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Abstract

Latent growth curve modelling is the commonly used method for
analyzing longitudinal twin data. Estimation is carried out using max-
imum likelihood under the assumption of multivariate normal out-
comes. We relate these models to a larger framework of latent variable
models and discuss extensions that relate to dropout, due to death
or for other reasons than death. The standard procedure for handling
incomplete data in latent growth models is to use full information max-
imum likelihood, which gives consistent estimates if values are missing
at random (MAR). We discuss the implications of this assumption for
making inference about of the importance of genes for di�erent features
of the underlying longitudinal process. Methods for assessing the im-
portance of genes are compared, and a new measure of heritability of
change is proposed.
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1 Introduction

Human phenotypes are affected by genes and/or environmental factors. The first step in
establishing the importance of genes involves studies based on family data. The idea is
to compare the phenotypic resemblance for different kinds of relatives. In twin studies,
assuming that the effect of environment shared by twins is the same for identical and
fraternal twins, a larger phenotypic resemblance among identical twins compared to
fraternal twins is interpreted as an effect of genes.

Longitudinal twin data makes it possible to answer questions that are not possible with
cross-sectional data. It also introduces a need for new statistical tools. Approaches for
modelling the dependency between observations in longitudinal data can be classified
into three families of models: marginal models, transition models and random effects
models (Diggle, Liang, and Zeger, 1994). In some situations hybrids of these models
are the most appropriate. In marginal models the dependency is accounted for by
introducing a correlation structure between observations. Transition models assume
observations to depend on earlier observations, and random effects models include
latent, unobserved, variables shared by observations from the same unit to account for
the dependency. The three types of models address different aspects of the underlying
process and the choice of model framework will depend on what assumptions that can
be made about the underlying process and what questions that are of scientific interest.

For twin research focus is on testing hypothesis about the effect of genes (often un-
observed) and environmental factors (observed or unobserved). Therefore, the natu-
ral choice is to base the analysis on a model including latent, unobserved, variables.
Classical twin models for cross-sectional data belong to the domain of structural equa-
tion models (SEM) (e.g. Bollen, 1989). For longitudinal twin data, these models are
extended to incorporate the dependency between repeated measurements from the
same individual and are then referred to the domain of latent growth curve models
(LGCM)(e.g. McArdle and Hamagami, 2003).

The models for twin data, cross-sectional as well as longitudinal, all belong to a larger
framework of latent variable models. This framework include latent variable models for
(multivariate) responses of mixed type, including continuous responses, counts, survival
data, dichotomous, ordered and unordered categorical responses and rankings. Other
examples include multilevel models, mixed (random effects) models, factor models and
latent class models. All these models belong to the same family of generalized latent
variable models (Muthén, 2002; Skrondal and Rabe-Hesketh, 2004). In this work we
focus on models for multivariate continuous responses, but the fact that these belong to
a larger model framework will be important when extending the classical twin models
to incorporate new features.

We study the process of cognitive decline in late life based on a sample of twins from
the Swedish Adoption/Twin Study of Aging (SATSA), which is a longitudinal study
investigating the aging process (Pedersen, McClearn, Plomin, Nessleroade, Berg, and
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de Faire, 1991). The participants in the SATSA are a population-based sample from
the Swedish Twin Registry (Lichtenstein, deFaire, Floderus, Svartengren, Svedberg,
and Pedersen, 2002; Pedersen, Lichtenstein, and Svedberg, 2002). The sample we use
include 840 twins that have participated in at least one in-person testing, including a
battery of cognitive tests, and who reached the age of 50 years during their participation
in the study. The maximum number of repeated measurements for an individual is four,
spanning over 13 years.

Longitudinal aspects of the data have been examined based on different growth mod-
els, such as linear growth models (e.g. Reynolds, Finkel, Gatz, and Pedersen, 2002a;
Reynolds, Gatz, and Pedersen, 2002b) and quadratic growth models (e.g. Reynolds,
Finkel, McArdle, Gatz, and Pedersen, In press). Selective dropout from the study, due
to death or for other reasons than death may, however, introduce bias in these models
(Pedersen, Ripatti, Berg, Reynolds, Hofer, Finkel, Gatz, and Palmgren, 2003). Indeed,
for any longitudinal study, especially of processes in late life, we expect some partic-
ipants to drop out from the study. The standard procedure is to ignore the dropout
mechanism, and base the estimation on full information maximum likelihood (FIML).
Using the notation of Little and Rubin (2002), estimates obtained in this way are con-
sistent only if values are missing completely at random (MCAR) or missing at random
(MAR). This study sets out to investigate whether dropout, possibly correlated within
twin pairs, affects estimates of heritability of change in cognition.

In the SATSA sample of 840 individuals 130 died before the fourth testing occasion.
It has been suggested that cognitive decline in old age is related to impeding death,
and that the dropout is informative and should be considered in the longitudinal data
analysis (Pedersen et al., 2003). Another issue is the fundamental difference between
dropout due to death and dropout for other reasons than death where the individual
remain alive after dropping out (Zhang and Rubin, in press). In the former situation,
values are not ”missing” since cognitive measures after death are not a meaningful
concept.

In section 2 classical twin models are described and measures of the importance of genes,
such as the concept of heritability, is introduced. The framework of latent variable
models for multivariate normal outcomes, including comments on model estimation,
identification and selection, is presented in section 3. The special case of latent growth
curve models for longitudinal twin data is treated in section 4. Section 5 is devoted
to the issue of dropout, including general missing data theory and a discussion of the
specific problem of truncation due to death. Methods for modelling the dropout process,
as well as the methodological issues that may appear, are described in the manuscript
in the Appendix, with an application to dropout from the SATSA. Latent growth curve
models are fitted to data from the SATSA in section 6. Some remarks about the area
of longitudinal twin modelling, as well as plans for future research, is given in section
7.

This study provides a framework for investigating under what conditions selective
dropout of twins can introduce bias in estimates of heritability of change. Further
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analytic work and simulation studies are planned in the PhD thesis in order to give a
more comprehensive answer to this question.

2 Biometrical models

Biometrical models are models that incorporate familial resemblance. The aim with
such models is to reveal the relative importance of genes and environment for a quanti-
tative trait. The simplest twin model for a univariate trait, measured at one time point,
is first introduced, followed by a discussion of extensions to twin data with repeated
measurements of a trait.

2.1 Cross-sectional twin models

Twin models are based on knowledge about the fraction of genes shared by identical
(monozygotic or MZ) and fraternal (dizygotic or DZ) twins. Assuming that the en-
vironmental effect is the same for MZ and DZ twins, a larger similarity within MZ
compared to DZ twin pairs is interpreted as an effect of genes. The general idea is to
model the trait value for each twin as a function of unobserved, latent, genetic factors,
as well as observed and unobserved environmental factors. Genetic factors can have an
additive effect on a trait value, or show a dominance deviation, reflecting the extent
to which the effect of alleles at a locus do not simply ”add up” (e.g. Plomin, DeFries,
McClearn, and McGuffin, 2001). We use the notation ηAj for an additive genetic effect
and ηDj for a dominant genetic effect acting on a univariate trait, denoted Yj for twin
j (j = 1, 2). Unobserved environmental factors can be either shared within twin pairs,
denoted ηCj , or individual-specific, denoted ηEj . The model for twin j is

Yj = βxj + λAηAj + λDηDj + λCηCj + λEηEj , (1)

where xj is a vector of observed covariates and β the parameter vector for fixed effects.
The latent variables ηAj , ηDj , ηCj and ηEj are all unobserved and assumed to be
independent and normally distributed with mean 0 and variances σ2

A, σ2
D, σ2

C and σ2
E ,

respectively. The parameters λA, λD, λC and λE are referred to as factor loadings or
path coefficients.

Based on some assumptions for the genetic mechanism, such as random mating and
Hardy-Weinberg equilibrium in the population, the within-pair correlation for genetic
factors can be derived. It can be shown that ρ(ηA1, ηA2) = 1 and ρ(ηD1, ηD2) = 1 for
MZ twins, and ρ(ηA1, ηA2) = 0.5 and ρ(ηD1, ηD2) = 0.25 for DZ twins (e.g. Plomin
et al., 2001). For the shared environment ρ(ηC1, ηC2) = 1 for both MZ and DZ twins.
Genetic and environmental factors are assumed to be independent.

The normality assumption is motivated by assuming effects to consist of contributions
from several different genetic and environmental sources. If each contribution is small
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and independent of other effects, the central limit theorem gives normally distributed
traits (Lange, 1978). This model, which assumes that many genes are acting on the
trait, and that there is no major effect of a specific gene, is called a polygenic model.
Hindsberger (2001) give an overview of the assumptions underlying the classical twin
model, and propose an approach for analyzing twin data where the normality assump-
tion is relaxed.

The cross-sectional twin model can be parameterized as a variance component model,
fixing the factor loadings, λA, λD, λC and λE , to one and estimating the variances, σ2

A,
σ2

D, σ2
C and σ2

E , for the latent variables. Alternatively, the model can be parameterized
as a path coefficient model, fixing the variances for the latent variables and estimating
the factor loadings. If we parameterize model (1) as a variance component model, the
distribution of Yj is given by

E[Yj ] = βxj

Var(Yj) = σ2
A + σ2

D + σ2
C + σ2

E

CovMZ(Yj) = σ2
A + σ2

D + σ2
C

CovDZ(Yj) = 0.5σ2
A + 0.25σ2

D + σ2
C .

The impact of genes versus environment in the general population can be measured by
the broad-sense heritability, defined as the fraction of the phenotypic variance due to
genetic factors:

h2
B =

σ2
A + σ2

D

σ2
A + σ2

D + σ2
C + σ2

E

.

It is not possible to estimate the four variance components in model (1) from only three
equations. One solution is to fit several constrained models, and compare them based
on fit indicies such as the Akaike information criterion (AIC) (Akaike, 1987). Often
the dominant genetic effect is excluded and the genetic effect assumed to be solely
additive. This model is referred to as the ACE model. For complex traits the additive
model has proven adequate based on empirical evidence. The model can be formulated
in terms of the model equations or graphically by the corresponding path diagram in
Figure 1. Following the conventions of path diagrams, circles represent latent variables,
rectangles represent observed measurements and arrows represent linear relations.

2.2 Longitudinal twin models

For cross-sectional data it is clear how to measure the importance of genes, using the
heritability measure defined above. For longitudinal data we first need to specify the
shape of individual trajectories and decide which aspects that might be affected by
genes. Often interest focuses on the genetic effect acting on the phenotypic level and
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Y1 Y2

x2

ρ=1
ρ=1 for MZ
ρ=0.5 for DZ

ηA1 ηC1 ηE1 ηE2ηA2 ηC2

twin 2

λEλA λA λE

λC λC

twin 1

x1

Figure 1: Path diagram for cross-sectional twin model for a univariate trait. The variable ηA is an

unobserved additive genetic factor, ηC and ηE represent shared and non-shared environmental factors.

on the phenotypic change, respectively. The simplest model assumes the rate of change
to be constant, but other models may be more appropriate. In section 4 different
longitudinal models are discussed in more detail.

Conclusions about the importance of genes are usually based on the comparison of mod-
els with and without genetic factors included, using some measure of model goodness-
of-fit. We propose a new measure of heritability of change and emphasize the need to
explore its statistical properties.

3 Latent variable models

Latent growth curve models (LGCMs) typically used for analyzing longitudinal twin
data belong to the larger framework of latent variable models (Muthén, 2002; Skrondal
and Rabe-Hesketh, 2004). Models for various types of outcomes are included in this
larger framework. Acknowledging LGCMs as a part of this larger framework will be
important for model development, for data with non-normal outcomes, and possibly
also for incorporation of the dropout process in the analysis of the longitudinal data.

The following presentation of the general model is restricted to models for multivariate
normal outcomes. This is the scenario for quantitative traits where several genes and
environmental factors act, and each of them has a small effect on the trait.
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3.1 General model formulation

A general formulation of a latent variable model, which extends the basic twin model
in (1), is

Yi = Ληi + βxi + εi (2)

ηi = Bηi + Γxi + ζi, (3)

where Yi is a p-dimensional vector of outcomes, ηi an m-dimensional vector of latent
random variables, xi a q-dimensional vector of fixed and known covariates and εi and
ζi vectors of random errors, of dimension p and m respectively, with mean zero. The
index i represent units. For twin data, twin pairs form the units. Λ is a p×m matrix of
measurement slopes or factor loadings, and β is a p× q parameter matrix of regression
slopes. β corresponds to the direct influence of x variables on y variables. B is an
m × m parameter matrix of slopes for regression of latent variables on other latent
variables. B has zero diagonal elements and it is assumed that I −B is non-singular.
Furthermore, Γ is an m×q slope parameter matrix for regression of the latent variables
on the known covariates. The first equation (2), which specifies the model for the vector
of measured outcomes, is called the measurement model. The second equation (3) is
called the structural model and specifies the model structure for the latent variables.
Inserting the structural equation into the measurement model, the model for the vector
of outcomes for unit i can be expressed as

Yi = Λ(I−B)−1Γxi + βxi + Λ(I−B)−1ζi + εi.

The mean vector µi and variance-covariance matrix Σi for Yi are thus

µi = Λ(I−B)−1Γxi + βxi (4)

Σi = Λ(I−B)−1Ψ((I−B)−1)TΛT + S, (5)

where Ψ = Var(ζi) is the variance-covariance matrix for the disturbance errors for
latent variables and S = Var(εi) is the variance-covariance matrix for the error terms
for observed outcomes. If we set S to be a diagonal matrix this corresponds to assuming
observed outcomes to be conditionally independent given the latent variables. The
parameters to be estimated are the parameters appearing in Λ, β, B, Γ, Ψ and S,
which we jointly denote θ. The type of model investigated determines which parameters
that are fixed and which are free to be estimated.

In some situations the matrices Λ, β, B and Γ will be different for different units. For
example, in latent growth curve models the measurement scores in Λ will depend on
the time points at which outcomes were observed, and can be different for different
units if the data is unbalanced. In this case an index i is added to the matrices.
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3.2 Implicit assumption about variance structure

From the expression for the variance-covariance matrix, Σi, in (5) it is clear that this
latent variable model imposes a specific structure on the variances and covariances for
the outcomes. In latent growth modelling inclusion of a latent random slope on some
time scale is common. For example, the most simple random slope model has the form

Yjt = β0 + β1t + η0j + η1jt + εjt,

where Yjt is the trait value for individual j at time t. The parameters β0 and β1

are the population mean intercept and slope and η0j and η1j represent the random
intercept and random slope for individual j, measured as a deviation from the mean.
εjt is an error term. In the general formulation (2) this model corresponds to setting
all the elements in B and Γ equal to zero. Λ is a matrix with a column of ones and
a column of t’s. Assuming the vector of latent variables ηj = (η0j , η1j)T to follow a
multivariate normal distribution N(0,Ψ) and the error terms εjt to be independent
and normally distributed N(0, σ2) and independent of ηj , the vector of trait values Yj

follow a multivariate normal distribution with mean µj and variance-covariance matrix
Σj with elements

µjt = E[Yjt] = β0 + β1t

Σj(tt) = Var(Yjt) = ψ11 + 2ψ12t + ψ22t
2 + σ2

Σj(tt′) = Cov(Yjt, Yjt′) = ψ11 + 2ψ12(t + t′) + ψ22tt
′.

The time t appears in the expression for the variance, which implies a heteroscedastic
model for the variance. In the discussion of different shapes of individual trajectories
in latent growth models this is important to bear in mind.

3.3 Maximizing the likelihood

Estimates of the parameter vector θ can be obtained by maximum likelihood estimation
based on the model

Yi = N(µi(θ),Σi(θ)),

where Yi is the outcome for unit i. If there are n observed units, i.e. y = (y1, ...,yn),
the log-likelihood is

l(θ|y) =
n∑

i=1

−1
2

ln |Σi| − 1
2
(yi − µi)

TΣ−1
i (yi − µi), (6)
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where the mean vector µi = µi(θ) and the variance-covariance matrix Σi = Σi(θ)
have the form given by (4) and (5). The maximum likelihood estimator (MLE) of
θ is obtained by maximizing (6) with respect to the parameters in θ. In general,
the likelihood function is a complicated non-linear function of the parameters and no
explicit solutions exist. Instead, an iterative numerical procedure is necessary to obtain
the MLEs. The MLEs are consistent and asymptotically unbiased, although they may
be biased in small samples.

For some special cases of the general model, methods have been derived to obtain
unbiased estimates of the variance components in θ. For the linear mixed model,
assuming no covariate effects on the latent variables, the general model reduces to
Yi = N(βxi,Σi(α)), where α correspond to the variance components, and θ = (β,α).
Unbiased estimates of the variance components in this model are obtained using re-
stricted maximum likelihood (REML) (e.g. Verbeke and Molenberghs, 2000). This
procedure takes into account the uncertainty due to the estimation of fixed effects, β,
in the estimation of the variance components α.

In the general model with mean and variance-covariance structure given in (4) and
(5), some of the parameters in θ appear both in the mean and variance-covariance
expression, and restrictions of the likelihood to obtain unbiased estimates of variance
components has not been discussed much in the literature. However, the difference
between estimates obtained from ML and REML should not be large if number of
units is large and number of fixed effects limited.

3.4 Model identification

The problem of identification has two different components: parameter identification,
referring to the ability of the observed data to render unique parameter estimates
for a given model, and model equivalence, referring to the fact that several different
parameterizations may yield the same response distribution, even when the observed
data fits the model perfectly (Skrondal, 1996). For the latter problem we have to
rely on substantive theory, in choosing between models. The following discussion of
identification concerns parameter identification.

There are two types of identification: global and local identification (e.g. Bollen, 1989).
A parameter vector θ is globally identified if there are no vectors θ1 and θ2 such that
f(Y|x; θ1) = f(Y|x; θ2) unless θ1 = θ2. Local identification is a weaker concept of
uniqueness: a parameter vector θ is locally identified at a point θ1, if, in the neighbor-
hood of θ1, there is no vector θ2 for which f(Y|x; θ1) = f(Y|x;θ2) unless θ1 = θ2.
Global identification trivially implies local identification, and local identification is nec-
essary but not sufficient for global identification.

One way to establish identification is analytically. For example, assuming the outcome
to follow a multivariate normal distribution, i.e. Y ∼ N(µ(θ),Σ(θ)), each element of
θ must be solved for in terms of one or more elements of the observed mean vector
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µ and the observed variance-covariance matrix Σ. However, with even moderately
complex models, solving the set of nonlinear equations for the unknown parameters
can prove virtually impossible. For some special cases analytic checks of the model has
been suggested, but there are no conditions that are both necessary and sufficient for
the general model (Bollen, 1989).

Given this situation, researchers often turn to empirical tests of identification. The em-
pirical procedures test local identification. Although establishing global identification
is preferable, checks on local identification is still useful. It provides a means to detect
some models that are not globally nor locally identified, since failure to achieve local
identification tells us that global identification also fails.

One approach for empirical identification is to check the information matrix, defined
as minus the expected value of second-order partial derivatives of the log-likelihood.
The parameter θ is locally identified at some point θ1, if and only if the inverse of the
information matrix exists, i.e. if the information matrix is non-singular (Rothenberg,
1971). However, there are sources of uncertainty to this test, since we need to rely
on numerical means to evaluate the singularity of the information matrix. Further,
the local identification is evaluated at the estimated value θ̂, rather than the true
population parameter value θ. Other empirical tests exist, such as starting the model
estimation from different positions (starting values) in the parameter space to see if it
converges to the same parameter estimates each time.

3.5 Model selection

For twin data, interest is primarily in the variance components, and inference about
variance components is typically based on model comparisons. There are several op-
tions for choosing fit criterion (e.g. Tanaka, 1993; Skrondal, 1996). One option for
comparing nested models is to perform conventional likelihood-ratio testing. For two
models M1 and M2, where M2 is nested within M1, with log-likelihoods l(θ̂M1|y;x)
and l(θ̂M2|y;x) respectively, the test statistic is

D = 2
(
l(θ̂M1|y;x)− l(θ̂M2|y;x)

)
.

Under the restricted model M2, this test statistic is asymptotically χ2-distributed with
df degrees of freedom, where df is the difference in number of parameters in the two
models compared (e.g. Pawitan, 2001).

One of the regularity conditions under which the chi-squared approximation is valid is
that the parameter values in the restricted model M2 are not on the boundary of the
parameter space. When testing the significance of variance components, we typically
fit a restricted model where the variance component is set to zero, and since variance
components can not be negative the null value is on the boundary. In these situations
the likelihood ratio test statistic does not follow the simple χ2-distribution above (e.g.
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Verbeke and Molenberghs, 2000).

Another model selection criterion is the Akaike information criterion (AIC), defined
as AIC = −2l(θ̂|y;x) + 2r, where θ̂ is the MLE and r the dimension of θ (Akaike,
1987). Using the AIC, the log-likelihood of a model is penalized by the number of
parameters in the model, which makes for a fairer comparison between models. Models
with smaller AIC are preferred. AIC also allows for comparison of non-nested models.
Alternative measures of goodness-of-fit have been suggested, e.g. so called goodness of
fit indices (GFI) and measures of approximate fit such as the ”root mean square error
of approximation” (RMSEA) (e.g. Bollen, 1989).

Approximate standard errors for the parameter estimates are obtained from the inverse
of the information matrix, and hence performing a Wald test is an option for making
inferences provided the parameter estimates follow a normal distribution. The normal
approximation fails completely fails, however, if the parameter is on the boundary of
the parameter space.

4 Latent growth models for longitudinal twin data

The first step in latent growth curve modelling of longitudinal twin data is to formulate
growth models that correspond to the shape of individual trajectories, which also cor-
respond to aspects of growth that are of interest and make biologically sense. In this
section a few growth models are discussed, and details of the linear model presented.

4.1 Shape of individual trajectories

In the analysis of longitudinal data one major task is to formulate the longitudinal shape
of the individual trajectories. For twin data, the goal is to make inference about the
genetic importance for the longitudinal process, and we want the model to correspond
to a structure that we believe exists in reality and which is meaningful in this context.
If little is known about the longitudinal process, the first step is to explore models for
the shape by comparing different latent growth models. At this stage, the structure of
within pair covariances is left completely unspecified, allowing the correlation within
pairs to be different for MZ and DZ twins.

The simplest model is the linear model, which assumes the rate of change to be con-
stant over time. This model includes individual-specific random intercepts and random
slopes. For many traits the linear model is too simplistic. One possibility is to extend
it by including a random quadratic term. However, it is not clear how to biologically
interpret an estimated genetic or environmental effect on individual-specific quadratic
terms.

A plausible alternative model for the example considered here, a study of cognitive
decline in old age, is a hidden change-point model where trajectories are allowed to
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be segmented and have different shapes before and after an individual-specific change-
point (Slate and Turnbull, 2000). This model would allow for testing of the hypothesis
that genes regulate the age for terminal drop (terminal decline) in cognition. According
to the hypothesis of terminal drop, most people maintain quite stable into old age, and a
more marked decline is an indication of impending death (e.g. Berg, 1996). The hidden
change-point model would also allow for estimation of the variability in the number of
years before death that terminal drop occurs. Ignoring the biometrical structure for
twins, this model belongs to the domain of non-linear mixed effects model (Lindstrom
and Bates, 1990). We now proceed to discuss the linear growth curve model in detail
and return to the change-point model in section 7, where plans for future research are
discussed.

4.2 The linear ACE model: a ”Cholesky model”

When the shape of individual trajectories is established the full covariance structure
can be specified. One model that has been widely used is the linear growth curve model
(e.g. Reynolds et al., 2002a,b, In press; McArdle, 1986; McArdle and Hamagami, 2003)
assuming an additive genetic effect as well as shared and unshared environmental factors
to affect the random individual-specific level and slope. We refer to this model as the
linear ACE model. The model equations for twin j in pair i at time t is

Yijt = ηIij + ageijtηSij + εijt (7)

ηIij = γIxIij + λA1ηAIij + λC1ηCIij + λE1ηEIij (8)

ηSij = γSxSij + λA2ηAIij + λC2ηCIij + λE2ηEIij+ (9)

+ λA3ηASij + λC3ηCSij + λE3ηESij ,

where ηIij and ηSij are the individual-specific random intercept and random slope re-
spectively. The vectors xIij and xSij in (8) and (9) denote vectors of observed covariates
that affect intercept and slope, with γI and γS the corresponding parameter vectors.
This model is specified so that observed covariates are assumed to act on the underly-
ing (unobserved) latent process and not directly on the observed outcome Yijt. Direct
covariate effects on the outcome could be incorporated.

In model (7) the time scores to define the time scale for the slope has been expressed
in terms of age, incorporating staggered entry into the study, with individuals entering
at different ages. It also allows for unbalanced data, where the time distance between
repeated measures are different for different individuals.

The latent variables ηAIij , ηCIij and ηEIij correspond to additive genetic and environ-
mental (shared and non-shared) factors assumed to act on both the phenotypic level
and on the rate of change. The latent variables ηASij , ηCSij and ηESij denote fac-
tors which only load on the rate of change. This parametrization is sometimes called
a ”Cholesky model”, referring to the specific way of introducing correlation between
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Figure 2: Path diagram for linear latent growth model for twins, assuming an additive genetic effect,

as well as shared and non-shared environmental effects on level and slope.

variables by having several sets of latent variables (Loehlin, 1996). In this model the
variances for the latent genetic factors, ηAI and ηAS , as well as the latent environmental
factors, ηCI , ηCS , ηEI and ηES , are all set equal to one. Instead, the factor loadings,
λA1, λC1, λE1, λA2, λC2, λE2, λA3, λC3 and λE3, are estimated to assess whether ge-
netic or environmental factors are the most important for the trait level and the rate
of change.

The linear ACE model specified by the model equations in (7), (8) and (9), correspond
to the path diagram in Figure 2. In the picture the information available about corre-
lations between genetic factors for twins, which is equal to 1 for MZ and equal to 0.5
for DZ twins, have been included.

In this model the correlation between level and slope enters only through the latent
variables ηAIij , ηCIij and ηEIij , which load on both the level and the slope. This means
that at least one of the factor loadings λA2, λC2 and λE2 will be different from zero if
there is a correlation between level and slope. From this we could draw the conclusion
that some of the factors that affect level and slope are correlated. However, it should
not be over-interpreted as if it is the same genes or the same environmental factors.

Often, conclusions about the genetic importance for aspects of the growth are based
on comparisons between model (7), and models where one of the genetic factors, ηAI

or ηAS , are excluded. To test whether there is a genetic effect on the rate of change the
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genetic factor only acting on the slope, ηAS is excluded. Also, the factor loading from
the genetic factor ηAI to the slope, i.e. λA2, is set to zero.

As an alternative to model comparisons one could measure the importance of genes
in terms of functions of the variance components. One measure that has been used
is the trajectory of heritability, which expresses the fraction of phenotypic variance at-
tributable to genetic sources at each age, e.g. (e.g. McArdle and Hamagami, 2003). We
propose an other measure, the heritability of change. In the linear model this corre-
sponds to the importance of genetic sources for the rate of change, which is assumed to
be constant over time. We define the heritability of change as the fraction of variability
in the random slopes, Var(ηS), attributable to genetic factors

h2
S =

λ2
A2 + λ2

A3

λ2
A2 + λ2

A3 + λ2
C2 + λ2

C3 + λ2
E2 + λ2

E3

. (10)

We return to the concept of heritability of change in section 7 and discuss means of
assessing distributional properties of h2

S .

5 Missing values in longitudinal twin studies

To clarify the assumptions underlying the model estimation procedure for incomplete
longitudinal twin data, using full information maximum likelihood, general missing data
theory is first given as a background. The difference between dropout due to death and
dropout for other reasons than death is pointed out. We discuss dropout mechanisms in
the twin setting, and elaborate on situations in which dropout can be ignored. In this
section methods for exploring the dropout process are briefly mentioned, and we refer
to the manuscript in the Appendix for a more detailed description and an application
to a sample from the Swedish Adoption/Twin Study of Aging (SATSA).

5.1 General missing data theory

A general treatment of statistical analysis of data with missing values is given by Little
and Rubin (2002) where a useful hierarchy of missing value mechanisms are introduced.
Let Y denote the data matrix. Further, denote the observed part of Y by Yobs, and
the missing part by Ymis, so that Y = (Yobs,Ymis). An informal description of values
being missing at random (MAR) is that the probability that a value is missing may
depend on Yobs but not on Ymis. Despite the name, MAR does not suggest that the
missing values are a simple random sample of all values. The latter condition is known
as missing completely at random (MCAR). MAR is less restrictive than MCAR because
it requires only that the missing values behave like a random sample of all values within
subclasses defined by observed data.

Let R be a matrix of indicator variables whose elements are zero or one depending
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on whether the corresponding elements of Y are missing or observed. The probability
model for R, denoted by P (R|Y; ξ), depends on Y as well as some unknown parameters
ξ. More formally, MAR can be described in terms of the probability model for R:

P (R|Y; ξ) = P (R|Yobs; ξ). (11)

If some of the data are missing the ”observed data” truly consist not only of Yobs but
also of R and the probability distribution of the observed data is given by

P (R,Yobs|θ, ξ) =
∫

P (R,Y|θ, ξ)dYmis

=
∫

P (R|Y, ξ)P (Y|θ)dYmis.

When values are MAR, i.e. when condition (11) holds, the probability distribution for
the observed data is

P (R,Yobs|θ, ξ) = P (R|Yobs; ξ)
∫

P (Y|θ)dYmis

= P (R|Yobs; ξ)P (Yobs|θ).

If the measurement parameters, θ, and the parameters for the missing value model, ξ,
are distinct, which means that the joint parameter space of (θ, ξ) is the product of the
individual parameter spaces for θ and ξ, estimation of θ can be based on what Little
and Rubin (2002) refers to as the likelihood ignoring the missing data mechanism,
L(θ|Yobs) ∝ P (Yobs|θ). Note that θ refers to the parameters of the model for the
complete data Y = (Yobs,Ymis), not the parameters for the distribution of Yobs alone.

If data is MAR and the parameters θ and ξ are distinct, the missing value mechanism
is said to be ignorable (Little and Rubin, 2002). If this is not the case, the missing
value mechanism is said to be non-ignorable or informative.

5.2 Full information maximum likelihood

Assuming that the complete-data model, P (Yobs|θ), is correct and that the missing
value mechanism is ignorable, all relevant statistical information about the parameters
θ is contained in the observed-data likelihood L(θ|Yobs). This tends to be a complicated
function of θ and special computational tools, such as the EM algorithm (Dempster
et al., 1977), are needed. We index the unique missing data patterns that appear in the
sample by s, s = 1, 2, ..., S, and let I(s) denote the subsets of the twin pairs that exhibit
pattern s. Assuming that the observed data vector yi for each pair i (i = 1, 2, ..., n) is
a sample from a multivariate normal distribution the observed-data log-likelihood is
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l(θ|Yobs) =
S∑

s=1

∑

i∈I(s)

−1
2

ln |Σi| − 1
2
(yi − µi)

TΣ−1
i (yi − µi),

where µi = µi(θ) is the mean vector and Σi = Σi(θ) the variance-covariance matrix
for twin pair i. These vectors and matrices will be of different dimensions if some
values are missing for some twin pairs. The procedure for estimating the parameters θ

based on maximization of this log-likelihood is referred to as full information maximum
likelihood (FIML) or raw maximum likelihood. The EM algorithm needed to do this
is described in Little and Rubin (2002). The procedure gives efficient and consistent
estimators as long as the missing value mechanism is ignorable.

5.3 Ignorable missingness?

To establish whether the missing value process is ignorable we need to know whether
values are MAR and if the parameters for the longitudinal process, θ, and the param-
eters for the missing value process, ξ, are distinct. However, it is not possible to test
whether these assumptions hold, since non-ignorable missingness by definition means
that the missing value process can not be explained (or explored) by the observed part
of the data. Hence, the options available are to either model the missing value mecha-
nism jointly with the longitudinal process, do a sensitivity analysis on how much we can
expect missingness to affect the results based on the observed data, or argue why the
missing value mechanism should be ignorable based on substantive knowledge about
the longitudinal as well as the missing value mechanism.

In the discussion of ignorability in the setting of longitudinal twin data, we need to
formulate the processes we believe are acting, and the nature of model parameters.
Here, both parameters corresponding to genetic effects, as well as parameters for envi-
ronmental effects, are incorporated in the model, and θ = (θgenes, θenv).

In the SATSA there are both intermittent missing values and dropouts. We believe
that intermittent missing values are indeed ignorable, but suspect that this might not
be the case for dropout. The main reasons for dropout is death or that individuals
develop dementia, in which case values will be censored. It has been shown that both
longevity (Yashin and Iachine, 1995) and dementia (Gatz, Pedersen, Berg, Johansson,
Johansson, Mortimer, Posner, Viitanen, Winblad, and Ahlbom, 1997) has genetic as
well as environmental components, and the parameters for the dropout process could be
expressed as ξ = (ξgenes, ξenv). Ignorability in this setting means that values are MAR
and that genes and environmental factors affecting the longitudinal and the dropout
process are acting independently. This is probably not the case when studying cognitive
decline in old age, with dropouts due to development of dementia or due to death.
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5.4 Dropout due to death

The standard approaches for handling missing data assume missing values to hide true
values, and estimation of parameters are performed by integrating over, or imputing,
missing values. However, truncation of follow up data due to death is conceptually
different from dropout where the individual stays alive. For most outcomes it is not
reasonable to think of missing values after death, since they are counterfactual and
poorly defined. The value is ”missing” not because a non-null value exists and is
unobserved, but because a non-null value does not exist. The topic of truncation due
to death has been subject to increasing interest in the last few years and has been
discussed in the framework of estimation of causal effects of treatments (Zhang and
Rubin, in press).

If death times are available one approach for incorporating death, if believed to be
related to the longitudinal process, is to model longitudinal data and survival jointly
(e.g. Hogan and Laird, 1997b,a). Although this procedure incorporates informative
dropout it still does not account for the fundamental difference of truncation due to
death and missing values for other reasons. What truncation by death means for the
analysis of longitudinal twin data is not clear and how to handle it remains an open
question.

5.5 Modelling the dropout

It is useful to model dropout as a function of observed data, to find evidence against
the hypothesis of values being MCAR. As mentioned, it is not possible to find evidence
against MAR from the observed data. However, regardless of whether the dropout
process is MAR or non-ignorable, it is useful from a substantive point of view to model
the dropout process and to try to understand how it is related to the data observed
prior to dropout.

In the manuscript in the Appendix we model dropout from the SATSA as a discrete
process in time, distinguishing between dropout due to death and dropout for other
reasons than death. Methodological issues include (i) how to handle item non-response,
leading to missing covariates in the dropout model, (ii) how to reduce the dimension of
covariates in the dropout model, and (iii) how to incorporate within twin pair depen-
dence in dropout. We refer to the manuscript in the Appendix for a description of the
methods and the results for the SATSA.

6 Application to SATSA

The motivation for our research on methods for analyzing longitudinal twin data is
the Swedish Adoption/Twin Study of Aging (SATSA), which is a study of the aging
process in late life. In this section we describe the sample and the phenotype considered,
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cognitive ability. Different latent growth curve models are discussed and results from
fitting linear growth curve models are given.

6.1 The data

The Swedish Adoption/Twin Study of Aging (SATSA) is a study of factors influencing
normal aging. The SATSA includes both questionnaire assessments and in-person
testings of cognitive and functional capabilities, personality and health (Pedersen et al.,
1991). The base population of the SATSA comprise all twin pairs in the Swedish Twin
Registry who indicated that they had been reared apart, and a control sample of twins
reared together, matched to those reared apart on gender, age and county of birth
(3838 individuals). We refer to Lichtenstein et al. (2002) or Pedersen et al. (2002) for
a general description of the Swedish Twin Registry. The first in-person testing (IPT1)
in SATSA took place in 1986-1988 for a sub-sample of pairs and follow-up data were
obtained after three (IPT2), six (IPT3) and thirteen years (IPT4). Testing took place
in a location convenient to the twins, such as district nurses’ offices, health-care schools,
and long-term care clinics. Testing was completed during a single 4-hour visit.

The SATSA sample used in this study is restricted to twins with data on at least one
cognitive measure at one testing occasion, who reached the age of 50 years during their
participation in the study and for whom zygosity is known. Observations obtained
after onset of dementia were excluded. The sample that we use includes 840 twins,
with individuals from both complete pairs (396 pairs) and incomplete twin pairs (48
individuals). It has the following background characteristics: 59% are female, 63%
are dizygotic and the average age at the first in-person testing is 61.7 years (range=
38.2− 88.0).

In terms of response data in our sample of 840 twins, 36% have cognitive measures
from all four testing occasions, 26% from three testing occasions, 15% from two testing
occasions, while 23% only have cognitive measures from a single testing occasion. Table
1 shows participation patterns, revealing that there are several reasons for incomplete
observations. One concerns the study design, where individuals are selected as in
Pedersen et al. (1991) and restricted to be 50 years or older at entry, with an exception of
a sub-sample of twins younger than 50 years, who were recruited for another study and
also were administered the same cognitive battery. Some individuals have intermittent
missing values, but these are much fewer than missing values due to dropout from the
study.

6.2 Measures of cognition

There are hundreds of tests of different aspects of cognition. These tests include mea-
sures of broad factors (specific cognitive abilities) such as crystallized intelligence, fluid
intelligence, memory and perceptual processing speed. Crystallized intelligence refers
to those cognitive processes that are imbedded in a context of cultural meaning and
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IPT1 IPT2 IPT3 IPT4 Individuals
? ? ? ? 299
? ? ? - 140
? ? - ? 10
? - ? ? 8
- ? ? ? 60
? ? - - 46
- ? ? - 18
- - ? ? 19
? - ? - 18
? - - ? 24
- ? - ? 6
? - - - 94
- ? - - 7
- - ? - 2
- - - ? 89

Table 1: Number of individuals and their patterns of participation in the SATSA. ? correspond to an

observation, and - is used as a marker for missing values.

reflects the store of knowledge or information that has accumulated over time. Fluid in-
telligence is defined as the ”on-the-spot reasoning ability, a skill not basically dependant
on our experience” (Belsky, 1990).

The SATSA cognitive test battery includes 11 cognitive measures drawn from various
sources and chosen to assess four areas of cognitive ability (Nesselroade, Pedersen, Mc-
Clearn, Plomin, and Bergeman, 1988; Pedersen, Plomin, Nessleroade, and McClearn,
1992). Crystallized abilities are tapped by tests of Information, Synonyms, and Analo-
gies. Figure Logic, Block Design, and Card Rotation assess fluid abilities. Memory tests
include Digit Span, Thurstone’s Picture Memory, and Names & Faces. Finally, Symbol
Digit and Figure Identification measure perceptual speed. An overview of cognitive
tests and domains are found in Table 2.

The SATSA test scores are often expressed as percentage of maximum score to enable
comparison of test results. The distribution from the first testing occasion is shown in
Figure 3. The figure shows that for most items, but nor for all, the distributions are
fairly symmetrical. The distribution for the test Symbol Digit, which we analyze here,
is fairly normal and we take this as reassurance that we can apply the latent growth
curve models based on the assumption that the repeated outcomes follow a multivariate
normal distribution.

If data from all the 11 tests are to be analyzed as a multivariate outcome, the structure
of the test subclasses, based on what aspect of cognition they measure, preferably
should be built into the model. Here, we only use data from the test Symbol Digit in
the longitudinal twin models. This test measures perceptual speed and is based on the
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ability to verbally report digits that correspond to symbols.

Test Domain
Information Crystallized ability
Synonyms Crystallized ability
Analogies Crystallized ability
Figure Logic Fluid ability
Block Design Fluid ability
Card Rotations Fluid ability
Digit Span Memory
Thurstone’s Picture Memory Memory
Names & Faces Memory
Symbol Digit Perceptual Speed
Figure Identification Perceptual Speed

Table 2: Cognitive tests and domains of cognition in the SATSA.
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Figure 3: Distribution of test scores at IPT1 expressed as percentage of maximum score.
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6.3 Shape of individual trajectories

In Figure 4 scores from the perceptual speed test Symbol Digit are plotted, including
the trajectories for three individuals in the bottom, middle and top of the distribution.
From the plot it is clear that individual test scores tend to decrease with increasing age.
The variability between individuals is quite large for the perceptual speed level, even
if trajectories were age adjusted. Individual variability in the rate of change is more
difficult to assess, but it appears to be smaller in absolute terms than the variability in
the perceptual speed level.
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Figure 4: Test scores available for a test measuring perceptual speed, including trajectories for three

individuals in the bottom, middle and top of the distribution.

In developmental aging research one argues that in the process of aging there are
patterns that are related more to distance to death than to age per se. This relation is
explored for the Symbol Digit test score in Figure 5 for a random sub-sample of the 130
individuals in our sample that die before the fourth testing occasion. The plot shows
that the individual variability is large, and that more repeated measurements would be
needed in order to infer any clear patterns.
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Figure 5: Trajectories for test scores for Symbol Digit as a function of time to death, for as sub-sample

of the participants in SATSA that died before the fourth testing occasion.

6.4 Linear latent growth curve models

The linear ACE model, specified by model equations (7), (8) and (9), was fitted to the
raw scores from the test Symbol Digit. We later refer to this model as model M1. The
model fitting was perform using the software Mplus (Muthén and Muthén, 1998-2001),
and results are shown in Table 3.

The mean slope is negative and significant, reflecting that perceptual speed tend to
decrease with increasing age. Genetic factors seem to be important for the perceptual
speed level, but less so for the rate of change. For the level, also non-shared environment
seems to explain some of the variability.

To investigate the importance of genes for the level and slope for perceptual speed two
more restricted models were fitted to the same data, one excluding the genetic effect on
slope (model M2) and one excluding the genetic effect on both level and slope (model
M3). The models all have the same measurement model given by (7) in section 4. The
difference lies in the structural equations. Following the notation introduced in section
4, the structural equations are
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Model M1 Model M2 Model M3
Effect Par. Est. SE Est. SE Est. SE
Mean level γI 37.4 0.41 37.4 0.41 37.4 0.41
Mean slope γS -0.75 0.03 -0.75 0.03 -0.75 0.03
ηAI on ηI λA1 8.21 0.40 8.16 0.37 - -
ηCI on ηI λC1 0.62 1.94 0.99 1.28 6.52 0.39
ηEI on ηI λE1 3.13 0.48 3.16 0.47 5.89 0.32
ηAI on ηS λA2 0.01 0.05 - - - -
ηCI on ηS λC2 0.14 0.08 0.14 0.08 0.03 0.03
ηEI on ηS λE2 0.10 0.05 0.10 0.05 0.05 0.03
ηAS on ηS λA3 0.00 0.17 - - - -
ηCS on ηS λC3 0.00 0.65 0.00 0.35 0.16 0.07
ηES on ηS λE3 0.14 0.08 0.13 0.08 0.11 0.11
Residual error σ2 26.2 1.20 26.2 1.20 26.4 1.21

Parameters r 12 10 9
Log likelihood l(θ̂|y) -7314.0 -7314.0 -7334.4

Table 3: Results from fitting linear latent growth curve models to data on Symbol Digit from the

SATSA.

M1 : ηIij = γI + λA1ηAIij + λC1ηCIij + λE1ηEIij

ηSij = γS + λA2ηAIij + λC2ηCIij + λE2ηEIij+

+ λA3ηASij + λC3ηCSij + λE3ηESij

M2 : ηIij = γI + λA1ηAIij + λC1ηCIij + λE1ηEIij

ηSij = γS + λC2ηCIij + λE2ηEIij + λC3ηCSij + λE3ηESij

M3 : ηIij = γI + λC1ηCIij + λE1ηEIij

ηSij = γS + λC2ηCIij + λE2ηEIij + λC3ηCSij + λE3ηESij .

As mentioned earlier, the models are parameterized by setting the variances of the
genetic factors, ηAI and ηAS , and the environmental factors, ηCI , ηEI , ηCS and ηES ,
equal to one, and estimating the corresponding factor loadings. The parameter esti-
mates are shown in Table 3. The hypothesis of no genetic effect on the slope can be
tested based on the likelihood ratio, comparing model M1 and M2. The test statistic
is 2(l(θ̂M1|Y) − l(θ̂M2|Y)) = 0.0, and we accept model M2. The conclusion is that
there is no significant genetic effect on the slope, which is not surprising in view of the
difficulty to detect slope variability from the observed data. Genetic effect estimates
would require the ability to distinguish the slope similarity for MZ and DZ twins to be
different.

By fitting model M3 and comparing it to model M2 the hypothesis that also the
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genetic effect on level can be excluded is tested. The test statistic is now 2(l(θ̂M2|Y)−
l(θ̂M3|Y)) = 40.8. The difference in number of free parameters in the models is 1, and
hence, the test statistic should be compared with a χ2-distribution with 1 degree of
freedom. This is highly significant showing that there is indeed a genetic effect on level
of perceptual speed.

In equation (10) in section 4 we proposed a new measure of heritability of change, h2
S ,

assuming a constant rate of change, to be used as a measure of the importance of genes
for change in trait values. The empirical estimate of the heritability of change for the
cognitive test Symbol Digit is here zero:

h2
S =

0.012 + 0.002

0.012 + 0.002 + 0.142 + 0.002 + 0.102 + 0.142
≈ 0.

This low value also reflects that the genetic effect on rate of change is small or non-
detectable in the SATSA data.

7 Future research and discussion

As data from longitudinal twin studies become more widely available the need for
new statistical tools increase. More effort needs to be put on the specification of latent
growth curve models corresponding to different patterns of growth, and the clarification
of what models that are identifiable. Clearly, the latter depend on the number of
repeated measurements available. We intend to focus on the linear, the quadratic, and
the change-point model. The first step will be to formulate the change-point model
for longitudinal twin data, and define a measure of heritability of change based on this
model. The statistical properties of the measures of heritability of change need to be
explored and the usefulness of these measures, as an alternative to a nested testing
procedure, assessed. Distributional properties of the likelihood-ratio test statistic for
testing variance components in this setting also must be investigated further.

Another topic for future research is to investigate how the suggested measures are
affected by the dropout process, and whether or not the assumption of ignorability
simplifies the argument for how dependence in dropout affects heritability of change.

The issues mentioned above will be addressed in a simulation study. Identification of,
and precision in, model parameters will be studied for the linear growth model and
the hidden change-point model, as a function of number of repeated measurements.
Properties of measures of heritability in change based on these models will be assessed
based on Monte Carlo simulations, without any missing data.

Based on simulations we also aim to appraise the effect of dropout on estimates of
heritability of change. First MAR, with a dependence in dropout within twin pairs,
will be assumed to confirm that the full information maximum likelihood produce
consistent estimates of the parameters in the latent growth curve models. Data will
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also be simulated based on different scenarios of non-ignorable dropout, and the bias
in measures of heritability assessed. We hope this to give an indication of the severity
of ignoring the dropout process.

One major goal for statistical research on twin models is to provide a method for
analyzing longitudinal twin data that account for informative dropout. Here, a joint
model for the longitudinal data and the dropout process may be useful. Another option,
that may be even more useful, is to incorporate a sensitivity parameter in latent growth
curve models yielding bounds for measures of heritability.

To incorporate multivariate outcomes at each repeated measurement would add yet
another layer of complexity to the latent growth curve models. Such an extension
would be of scientific interest, since there is still much to learn about the dynamics of
behavioral traits and how they are related.
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Abstract

Longitudinal studies typically suffer from dropouts due to death and dropouts for
other reasons than death, especially when studying processes in late life. We apply
two methods for modelling dropout, generalized estimating equations (GEE) and
bivariate logistic regression (BLR), to data from the Swedish Adoption/Twin
Study of Aging (SATSA) (Pedersen, McClearn, Plomin, Nessleroade, Berg, and
de Faire, 1991). The aim is to assess (i) to what extent the level and rate of
change in earlier measures of cognition are associated with dropout and (ii) the
pattern of within-twin-pair dependency of dropout. The phenotype considered
is repeated measures of cognition. The results show that dropout is associated
with low levels of earlier measures of all domains of cognition considered here:
crystallized ability, fluid ability, memory and perceptual speed. The hypothesis
that rate of change in cognition is a predictor for dropout could not be confirmed,
probably due to low power. The BLR analysis shows that the within-twin-pair
dependency of dropout is significant, and that the association is larger for MZ
compared to DZ twins, although the MZ/DZ difference is not significant. We
discuss possible implications of these findings for the assessment of heritability of
rate of change for cognition in an elderly population.
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1 Introduction

Longitudinal data are increasingly available in behavioral science. Longitudinal
twin studies offer a possibility to assess the relative importance of genes and envi-
ronmental factors for the dynamics of behavioral traits. When studying processes
in late life, there is often a substantive loss to follow up due to death or for other
reasons than death. Selective participation may endanger a study’s validity, and
more consideration needs to be put on assessing what it means for inferences on
heritability of change based on incomplete longitudinal twin data.

Analysis of longitudinal twin data often involves fitting latent growth curve mod-
els (LGCM), based on maximum likelihood methods. If the data is incomplete,
full information maximum likelihood (FIML), is used (e.g. McArdle and Ham-
agami, 2003). Following the notation of Little and Rubin (2002), this procedure
gives consistent estimates of model parameters if values are missing completely
at random (MCAR) or missing at random (MAR). If not, estimates will be in-
consistent. A discussion of dropout from longitudinal twin studies is given in
(Pedersen, Ripatti, Berg, Reynolds, Hofer, Finkel, Gatz, and Palmgren, 2003).

The aim of this paper is to investigate dropout from a study of cognition in old
age, using data from the Swedish Adoption/Twin Study of Aging (SATSA), by
modelling dropout as a function of earlier measures of cognition. We make a
distinction between dropout due to death and dropout for other reasons. Based
on these analysis, the hypothesis of data being MCAR can be tested from ob-
served data. By modelling the within-twin-pair association of dropout we hope
to clarify whether genetic factors are expected to affect the dropout mechanism
and whether, as a consequence of this, estimates of the heritability of change are
affected by the dropout. Cognition is measured by a battery of tests designed to
represent four domains of cognition: crystallized ability, fluid ability, memory and
perceptual speed. Different domains have different etiologies, and possibly they
have different connections to dropout for various reasons (e.g. Reynolds, Finkel,
Gatz, and Pedersen, 2002).

Methodological issues addressed in this paper include how to handle item non-
response, resulting in incomplete test scores. These missing values are assumed to
be MAR and are handled with multiple imputation techniques, imputing values
for missing responses and summarizing the conclusions based on a set of im-
puted data sets. Another issue concerns the summarizing of test results that are
measuring the same domain of cognition. This is done using the first principal
component for each of the four domains of cognition. A key methodological issue
concerns how to address the dependence between twins. We approach this issue in
two ways: using generalized estimating equations (GEE) (Liang and Zeger, 1986)
and bivariate logistic regression (BLR) (Dale, 1986; Palmgren, 1989), respec-
tively. The latter allows maximum likelihood estimation of the within-twin-pair
odds ratio of dropout and inferences on contrasts between MZ and DZ twin pairs.

In section 2 the data from the SATSA is described. Models for dropout and
related methodological issues are presented in section 3. The results from mod-
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elling the dropout from the SATSA is given in section 4, and implications of the
findings are discussed in section 5.

2 The data

The Swedish Adoption/Twin Study of Aging (SATSA) is a study of the aging
process in late life. It includes both questionnaire assessments and in-person test-
ings of cognitive and functional capabilities, personality and health, and have been
described in detail elsewhere (Pedersen et al., 1991). The participants were identi-
fied via the Swedish Twin Registry (Lichtenstein, deFaire, Floderus, Svartengren,
Svedberg, and Pedersen, 2002; Pedersen, Lichtenstein, and Svedberg, 2002). The
first in-person testing (IPT1) took place in 1986-1988 and follow-up data were
obtained after three (IPT2), six (IPT3) and thirteen (IPT4) years. Testing took
place in a location convenient to the twins, such as district nurses’ offices, health-
care schools, and long-term care clinics. Testing was completed during a single
4-hour visit.

The SATSA sample used in this study is restricted to twins with data on at
least one of the nine cognitive measures considered here, at one of the three first
testing occasions of SATSA. A further restriction is that they reached the age of
50 years during their participation in the study and that the zygosity is known.
Observations obtained after onset of dementia were excluded. The sample that
we use includes 721 twins, with individuals from both complete pairs (341 pairs)
and incomplete twin pairs (39 individuals). It has the following background
characteristics: 59% are female and 64% are dizygotic and the average age at the
first in-person testing (IPT1) is 63.8 years (range= 41.8− 88.0).

The SATSA cognitive test battery includes 11 cognitive measures drawn from
various sources and chosen to assess four domains of cognition (Nesselroade, Ped-
ersen, McClearn, Plomin, and Bergeman, 1988; Pedersen, Plomin, Nessleroade,
and McClearn, 1992). This study is restricted to nine tests, that are believed
to best capture crystallized ability, fluid ability, memory and perceptual speed.
Crystallized abilities are tapped by tests of Information and Synonyms. Figure
Logic and Block Design assess fluid abilities. Memory tests include Digit Span,
Thurstone’s Picture Memory, and Names & Faces. Finally, Symbol Digit and
Figure Identification measure perceptual speed. An overview of the cognitive
tests and domains are found in Table 1. To enable comparisons of test results,
the test scores are expressed as percentage of maximum score.

Table 2 show the number of participants in each of the first three testings, for
whom data is available for at least one of the nine cognitive tests. Of the 589
individuals observed at IPT1, 94 (16%) drop out before IPT2. At IPT2 additional
participants enter the study and a total of 570 individuals are observed, of which
53 (9%) drop out before IPT3. Yet other participants enter at IPT3, resulting
in totally 564 participants at IPT3. 178 (32%) of those drop out before IPT4.
Through matching the data set to the Swedish Death Registry, death dates are
available for the 130 participants in the sample, who died before IPT4. The
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Test Cognitive ability
Information Crystallized ability
Synonyms Crystallized ability
Figure Logic Fluid ability
Block Design Fluid ability
Digit Span Memory
Thurstone’s Picture Memory Memory
Names & Faces Memory
Symbol Digit Perceptual Speed
Figure Identification Perceptual Speed

Table 1: Domains of cognition and cognitive tests used in this study, available from the SATSA.

number of years to death from the last testing occasion ranged from 0.4 to 11.5
years, with a mean of 3.7 years.

When modelling the probability of dropout between any two adjacent testing
occasions, we distinguish between dropout due to death and dropout for other
reasons than death (the latter include dropout due to cognitive decline). Dropout
due to death was defined as dropout where the person died within three years
after the last testing occasion, which corresponds to the planned time for follow
up for all testings except for the last one.

From the first three testing occasions 1723 observations on cognitive performance,
tapped by the nine tests mentioned above, are available. Of these observations
87% include test results for all nine items, 7% have information missing on one
item and 6% have information missing on two or more items.

IPT Participants Dropouts
1 589 94 (20 deaths, 74 dropouts)
2 570 53 (15 deaths, 38 dropouts)
3 564 178 (29 deaths, 149 dropouts)

Table 2: Number of participants and dropouts, due to death and for other reasons, in the sample

from the first three testing occasions in the SATSA.

3 Methods

3.1 Multiple imputation for item non-response

Item non-response, resulting in incomplete test results, was assumed to be MAR,
and was handled with multiple imputation techniques (Rubin, 1987; Schafer,
1997). Multiple imputation is a Bayesian Monte Carlo data augmentation ap-
proach and shares the same underlying philosophy as the non-Bayesian EM pro-
cedure: solving an incomplete-data problem by repeatedly solving the complete-
data version. The missing values are replaced by simulated values from the con-
ditional predictive distribution given the observed data, resulting in a number
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of complete data sets. Each of the completed data sets is analyzed by standard
complete-data methods. The variability in the results over the imputed data sets
provides a measure of the uncertainty due to missing data, and combined with
measures of sample variation, inferential statements can be made about the pa-
rameters of interest based on the observed incomplete data. The total variance
is divided into two parts: the within-imputation variance, Ū , and the between-
imputation variance, B,

Ū =
1

m

m∑
t=1

U (t), B =
1

m− 1

m∑
t=1

(Q̂(t) − Q̄)2,

where Q̂(t) is the parameter estimate based on the tth imputed data set (t =
1, ..., m), Q̄ is the mean of the parameter estimates, and U (t) is the estimated

variance for the parameter estimate Q̂(t). The total variance is

T = Ū + (1 + m−1)B.

A useful diagnostic tool for assessing how the missing data contribute to inferen-
tial uncertainty about the parameter of interest is the relative increase in variance
due to non-response

r =
(1 + m−1)B

Ū
.

We use this measure to assess how much the item non-response contribute to the
uncertainty in parameter estimates in the dropout model.

3.2 Principal components

To decrease the number of explanatory variables when using cognitive test scores
as predictors for dropout, the best single composite variable is produced for each
domain of cognition, using the method of principal components (Jolliffe, 1986).
The idea is to generate a single linear composite function of the original variables
which maximally discriminates the individuals in the data set. The principal
components are linear functions of the original variables, X1, ..., Xn, of the form
Wj = e1jX1 + e2jX2 + · · ·+ enjXn, with the constraint e2

1j + e2
2j + · · ·+ e2

nj = 1,
for j = 1, ..., n. The first principal component is the linear function of this form,
where the variance of W1 has the maximum variance over all possible linear
functions of the original variables, subject to the constraint on the loadings. We
apply the method of principal components to the standardized test scores and use
the first principal component score for each cognitive domain as a single measure
of that ability.
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3.3 Modelling dropout for twin pairs

We model the probability for an individual to drop out between any two adjacent
testing occasions, and assume time lags to be conditionally independent. When
using level of cognition at last testing occasion as a predictor for dropout, the
dropout indicators for the first, second and third time lag are modelled jointly.
When using rate of change in cognition as a predictor for dropout we need data
from at least two preceding testing occasions, and hence, only dropout for the
second and third time lag could be used. The within-twin-pair dependence in
dropout is accounted for in two different ways: using a semi-parametric approach,
generalized estimating equations, and a parametric approach, bivariate logistic
regression.

Generalized estimating equation
Generalized estimating equation (GEE), proposed by Liang and Zeger (1986),
is based on the idea of specifying the mean and variance structure for an out-
come without explicitly specifying the probability distribution. For the binary
outcomes from the two members of twin pair i, denoted by Yi1 and Yi2, a natural
model for the means, E[Yi1] = pi1 and E[Yi2] = pi2, are

logit(pi1) = βxi1

logit(pi2) = βxi2,

where xi1 and xi2 are covariate vectors. The variance expressions for the binary
outcomes are Var(Yi1) = pi1(1 − pi1) and Var(Yi2) = pi2(1 − pi2). Using vector
notation, the outcome from twin pair i is Yi = (Yi1, Yi2) with mean pi = (pi1, pi2).
The variance-covariance matrix for Yi, denoted by Vi, is specified by assuming
a ’working’ correlation structure, denoted by Ri(α). We use an exchangeable

correlation structure R(α) =

(
1 α
α 1

)
, assuming the correlation structure to

be the same for all twin pairs. The variance-covariance matrix is

Vi = φA
1/2
i R(α)A

1/2
i ,

where Ai is a diagonal matrix with the variances of Yi1 and Yi2 on the diagonal,
and φ is a dispersion parameter. Given the mean and covariance specifications,
the GEE estimate β̂ is the solution of the system of estimating equations

∑
i

∂pi

∂β
V−1

i (yi − pi) = 0.

The estimating equations are solved for β and α using a two-stage procedure
iterating between the estimation of α given β and the estimation of β given
α. The GEE yields consistent estimates of β, even if the assumed covariance
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structure is not correct (Liang and Zeger, 1986). We use the implementation of
this algorithm in the procedure xtgee in STATA (StataCorp, 2003).

Bivariate logistic regression
An alternative approach is to specify a full parametric model for the bivariate
binary outcome Yi = (Yi1, Yi2). Bivariate logistic regression is based on the
assumption that Yi follow a multinomial distribution with the four probabilities
pilm = P (Yi1 = l, Yi2 = m), where l, m = 0, 1. The marginal probabilities are
given by pi1 = pi11 + pi10 and pi2 = pi11 + pi01. Further, ψi = pi11pi00/pi10pi01

denotes the odds ratio. The probability pi11 can be expressed in terms of pi1, pi2

and ψi

pi11 =

{
1
2
(ψi − 1)−1(ai −

√
a2

i + bi) if ψi 6= 1

pi1pi2 if ψi = 1,

where ai = 1 + (pi1 + pi2)(ψi − 1) and bi = −4ψi(ψi − 1)pi1pi2 (Dale, 1986;
Palmgren, 1989). The other multinomial probabilities follow from the marginal
probabilities pi1 and pi2. The bivariate logistic regression model is specified by
expressing logit(pi1), logit(pi2) and log(ψi) as linear predictors βxi1, βxi2 and
γxi3, respectively

logit(pi1) = βxi1

logit(pi2) = βxi2

log ψi = γxi3.

Estimates of the parameters β and γ are obtained by maximum likelihood esti-
mation. The contribution from twin pair i to the log-likelihood is

l(β,γ) =





yi1yi2 ln(pi11) + yi1(1− yi2) ln(pi10)+

(1− yi1)yi2 ln(pi01) + (1− yi1)(1− yi2) ln(pi00) if yi1 and yi2 observed

yi1 ln(pi1) + (1− yi1) ln(1− pi1) if only yi1 observed

yi2 ln(pi2) + (1− yi2) ln(1− pi2) if only yi2 observed.

The maximum likelihood estimates of β and γ were calculated using the ml
facility in STATA (Gould and Sribney, 1999). Needed for this calculation is a
program that specifies the log-likelihood, refer to the Appendix for the program
code.

4 Results

Results from tests designed to measure the same domain of cognition were summa-
rized into one measure using the first principal component score for each domain.
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The loadings and the proportion of variance explained by the first principal com-
ponent for each domain are given in Table 3. The proportion of variance explained
by the first principal component range from 0.8 to 0.85 for crystallized ability,
fluid ability and perceptual speed. The corresponding proportion for memory is
somewhat lower, 0.6, which is connected to the fact that there are three tests
for memory, but only two tests for the other domains of cognition. These high
numbers indicate that the use of principal components to combine test scores
designed to measure the same ability is adequate.

Test Crystallized Fluid Memory Perceptual Speed
Information 0.69 - - -
Synonyms 0.72 - - -
Figure Logic - 0.52 - -
Block Design - 0.85 - -
Digit Span - - 0.39 -
Thurstone’s Picture - - 0.83 -
Names & Faces - - 0.41 -
Symbol Digit - - - 0.66
Figure Identification - - - 0.75
Variance explained 0.84 0.80 0.60 0.85

Table 3: Principal component loadings and proportion of variance explained by first principal com-

ponent for each domain of cognition.

The difference between individuals that drop out and those who remain in the
study was explored graphically. In Figure 1 the distribution of the first principal
components for crystallized ability, fluid ability, memory and perceptual speed
at last testing occasion, stratified on dropout, are plotted. The figure indicates
that dropout is associated with low levels of all four domains of cognition. The
patterns are not very clear though, due to the small number of individuals in
some strata when studying different time lags separately.

To further investigate the association between dropout and earlier measures of
cognition, the probability of dropout between any two adjacent testing occasions
was modelled as a function of age (centered at 65 years), length of time lag,
sex and earlier measures of cognition. The cognitive measures used are the first
principal component scores at the last testing for each domain, and the relative
change in these scores from the next last to the last testing. The model for twin
j in pair i is

logit(pij) = β0 + β1ageij + β2timeij + β3sexij + β4cognitionij,

Using multiple imputation techniques implemented in the package norm in R
(Novo and Shafer, 2002) to account for item non-response, five data sets were
imputed and a multiple imputation analysis performed. This first investigation
of what domains of cognition that predict dropout, was based on the method of
GEE, assuming the within pair correlation of dropout to be the same for all twin
pairs.
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Figure 1: First principal component scores for each domain of cognition at first three testing occasions,

stratified on dropout.

Covariate Par. Crystallized Fluid Memory Perceptual speed
Intercept β0 -2.48 (0.55) -2.51 (0.55) -2.74 (0.59) -2.56 (0.56)
Age β1 0.18 (0.02) 0.18 (0.02) 0.17 (0.02) 0.17 (0.02)
Time lag β2 0.12 (0.07) 0.12 (0.07) 0.12 (0.07) 0.12 (0.07)
Sex β3 -1.54 (0.29) -1.50 (0.29) -1.40 (0.31) -1.48 (0.30)
Cognition β4 -0.85 (0.60) -0.63 (0.82) -2.02 (0.89) -1.39 (1.17)
r 0.06 0.04 0.17 0.08

Table 4: GEE estimates (and standard errors) for dropout due to death. The covariate cognition

refers to the level of the first principal component score. r is the relative increase in variance of β̂4 due

to non-response, obtained from the multiple imputation analysis.

Covariate Par. Crystallized Fluid Memory Perceptual speed
Intercept β0 -2.97 (0.32) -3.04 (0.32) -3.29 ( 0.33) -3.17 (0.33)
Age β1 0.06 (0.01) 0.05 (0.01) 0.05 ( 0.01) 0.04 (0.01)
Time lag β2 0.27 (0.04) 0.27 (0.04) 0.28 (0.04) 0.27 (0.04)
Sex β3 -0.08 (0.16) -0.05 (0.16) 0.09 (0.16) 0.04 (0.16)
Cognition β4 -0.95 (0.32) -1.74 (0.42) -1.76 (0.41) -2.10 (0.59)
r 0.02 0.07 0.06 0.10

Table 5: GEE estimates (and standard errors) for dropout for other reasons than death. The covariate

cognition refers to the level of the first principal component score.
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The results in Table 4 show that the probability of dropout due to death increase
with age and the length of time lag to the next testing occasion. Males have a sig-
nificantly larger probability of dropout compared to females. A high probability
of dropout due to death is significantly associated with low levels of memory at
the last testing occasion. The trend is the same for other domains of cognition,
although non-significant. The parameter estimates in Table 5, for the models
for dropout for other reasons than death, point in the same direction as those
for dropout due to death, except for sex. The results show that dropout, when
excluding individuals that die within three years after the last testing occasion,
is associated with low values for all the cognitive domains: crystallized ability,
fluid ability, memory and perceptual speed.

Included in the tables is the measure of relative increase in variance of the pa-
rameter estimate β̂4 due to non-response, r, that was defined in section 3.1. This
measure ranges from 4% to 20% for the different domains of cognition, indicating
that the relative increase in variance due to item non-response was modest.

To explore if the different domains of cognition together explain more about the
dropout than what they do separately, we fit a model for dropout for other reasons
that death, using memory and one additional measure of cognition as predictors.
The results, given in Table 6, show that both fluid ability and perceptual speed
are significant in these models. Additional modelling revealed that there is no
gain in extending these dropout models to include more than two measures of
cognition as covariates.

Covariate Par. Crystallized Fluid Perceptual speed
Int. β0 -3.23 (0.33) -3.22 (0.33) -3.32 (0.33)
Age β1 0.05 (0.01) 0.04 (0.01) 0.04 (0.01)
Time lag β2 0.28 (.04) 0.28 (0.04) 0.28 (0.04)
Sex β3 0.05 (0.16) 0.03 (0.16) 0.10 (0.16)
Memory β4 -1.49 (0.46) -1.14 (0.48) -1.22 (0.49)
Other β5 -0.42 (0.37) -1.20 (0.50) -1.40 (0.69)

Table 6: GEE Estimates (and standard errors) for dropout due to other reason than death, including

level of memory and one additional cognitive ability as predictors.

It has been suggested that change in cognition has a large predictive value for
dropout. We investigate this by modelling dropout between IPT2 and IPT3
and dropout between IPT3 and IPT4 jointly, using relative change between the
two previous testings as predictors. The results, given in Table 7 and Table
8, for dropout due to death and dropout for other reasons respectively, reveal
that the parameter estimates for change in cognition are non-significant. Hence
the hypothesis could not be confirmed. The relative increase in variance due to
non-response, r, also turned out to be extremely large for some of these analysis.

Based on BLR, a model for the within-twin-pair odds ratio for dropout was
specified, in addition to the model for the probability of dropout used in the
GEE analysis. The log odds ratio was modelled as a linear function of zygosity,
allowing the dropout dependency to be different for MZ and DZ twins. Results are
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Covariate Par. Crystallized Fluid Memory Perceptual speed
Intercept β0 -3.43 (0.80) -3.42 (0.80) -3.40 (0.80) -3.41 (0.79)
Age β1 0.21 (0.03) 0.21 (0.03) 0.21 (0.03) 0.21 (0.03)
Time lag β2 0.21 (0.10) 0.21 (0.10) 0.20 (0.10) 0.20 (0.10)
Sex β3 -1.52 (0.40) -1.52 (0.40) -1.55 (0.40) -1.53 (0.39)
Change β4 -0.004 (0.009) 0.007 (0.008) 0.01 (0.03) -0.002 (0.003)
r 0.40 0.04 4.57 0.37

Table 7: GEE estimates (and standard errors) for dropout due to death. The covariate change refers

to the relative change between the results from cognitive tests from the two previous testings.

Covariate Par. Crystallized Fluid Memory Perceptual speed
Intercept β0 -3.60 (0.44) -3.62 (0.44) -3.58 (0.44) -3.60 (0.44)
Age β1 0.08 (0.01) 0.08 (0.01) 0.08 (0.01) 0.08 (0.01)
Time lag β2 0.39 (0.06) 0.39 (0.06) 0.39 (0.06) 0.39 (0.06)
Sex β3 -0.30 (0.21) -0.29 (0.21) -0.30 (0.21) -0.29 (0.21)
Change β4 -0.01 (0.01) 0.003 (0.009) ≈0.00 (0.01) 0.001 (0.003)
r 1.79 0.99 1.54 0.34

Table 8: GEE estimates (and standard errors) for dropout for other reasons than death. The covariate

change refers to the relative change between the results from cognitive tests from the two previous

testings.

shown in Table 9. For dropout due to other reasons than death the log odds ratio
of dropout is significant. The odds ratio of dropout is larger for MZ compared to
DZ twins, even though this difference is not significant. In the analysis of dropout
due to death very few twin pairs enter into the analysis resulting in extremely
large standard errors for the log odds ratio parameters. In fact, for dropout due
to death, there are 568 observations where both twins stay in the study to the
next testing, 34 pairs where one twin drop out, but only 2 pairs where both twins
drop out due to death. The corresponding numbers for dropout for other reasons
that death are: 568 observations where both twins stay, 107 pairs where one twin
dropout, and 40 pairs where both twins drop out.

Covariate Par. Dropout due to death Dropout for other reasons
Intercept β0 -2.70 (0.52) -3.31 (0.35)
Age β1 0.17 (0.02) 0.05 (0.01)
Time lag β2 0.13 (0.07) 0.28 (0.04)
Sex β3 -1.47 (0.31) 0.10 (0.16)
Memory β4 -2.05 (0.84) -1.66 (0.52)
Intercept (OR) γ0 -30.9 (1567) 2.18 (1.03)
Zygosity (OR) γ1 15 (783) -0.37 (0.60)

Table 9: Parameter estimates (standard errors) based on BLR including first principal component

score for memory at last measurement as predictor for dropout.
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5 Discussion

We have shown that dropout due to death is associated with low scores on earlier
measures of memory. The trend was the same for other domains of cognition, al-
though not significant. The dropout for other reasons than death is related to low
levels of earlier measures of all the domains of cognition considered: crystallized
ability, fluid ability, memory and perceptual speed. This is evidence against the
hypothesis that dropout for other reasons than death is MCAR. It reveals that
it is not only truncation due to death that may introduce a bias in latent growth
curve modelling, based on the observed longitudinal data, where the dropout
process is ignored.

The models used for modelling dropout all assume that data is missing at random
(MAR), i.e. that dropout only depend on observed quantities. The assumption
of MAR is not testable. Extensions that incorporate informative dropout in lon-
gitudinal studies have been suggested, such as the models proposed by Diggle
and Kenward (1994), which combine a multivariate linear model for the underly-
ing longitudinal response with a logistic regression model for the dropout process.
The latter incorporates dependence of probability of dropout on unobserved, miss-
ing, observations. However, these models have been criticized (see the discussion
of the paper by Diggle and Kenward), since estimating the ”unestimable” can be
accomplished only by making distributional assumptions or assumptions about
associations.

The major fear when modelling longitudinal twin data with dropout is that
within-twin-pair dependency of dropout is different for MZ and DZ twins, and
that this may affect conclusions about the genetic importance for the longitudinal
process when basing the analysis on the observed part of the longitudinal data
and ignoring the dropout. In the BLR modelling we show that there is indeed a
strong within-twin-pair dependency of dropout, even when excluding those twins
who die within three years after the last testing and adjusting for age, sex, time
lag and earlier measures of cognition. However, the difference between MZ and
DZ twins is not significant, and there is no strong indication in the observed
dropout process that it should bias conclusions about heritability when ignoring
the dropout. However, the findings that the difference for MZ and DZ twins is
non-significant may be due to low power. Clearly, more research on the role of
dropout in longitudinal twin modelling is needed.

References

Dale, J. R. (1986), “Global Cross-Ratio Models for Bivariate, Discrete, Ordered
Responses,” Biometrics, 42, 909–917.

Diggle, P. and Kenward, M. (1994), “Informative drop-out in longitudinal data
analysis,” Applied Statistics, 43, 49–93.

12



Gould, W. and Sribney, W. (1999), Maximum likelihood estimation with Stata,
Stata Press.

Jolliffe, I. (1986), Principal component analysis, New York: Springer-Verlag.

Liang, K. and Zeger, S. (1986), “Longitudinal data analysis using generalized
linear models,” Biometrika, 73, 13–22.

Lichtenstein, P., deFaire, U., Floderus, B., Svartengren, M., Svedberg, P., and
Pedersen, N. (2002), “The Swedish Twin Registry: A unique resourse for clin-
ical, epidemiological and genetic studies,” Journal of Internal Medicine, 252,
184–205.

Little, R. J. A. and Rubin, D. B. (2002), Statistical analysis with missing data,
John Wiley and Sons, 2nd ed.

McArdle, J. J. and Hamagami, F. (2003), “Structural equation models for evalu-
ating dynamic concepts within longitudinal twin analyses,” Behavior Genetics
Special Issue on Aging, 33, 137–159.

Nesselroade, J., Pedersen, N., McClearn, G., Plomin, R., and Bergeman, C.
(1988), “Factorial and criterion validities of telephone-assessed cognitive ability
measures: Age and gender comparisons in adult twins,” Research on Aging, 10,
220–234.

Novo, A. and Shafer, J. (2002), The norm package: Analysis of multivariate
normal datasets with missing values.

Palmgren, J. (1989), “Regression models for bivariate binary resonses,” Tech.
Rep. 101, Deptartment of Biostatistics School of Public Health and Community
Medicine in Seattle, Washington.

Pedersen, N. L., Lichtenstein, P., and Svedberg, P. (2002), “The Swedish Twin
Registry in the Third Millenium,” Twin Research, 5, 427–432.

Pedersen, N. L., McClearn, G. E., Plomin, R., Nessleroade, J. R., Berg, S., and
de Faire, U. (1991), “The Swedish Adoption/Twin Study of Aging: An update,”
Acta Geneticae Medicae et Gemellologiae, 40, 7–20.

Pedersen, N. L., Plomin, R., Nessleroade, J. R., and McClearn, G. E. (1992),
“Quantitative genetic analysis of cognitive abilities during the second half of
the lifespan,” Psychological Science, 3, 346–353.

Pedersen, N. L., Ripatti, S., Berg, S., Reynolds, C., Hofer, S., Finkel, D., Gatz,
M., and Palmgren, J. (2003), “The influence of mortality on twin models of
change: addressing missingness through multiple imputation,” Behavior Ge-
netics Special Issue on Aging, 3, 161–169.

Reynolds, C. A., Finkel, D., Gatz, M., and Pedersen, N. L. (2002), “Sources of
influence on rate of cognitive change over time in Swedish twins: An application
of latent growth models,” Experimental Aging Research, 28, 407–433.

13



Rubin, D. (1987), Multiple imputation for nonresponse in surveys, New York:
John Wiley and Sons.

Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, Chapman and
Hall.

StataCorp (2003), Stata Statistical Software: Release 8.0, Stata Corporation,
College Station, TX.

Appendix: STATA program for bivariate logistic regression

/***************************************

BIVARIATE LOGISTIC REGRESSION IN STATA

****************************************

The program blr specified below define the log-likelihood based on

the multinomial distribution for a bivariate binary outcome

y=(y1,y2), specified in terms of the marginal probabilities and

the odds ratio.

The model is specified in the command: ml model lf blr () () () ()

() (). Equation 1, i.e. the first parenthesis, defines the linear

predictor for the log odds ratio, leave empty to only include an

intercept. The following equations correspond to the parameters in

the linear predictor for the logits of marginal probabilities. In

this program there is one intercept (equation 2) and four

covariate parameters (equation 3-6), corresponding to covariates

named x11-x14 for y1 and x21-x24 for y2.

****************************************************************/

program define blr

args lnf t1 t2 t3 t4 t5 t6

tempvar psi ex1 p1 ex2 p2 a b p11

quietly gen double ‘psi’=exp(‘t1’)

quietly gen double ‘ex1’=1

quietly gen double ‘p1’=1

quietly gen double ‘ex2’=1

quietly gen double ‘p2’=1

quietly gen double ‘a’=1

quietly gen double ‘b’=1

quietly gen double ‘p11’=1

quietly replace ‘ex1’=exp(‘t2’+‘t3’*x11+‘t4’*x12+‘t5’*x13+‘t6’*x14)

quietly replace ‘p1’=‘ex1’/(1+‘ex1’)

quietly replace ‘ex2’=exp(‘t2’+‘t3’*x21+‘t4’*x22+‘t5’*x23+‘t6’*x24)

quietly replace ‘p2’=‘ex2’/(1+‘ex2’)
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quietly replace ‘a’=1+(‘p1’+‘p2’)*(‘psi’-1)

quietly replace ‘b’=-4*‘psi’*(‘psi’-1)*‘p1’*‘p2’

if ‘psi’==1 quietly replace ‘p11’=‘p1’*‘p2’

if ‘psi’~=1 quietly replace ‘p11’=(‘a’-sqrt(‘a’^2+‘b’))/(2*(‘psi’-1))

quietly replace ‘lnf’=ln(1-‘p1’-‘p2’+‘p11’) if y1==0 & y2==0

quietly replace ‘lnf’=ln(‘p1’-‘p11’) if y1==1 & y2==0

quietly replace ‘lnf’=ln(‘p2’-‘p11’) if y1==0 & y2==1

quietly replace ‘lnf’=ln(‘p11’) if y1==1 & y2==1

quietly replace ‘lnf’=ln(1-‘p1’) if y1==0 & y2==.

quietly replace ‘lnf’=ln(‘p1’) if y1==1 & y2==.

quietly replace ‘lnf’=ln(1-‘p2’) if y1==. & y2==0

quietly replace ‘lnf’=ln(‘p2’) if y1==. & y2==1

quietly replace ‘lnf’=0 if y1==. & y2==.

end

ml model lf blr () () () () () ()

ml maximize
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