since c > 3η−2/ν = 3c1/2 is fulfilled for every c ≥ 3 we
have a convergent sum,

∞∑
c=1

Pθ

(
c−1
∣∣∣(Ñ − ct)2 − (Ñ − N[cα/2] − (c − cα)t)2

∣∣∣ > c−ν/4/3
)

≤ 2
∞∑

c=1

cαt exp
(
−cα/2+νγ + cα/2gZ

θ (γ)
)

+ ct exp
(
−c1−3/2α−2νγ

)
.
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Therefore by the Borel-Cantelli theorem we have almost sure convergence. �

Lemma A.7 When 0 < α < 2/3 and g′(θ) = b(t)/t then under the tilted
distribution,

N − Ñ
Pθ−→ 0, as c → ∞.

Proof. Fix ν > 0 such that 1 − 3α/2 − 2ν > 0 and let δ2 = c−α/2+ν and
ε = c−3α/4+ν . Define the set

A = {ω : |N[cα/2] − cαt| < cαδ}
⋂

{ω : |N − ct| < cε}
⋂

{ω : |Ñ − ct| < cε}.

The auxiliary barrier cb̃(n/c), Definition 2.4, is just in front of the true barrier
on the set A since by the conjugate rule,

cb(N/c) − b̂(N/c) =
b′′(t)
2c

(
(N − ct)2 − (N − N[cα/2] − (c − cα)t)2

)
+ h(c)

=
b′′(t)
2c

(
(N[cα/2] − cαt)(2(N − ct) − N[cα/2] + cαt)

)
+ h(c)

≥ −b′′(t)
2c

(
c2αδ2 + 2c1+αεδ

)
+ h(c)

= −b′′(t)
2

(
c1−3α/2−ν + 2c−ν/2

)
+ h(c)

≥ −3b′′(t)
2

c−ν/2 + h(c) = 0,

since h(c) = 3b′′(t)c−ν/2/2, see Definition 2.4. Therefore we have that Ñ ≤ N
on A.

By equation (19) we see that the stopping times are not equal on the set A
when,

{ω : Ñ < N} =
{
ω : cb̂(Ñ/c) ≤ SÑ < cb(Ñ/c)

}
=

{
ω : 0 ≤ ZÑ <

b′′(t)
2c

((
Ñ − N[cα/2] − (c − cα)t

)2

− (Ñ − ct)2
)

+ h(c)
}

⊆ {ω : 0 ≤ ZÑ < 2h(c)} .

The probability of the complement of A

Pθ(A∗) ≤ 2cαt
(
exp
(
−cα/2+νγ + cα/2gZ

θ (γ)
)

+ 2ct exp
(
−c1−3/2α−2νγ

))
,

by Lemma A.2, Lemma A.5 and Lemma 2.1. This and the law of total proba-
bility imply that

lim
c→∞Pθ(N 
= Ñ) = lim

c→∞Pθ(N > Ñ, A) + lim
c→∞Pθ(N 
= Ñ , A∗)

≤ lim
c→∞Pθ(0 ≤ ZÑ < 2h(c), A) + lim

c→∞Pθ(A∗)

= lim
c→∞F c

ZÑ
(2h(c)),

where F c
ZÑ

(z) is the distribution function of the overshoot for a fixed c. The
limit distribution FZÑ

(z) is continuous, see Hammarlid [5]. Therefore for fixed
ρ > 0 there is a c such that 2h(c) < ρ and F c

ZÑ
(h(c)) ≤ F c

ZÑ
(ρ). The limit

limc→∞ F c
ZÑ

(2h(c)) ≤ FZÑ
(ρ) ≤ ρ, but ρ is arbitrary. �
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[8] Martin-Löf A 1986 Entropy Estimates for the First Passage Time of a
Random Walk to a Time Dependent Barrier Scand J Statist, Vol. 13 221-
229

[9] Siegmund D 1985 Sequential Analysis Test and Confidence Intervals
Springer-Verlag




