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te treatment outcome data by sequential updated feedback to more accurately

taylor the treatment of each new patient. Brief descriptions of the radiobiological

background and of the statistical tools needed for clinical implementation of such

a feedback system are given.

The feedback system is implemented by developing a Bayesian approach for

sequentially updating radiobiological parameters of dose-response relations which

then can be used for calculating optimal curative treatment doses for cancer

patients recieving radiation therapy. The model is quanti�ed in terms of the

probability of achieving tumor control and the risk of inducing severe injury.

Formally the statistical model is speci�ed as a generalized linear model with
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Abstract

In radiation therapy, the analysis of historical data gives population estimates on various
parameters which are useful when designing treatments for future patients. However, if the
time lag between the treatment of historical patients and the treatment of new patients is long
this information is not up to date and might even be outdated. It is therefore more important
to continuously integrate treatment outcome data by sequential updated feedback to more
accurately taylor the treatment of each new patient. Brief descriptions of the radiobiological
background and of the statistical tools needed for clinical implementation of such a feedback
system are given.

The feedback system is implemented by developing a Bayesian approach for sequentially
updating radiobiological parameters of dose-response relations which then can be used for
calculating optimal curative treatment doses for cancer patients recieving radiation therapy.
The model is quanti�ed in terms of the probability of achieving tumor control and the risk of
inducing severe injury. Formally the statistical model is speci�ed as a generalized linear model
with a log-log link. The underlying model and computational algorithms as well as simulation
results from a four parameter radiobiological model showing the e�ect of sequentially updating
the radiation treatment are presented.

Keywords: Radiation therapy optimization; Generalized Linear Model; Bayesian inference;
Markov chain Monte Carlo.
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1 Aims

The work presented in this licentiate thesis is the result of a cooperation between Math-
ematical Statistics at Stockholm University and Medical Radiation Physics at Karolinska
Institutet. At the beginning of this cooperation the aim of the work was set to 1) understand
the radiobiological problem of achieving complication free tumor control in a radiotherapeutic
setting, 2) to learn about Bayesian inference and build up a Bayesian model for the problem,
3) to check out software and check the properties of the model, 4) and to build up a model
for implementation into the clinic. Items 1), 2) and 3) are the basis for this licentiate thesis.
The result of 1) is shown in sections 3 and 4, the result of 2) is shown in sections 5, 6 and 7,
and the result of 3) is shown in sections 8 and 9. Appendices A, B and C contains statis-
tical background, appendix D contains information on software and programs. In section 10
considerations for carrying on with 4) are drawn.

2 Introduction

In current clinical radiation therapy practice the tumor stage and spread are the main de-
terminants for radiation modality and target dose while individual characteristics such as
sensitivity to radiation are not accounted for. The radiobiological model presented here takes
radiobiological parameters of the patients into account during treatment planning. A char-
acteristic distribution for the radiobiological parameters in the group of patients under study
is assumed. The variance of this distribution reects unknown patient heterogeneities as well
as other sources of uncertainty. In the literature the concentration is often on either tumor
control or on normal tissue injury. However, since the clinical aim when treating a cancer
patient with radiation therapy is to achieve complication free tumor control by eradicating all
the tumor cells without severely injuring the surrounding normal tissues, cf. [Brahme (1994)],
a criteria function representing this trade-o� is used for �nding the optimal treatment dose
in the model presented here. In order to include the newest information into the model it
is updated after each treated patient. A Bayesian approach is taken, assuming a prior dis-
tribution on a historical set of radiobiological parameters, using a corresponding historical
treatment dose and the observed outcomes and the criteria function to calculate the posterior
distribution for the radiobiological parameters and the optimal treatment dose for the next
incoming patient. Using the posterior distribution of the radiobiological parameters as the
new prior this process is then iterated after each treated patient. Together with inclusion
of more individual information into the model, such as molecular markers on sensitivity to
radiation, cf [Haghdoost et al. (2001), Friesland et al. (2002)], this feedback model can be
used to get the subgroups in the population under study more homogeneous, hereby allowing
for more individualized treatment schedules.

3 Radiobiological background

Radiobiology is the study of the action of ionizing radiation on living targets, cf [Hall (1994)].
The important characteristic of ionizing radiation is the release of large amounts of energy
in local areas. Depending on the type of particles (electrons, protons, �-particles, neutrons,
light or heavy ions) used for irradiating, the particles interact with tissues, they spread and
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deposit the released energy at di�erent tissue levels. Absorbed radiation dose is measured in
Gray, Gy, de�ned as 1 joule per kg irradiated target.

DNA is the principal target for the biological e�ects of radiation, including cell killing,
mutation and carcinogenesis. The genetic coding of an individual is given in the DNA. The
DNA is built up of many substances, but to simplify, it consists of two strands that form a
double helix. If a single strand break occurs the strand is quite easily repaired by the DNA
itself copying from the non-damaged strand. A repair might be incorrect, though, resulting
in a mutation. A double strand break, occuring if both strands are broken opposite or close
opposite to each other, is believed to be the most important radiation damage. It can lead
to chromosome aberrations both for the irradiated person and for following generations.

Mammalian cells propagate and proliferate by mitosis, a type of cell division. Cell division
is a cyclic phenomenon. Following the cell division phase, the mitotic or M phase, is the G1

phase (G for gap, a resting phase). At the end of this phase there is a molecular checkpoint
at which the cell decides whether to commit itself to the complete cycle. If it does, then
comes the S phase (synthethic) where the cell replicates its DNA. Then again there is a
resting phase, the G2 phase, where the cell prepares to divide and after that another mitosis
occurs. The length of the various phases as well as of the whole cell cycle varies with the
type of cells studied. In general, G1 is the most variable phase with respect to length, the M
and G2 phases are the most radiosensitive phases and the S phase is the most radioresistant
phase. At a certain point in time cells are in di�erent phases. Cells can die a mitotic death,
that is they die in attempting the next or later mitosis, or they can die an apoptotic death,
which is a 'programmed' cell death. There are a large number of control genes and processes
that control the cell division system. For a tumor to start developing one or more of these
mechanisms fail. Year 2001 the Nobel prize in Medicine, was given to 3 researchers, LH
Hartwell, RT Hunt and PM Nurse, who discovered molecules that control and coordinate
cell division, cf. section 10. Controlling these molecules and then forcing cancer cells to
be 'arrested' resulting in apoptosis as well as developing methods to force the cells into the
radiosensitive parts of the cell cycle are important goals for the cancer research.

A cell that has retained its reproductive integrity and is able to proliferate inde�ntely to
produce a large clone or colony is said to be clonogenic. For a tumor to be eradicated it is
only necessary that the tumor cells be killed in the sense that they are unable to divide and
cause further growth and spread of the malignancy. For the normal tissue cells the tolerance
to radiation depends on the ability of the clonogenic cells to maintain a suÆcient number of
mature cells suitably structured to maintain organ function.

Radiation therapy of cancer patients can be split into a number of partial treatments called
fractions. This way the same total dose can be given via di�erent combinations of number
of fractions and fractionation doses. For a speci�c tumor the total dose must be increased
to achieve a speci�c e�ect if the treatment is prolonged. For the normal tissues this break
between fractions can be used for sublethal damage repairing of DNA strand breaks before
they can interact to form chromosomal aberrations. Thus a prolongation of the treatment
spares the normal tissues. For the tumor tissue there will �rst be a prompt (tissue-depending)
repair of sublethal radiation damage, then reassortment meaning progression of cells through
the cell cycle and then repopulation due to cell division resulting in a higher surviving cell
fraction. However, the reoxygenation process described below might make the cells easier to
eradicate. The question on whether or not to split up the treatment depends on the type
of cells involved and especially on the timing of the above processes. A typical fractionation
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radiotherapy schedule is to treat 5 times a week for 6 weeks with dose equal to 2 Gy. The
BIR1 and BIR2 studies referenced in section 4 are studies on fractionation schedules.

The ow of oxygen has been shown to be an important factor in the cell killing process
in transplantable tumors in animals. If cells are hypoxic (little ow of oxygen) cells are also
resistant to radiation. Hypoxia can be chronic or acute, the latter being due to temporary
closing of tumor vessels. Tumor cells might therefore be reoxygenated between fractions
and then easier to kill. Reoxygenation cannot be measured in human tumors, but there
are indications that reoxygenation occurs in tumors controlled by conventional fractionated
radiation therapy.

The probability of tumor control can be increased by escalating the radiation dose to
the tumor, cf. [Zelefsky et al. (1998), Zelefsky et al. (2001)]. If the tumor cells are resis-
tant to radiation the dose need to be escalated to the whole tumor or part of the tumor,
cf. [Kutcher (1998)]. Normal tissue will always get irradiated during a radiation treatment,
since the particles used for irradiating are passing normal tissues on the way to the tumor
site and since there need to be a margin in order to ensure that the whole tumor gets irra-
diated. Even though several methods exist for delievering a non-uniform radiation dose and
even though there are ways to shield and protect the normal tissues from getting irradiated
during a treatment, cf. [Brahme (1995)], an increase in the tumor dose will most often result
in an increase in the dose to the normal tissues, and hereby an increase in the probability
of inducing injury to the normal tissues. The increase in injury depends on the location of
the tumor and the possibility to protect the normal tissues. Therefore, when prescribing a
treatment dose, information on both the tumor and the normal tissues as well as a procedure
for weighting the bene�t of the treatment against the risk for injury are needed.

4 A clinical dataset - the BIR studies

For a single patient with a speci�c type of cancer the clinically observed response to radiation
treatment are two binary variables indicating whether or not tumor control and normal tissue
injury, respectively, have been observed at a given timepoint. Information about the duration
of the radiation treatment from �rst to last treatment fraction, the number of fractions as
well as the fractionation dose can be used to calculate the total dose delievered to the patient.
As described in section 3 the same total dose can be given by following di�erent fractionation
schedules. Besides tumor speci�c characteristics person speci�c covariates such as age and
sex can be built into the model.

Data sets on radiation treatments are hard to assembly. Person speci�c covariates as
well as follow-up status on tumor eradication/recurrence and normal tissue injury are read-
ily available in clinical databases in Sweden, whereas the routines for storing the complex
dose information are only in the planning stage. In order to implement the dynamic dose
optimization procedure into a clinical setting in Sweden, routines are needed for storing dose
information as well as information on old and new tumor molecular markers. Information
could perhaps be retrieved retrospectively from patient journals and biological specimens, in
order to set up and test reasonable models for di�erent tumor types. However, this would be
very time consuming and expensive.

In order to motivate the radiobiological model used here we present some radiobiological
results on a British data set: During 1965 and 1989 the British Institute of Radiology carried
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out two multicenter randomized clinical trials of fractionated radiotherapy for squamous
cell carcinoma of the larynx and pharynx involving 1345 patients, cf. [Wiernik et al. (1990),
Wiernik et al. (1991)]. We will refer to these studies as BIR1 and BIR2. In both trials
patients were randomized to two di�erent fractionation schedules in order to study e�ects of
fractionation.

The BIR data are special because they include many patients and because the pa-
tients were followed for a long time. The BIR1 study only included information on tu-
mor eradication/recurrence while the BIR2 study also included information on normal tis-
sue injury. The BIR data (and subsets of the data) have been analyzed by many people,
e.g. [Chappell et al. (1995a), Chappell et al. (1995b), Slevin et al. (1992)]. In these papers
generalised linear models, cf. appendix A, have been used to model some link function of the
probability of tumor control as

lnK + �D + �dD + T + lSt (1)

where St is the stage of the tumor (T1� T3) reecting the extent of the tumors invasion, T
is the overall treatment time from �rst to last treatment fractionation, d is the fractionation
dose, D is the total treatment dose given to the patient, and lnK;�; �,  and l are �tted
parameters.

This model is an example of the linear quadratic model, cf. [Fowler (1989)]. The quadratic
dose term indicates that in order to increase the probability of tumor control by killing more
tumor cells which can be achieved by dose escalation, the e�ect gets bigger the more the
dose is escalated. Di�erent types of tissue react di�erently to radiation, reecting that the
di�erent mechanisms described in section 3 take unequally long time. If the tissue repairs fast
the e�ect of the quadratic term is less than if the tissue repairs slowly. So if �=� is high (� is
low compared to � ) the tissue is early-responding (with respect to tissue repair), reecting
prompt tissue repair. If �=� is low (� is high compared to � ) the tissue is late-responding,
reecting that it takes long for the tissue to repair itself. Examples of early-responding tissues
are the skin and the colon, whereas examples of late-responding tissues are the lung and the
spinal cord, cf. [Hall (1994)]. Typical values for �=� are 3 Gy for late-responding tissues and
10 Gy for early-responding tissues.

In table 1 selected results for �tting model ( 1) from the above mentioned papers are
given. In the �rst two the traditional logit link is used to model the probability of tumor
control. In the last the more biologically motivated complementary log-log link is used, cf.
section 5. Note that at least for the �rst 2 studies planned treatment time, dose and number
of fractions are used in order to minimize bias. Bias could arise if one of the groups is treated
systematically di�erent from the planned (randomized) treatment schedule.

All analyses showed that higher doses increase tumor control rates, longer treatment
periods decrease tumor control rates, and the interaction e�ect of total dose and fractionation
dose is very small and not signi�cantly di�erent from zero. Since � is low compared to � it
follows that the tumor tissue is early-responding.

[Chappell et al. (1995a)] also modelled normal tissue damage after 5 years among 479
laryngeal carcinoma patients from BIR2 using logistic regression and a formula similar to ( 1).
They found that higher doses increase normal tissue injury rates (�=.116/Gy, se=[.029]),
longer treatment periods decrease normal tissue injury rates (=-.0954/day, se=[.0212]),
the interaction e�ect of total dose and fractionation dose is very small (�=-.00808/Gy2,
se=[.00375]), and tumor stage does not seem to inuence normal tissue damage.
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Reference and Link parameter estimates

study population function [SE] or (95% CI)

[Chappell et al. (1995a)] logit constant=-.937 [.979]

858 subjets from BIR1 and BIR2 �=.0591/Gy [.0186]

diagnosed with laryngeal carcinoma �=.00221/Gy2 [.00285]

=-.0419/day [.0124]

T2 vs. T1 =-.71 [.188]

T3 vs. T1=-1.044 [.187]

[Chappell et al. (1995b)] logit constant=-1.042 [1.036]

766 larynx patients from BIR1 and �=.0701/Gy [.020]

BIR2 with no neck nodes �=.00312/Gy2 [.003]

=-.0536/day [.0135]

T2 vs. T1 =-.716 [.194]

T3 vs. T1=-1.235 [.198]

[Slevin et al. (1992)] cloglog constant=4.47 (.04-8.81)

496 patients with pharynx/larynx �=.22/Gy (.108-.332)

cancer from one of the BIR hospitals �=.-.0149/Gy2 (-.0326-.0029)

* Only stage 2 and stage 3 tumors =-.167/day (.078-.255)

are considered, in the analysis they *

are combined in one group. *

Table 1: Selected results of analyses of BIR studies
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Other and more exible link functions than the logistic and cloglog are considered in
[Chappell et al. (1995a), Newton et al. (1996)] for analyzing the BIR data, also showing re-
sults of � being very small.

Homogenizing the patient group considered with respect to tumor stage and treatment
time, and deleting � from the model reduces the model from ( 1) to include only the pa-
rameters lnK and �, focusing on the e�ect of total dose on tumor control and injury to the
normal tissues. This is the model we use to build a feedback system that includes historical
information from previous treated patients to taylor the radiation treatment for new incom-
ing patients. Tumor control and normal tissue e�ects are modelled jointly, an attempt which
is not seen in any of the other studies.

5 The radiobiological model

A radiobiological model with four unobserable radiobiological parameters, following the struc-
ture in the paper by [�Agren et al. (1990)] is presented. Throughout the paper the tumor part
of the model is indexed by B (for Bene�t) and the injury part of the model is indexed by I
(for Injury).

Two of the parameters are used to describe the tumor tissue: the radioresistance of the
tumor, D0B, and the initial number of clonogenic tumor cells, N0B. The other two parameters
describe the normal tissues: the radioresistance of the normal tissues, D0I, and the number
of 'functional subunits' building up and assuring organ function of the surrounding normal
tissues, N0I, cf. [Hall (1994), Withers et al. (1988)]. For a given type of tumor and subgroup
of patients the radiobiological parameters, N0B, D0B, N0I, D0I, may vary from one patient to
another, and this unobserved heterogeneity is captured in a distribution for these parameters.
Homogeneity of tissues is assumed in the sense that within one patient the radioresistance
of every tumor cell is the same, and similarly for the radioresistance of every functional
subunit. The probabilities of tumor control and normal tissue injury are functions of the dose
distribution, which is included in the model as the total dose, D. We assume a homogeneous
dose given to both the tumor and the normal tissues in question.

Tumor control occurs when all clonogenic tumor cells are eradicated. Radiobiological
theory suggests a binomial model for this outcome with a log-log link for the probability of
achieving tumor control, cf. [Munro & Gilbert (1961)]. We present this model as follows: De-
�ne by PB the probability of achieving tumor control conditional on the set of radiobiological
parameters, N0B, D0B and the delivered dose, D. Given N0B, D0B and D, we assume that
for a speci�c individual the number of surviving tumor cells, SBj(N0B;D0B;D), is Poisson
distributed with mean N0B � exp(�D=D0B), so PB is the probability of no surviving tumor
cells. An increase in the radioresistance of the clonogenic tumor cells, D0B, increases the
mean number of surviving tumor cells for given N0B and D, while an increase in the mean
number of surviving tumor cells, N0B, lowers PB:

PB := P (SB = 0jN0B;D0B;D) = e�N0B�e
�D
D0B : (2)

By considering the log-log link, i.e. log(-log(PB))=log(N0B)-
�D
D0B

, then N0B corresponds to
K, and �1=D0B to � in ( 1). An increase in dose increases PB for given N0B and D0B.
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Figure 1: Illustrating probability curves for tumor control, normal tissue injury and compli-

cation free tumor control for the true model.

Similarly, for the injury side we de�ne PI to be the probability of inducing severe damage
to the normal tissues in the patient given N0I, D0I and D, and we assume that the conditional
number of surviving functional subunits in the irradiated organ, SIj(N0I;D0I;D), is Poisson
distributed with mean N0I �exp(�D=D0I). PI is then the probability of no surviving functional
subunits:

PI := P (SI = 0jN0I;D0I;D) = e�N0I�e
�D
D0I : (3)

A decrease in dose, lowers the probability of eradicating the functional subunits for given N0I

and D0I, while an increase in the radioresistance of the functional subunits given N0I and D
increases PI.

From ( 2) and ( 3) it is seen that D0B and D0I are the radiation doses (in Gy) at which
a fraction of e�1 of the initial clonogenic tumor cells respectively the normal tissue rescuing
units are killed.

We weight the bene�t and the injury by de�ning the probability of achieving complica-
tion free tumor control, P+, as the probability of eradicating all tumor cells while keeping
functional subunits to maintain organ function in the normal tissues:

P+ = P (SB = 0; SI > 0jN0B;D0B; N0I;D0I;D): (4)

Assuming conditional independence between the tumor and the normal tissues given the
radiobiological parameters and the dose, reduces ( 4) to:

P+ = PB(1� PI) (5)

used by [�Agren et al. (1990)].
To illustrate the trade o� between tumor control and normal tissue injury we show in

�gure 1 the probability curves PB, PI and P+ for a set of radiobiological parameters as
functions of the dose. The S-curve to the left is the probability of achieving tumor control, the
S-curve to the right is the probability of inducing injury, and the last curve is the probability
of achieving complication free tumor control. The optimal dose is achieved at the peak of
the P+ curve.

Note that while the assumption of conditional independence is plausible for an individual,
the radiobiological parameters, N0B, D0B, N0I, D0I, are unknowns in the model, and not
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measurable on the individual level. We assume unobserved heterogeneity captured by a four-
dimensional normal prior distribution for the radiobiological parameters with mean value �
and covariance matrix � given by:

� =

�
�B �BI

�t
BI �I

�
; (6)

where each element is a 2 � 2 matrix. �B contains the variances and the covariance between
the two tumor parameters, N0B and D0B, �I the variances and the covariance between the
corresponding injury parameters, N0I and D0I, and �BI the covariances between the tumor
and the injury parameters.

We determine an optimal dose bD by maximizing with respect to D an approximation of
the expected value of P+, with expectations taken with respect to the prior distribution.

bD = max
D

EP+ � max
D

fPB(DjEN0B;ED0B) [1� PI(DjEN0I;ED0I)]g : (7)

The approximation on the rigth hand side in ( 7) neglects the covariances in �BI when
factorizing EP+ by EPBE(1� PI), and a �rst order Taylor argument is used when replacing
E(PB(�)) and E(PI(�)) into PB(E(�)) and PI(E(�)). While a connection in radioresistance is
expected between tumor and normal tissues, i.e. non-zero elements in �BI, the simpli�cation
in ( 7) simpli�es computations and are not expected grossly to a�ect the dose determination,
see section 8 for more details.

The optimization criteria imply optimization of dose on the group level, i.e. for the sub-
groups of patients under study. Note that with added measured data on biological markers,
the subgrouping will change and N0B, D0B, N0I, D0I are calculated for new subgroups within
the initial group, hereby targetting the dose optimization to these new subgroups.

6 Sequential improvement and the Bayesian approach

The sequential model is illustrated in �gure 2. We assume historical estimates of the radiobi-
ological parameters as the only information source when starting the feedback system. The
historical information might come from a previous more coarse subgrouping of the patient
population. From the historical estimates the optimal dose is calculated according to the
criterion in ( 7). The next group of new incoming patients, will then be treated according
to this optimal dose. For the given treatment dose and the observed outcomes on tumor
control and normal tissue injury from these new patients the radiobiological parameters are
updated and these updated parameters are used for �nding an updated optimal dose for
the next group of patients. We assume that all patients within and between sequences act
independent of each other, implying that no patients are treated more than once.

Inference about the parameters in the radiobiological model, denoted �=(N0B;D0B; N0I;D0I),
is drawn from the posterior distributions, cf. appendix B. It follows from Bayes rule,
p(�jY ) = p(�)p(Y j�)

p(Y ) , where Y=(SB; SI), is observed data treated as stochastic with distribu-
tion indexed by the parameter �, that the joint posterior distribution of the radiobiological
parameters given the observed data is proportional to the product of the prior distribution
and the likelihood function. If we assume a multivariate normal 'working model' for the prior
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Figure 2: The sequential model built into a Bayesian framework.

of �, where the elements in �BI of ( 6) are set equal to 0, hereby assuming prior independence
between the tumor and the normal tissues, the prior factorizes into one part for tumor control
and one part for normal tissue injury. Together with the factorization of the likelihood in
( 4) and ( 5) this grossly simpli�es computation, but is not expected to dramatically a�ect
the dose determination in the respective sequencies. The likelihood in ( 4) and ( 5) together
with the multinormal prior results in the joint posterior:

p(N0B;D0B; N0I;D0IjfSBgseqk; fSIgseqk; fDgseqk)

/ p(N0B;D0B; N0I;D0I)
Y

patients in seq k

p(SB; SIjN0B;D0B; N0I;D0I;D)

= p(N0B;D0B)p(N0I;D0I)
Y

patients in seq k

p(SBjN0B;D0B;D)p(SIjN0I;D0I;D)

/ (�B)
� 1

2 (�I)
� 1

2 e�[((N0B;D0B)�(�N0B ;�D0B ))�B((N0B;D0B)�(�N0B ;�D0B ))
t]

� e�[((N0I;D0I)�(�N0I ;�D0I))�I((N0I;D0I)�(�N0I ;�D0I ))
t]

�
Y

patients in seq k

P
1fSB=0g
B (1� PB)

(1�1fSB=0g)P
1fSI=0g
I (1� PI)

(1�1fSI=0g):

(8)

Here fSBgseqk and fSIgseqk are the vectors of the individual treatment outcomes of the nk
patients treated in sequence k, denoting for each individual whether or not tumor control,
fSB = 0g vs. fSB > 0g, and normal tissue injury, fSI = 0g vs. fSI > 0g, occured. The
1fSB=0g and 1fSI=0g are indicator functions, and fDgseqk is the vector of individual treatment
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doses. Since the treatment group is homogeneous the doses are equal for all patients. The
priors p(N0B;D0B) and p(N0I;D0I) are two-dimensional normal distributions.

Given updated posterior values on means, variances and covariances for the radiobiological
parameters and given new data on tumor and injury responses the new optimal dose is found
from ( 7).

7 The updating procedure

A full Bayesian model assumes hyperpriors to be speci�ed for the mean values and the vari-
ances of the radiobiological parameters in ( 6), cf. appendix D. However, in the simulation
studies a simpli�ed form of the radiobiological model is tested. Instead of specifying hyper-
priors, we provide the prior means and variances of the radiobiological parameters to the
program calculating posteriors. To reduce complexity the number of surviving tumor cells,
N0B, and the number of functional subunits in the normal tissues, N0I, are treated as known
and �xed constants while D0B and D0I are treated as random. The software we use assumes
independence and normality of the coeÆcients in the linear predictor in ( 2) and ( 3), cf.
appendix D. Thus for computationel reasons we assume independence between D0B and D0I

as discussed in section 5. As another consequence of the program restrictions the normality
assmption is made on (�1=D0B) and not on D0B, and similarly for D0I. We have assumed
that D0B > 0, that D0B is concentrated to a small part of the positive axis, and that the
expected value of �1=D0B is well approximated by

E

�
�1

D0B

�
�

�1

ED0B
: (9)

From the mean values of the historical radiobiological parameters the approximate optimal
dose is calculated from the right-hand side of ( 7). The approximated optimal dose is used as
the treatment dose for the �rst incoming patient. Only one patient is treated before updating.

The outcomes on tumor control and induced injury for the patients are now generated
from the underlying true model in the following way: Patient speci�c values of D0B and
D0I are sampled from the true distributions. For the treated patient the value of the true
(sampled) D0B and D0I, the treatment dose and the �xed values of N0B and N0I are inserted
into ( 2) and ( 3), and outcomes on tumor control and normal tissue injury are sampled from
the Bernoulli distribution.

Information on the historical estimates of the radiobiological parameters and their stan-
dard deviations, together with the treatment dose and the sampled outcomes are then read
into Bugs [Spiegelhalter et al. (1995)], a program for calculating posteriors using Gibbs sam-
pling, cf. appendices C and D. Posterior means and variances of the radiobiological param-
eters are calculated. For a series of dose values posterior means and standard deviations over
the sampled radiobiological parameters are calculated for PB, PI and P+, and the dose that
maximises EP+ is used as the new optimal treatment dose.

The process is then iterated, by using this optimal treatment dose for the next patient,
samplingD0B andD0I again from the true distributions, inserting into ( 2) and ( 3), generating
outcomes from the Bernoulli distribution and updating the posterior means and variances for
the radiobiological parameters as well as the optimal dose.
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In section 9 the numbers of tumor controls, normal tissue injuries and complication free
tumor controls achieved by the updating model are compared to the numbers achieved under
the historical and the true model. The results from the historical and true models are
calculated similarly to the procedure just described, except here there is no updating of the
treatment dose. Instead the historical or true optimal dose is used for all patients in the
study.

8 Simulation studies

Simulation studies performed for studying the e�ect of sequentially updating a partially
suboptimal model towards a model de�ned by the true average radiobiological parameters
for the given population are presented. The purpose of the simulations is to evaluate the
convergence properties of the feedback system in terms of the number/fraction of complication
free tumor controls as a function of the parameters in the model.

In all simulations the �xed values of N0B and N0I are set to 441 and 22100, respec-
tively. These are values taken from a clinical data set on head and neck cancer treated
in [�Agren et al. (1990)] The true mean values for D0B and D0I are set to 12 Gy and 8.2 Gy.
Also these values are taken from [�Agren et al. (1990)].

Two historical sets of radiobiological parameters are used, one with mean radiobiological
parameters (D0B;D0I) = (14 Gy,10 Gy), resulting in a historical optimal dose that is higher
than the optimal dose under the true model, and one with mean radiobiological parameters
(D0B;D0I) = (10 Gy,7 Gy), resulting in a historical optimal dose that is lower than the
optimal dose under the true model. We also tested the true mean radiobiological parameters
as historical.

In the simulation studies the standard deviations of the true radiobiological parameters
are in one case 1 %, in all other cases 10 % of the mean values. Standard deviations of the
historical radiobiological parameters vary between 1 % and 10 % of the mean values. One
patient is treated in each sequence before updating but the total number of patients is varied.
In order to get stable results the whole feedback system is repeated from the same historical
model a number of times. Mostly it is 10 but also 20 and 40 repeats are done.

An in�le containing information on mean values and standard deviations of the historical
radiobiological parameters is read into Splus [Insightful]. In appendix D an example of an
in�le is given (corresponds to example 13 in tables 2 and 3) where the mean values of the
historical radiobiological parameters are set to (D0B;D0I) = (14 Gy, 10 Gy), and the standard
deviations to 10 % of the mean values. The in�le also contains information about the updating
process, the number of patients to be treated in each sequence (1 in example 13), the number
of sequences, which is then the number of patients to be treated, (200 in example 13), and
the number of repeats (10 in example 13).

In �gure 3 are shown the probability curves, PB, PI and P+ for the mean historical,
true and updated radiobiological parameters from the example in appendix D. Note that
the updated curves lie between the historical and the true curves. Convergence is not fully
achieved.

Software and programs are described in more detail in appendix D.
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Figure 3: Illustrating true, historical and updated models for example 13 in tables 2 and 3.

9 Results and interpretation

Results of the simulation studies are given in tables 2 - 5.
Table 2 contains a reference number in the column to the left followed by simulation setup

information on the means and standard deviations of the historical radiobiological parameters,
and the total number of patients treated. Unless otherwise stated the standard deviations
of the true radiobiological parameters are set to 10 % and the number of repeats to 10.
Table 2 reports the achieved mean number of complication free tumor controls, the standard
deviations (in parenthesis) and the mean fraction of complication free tumor controls (in
brackets) compared to the number of patients being treated, taken over the repeats. Table 3
similarly contains a reference number in the column to the left, corresponding to the reference
number from table 2, followed by the mean numbers of tumor controls and normal tissue
injuries as well as their standard deviations and the mean fractions of tumor controls and
normal tissue injuries compared to the number of patients being treated, taken over repeats.

As expected it is seen, that by updating the radiobiological parameters, complication
free tumor control is achieved for more people than would have been the case using the
historical optimal dose under the true model, cf. table 2. Below we consider the speed of
convergence from the historical model to the true model measured in terms of the number
of patients to be treated before the numbers of complication free tumor controls, tumor
controls and normal tissue injuries are at the true level. The standard deviations of the
radiobiological parameters are important when considering the speed of convergence, since
the higher the standard deviations on the historical radiobiological parameters, the more the
parameters values are allowed to change in the updating procedure when calculating posterior
distributions. This in turn inuences the optimal dose changes and hereby also the treatment
outcomes.

Starting out with a historical dose that is too high compared to the true optimal dose,
(D0B,D0I)=(14Gy,10Gy), the sequential updating results in a gain in the number of compli-
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cation free tumor controls, achived by both fewer tumor controls and much fewer injuries
than if using the historical optimal dose under the true model (since the optimal dose is
lowered over sequences). With a 10 % standard deviation on the radiobiological parameters
the number of complication free tumor controls are the same as in the true model already
after 20 patients but both the numbers of tumor controls and normal tissue injuries are still
higher than in the true model. However, after 50 and 200 patients also the numbers of tumor
controls and normal tissue injuries are getting closer to the true model. The results for the
simulation studies with standard deviations on the radiobiological parameters equal to 10 %
and 5 % are very close to each other, and the number of complication free tumor controls
for the updating models are about the same. When lowering the standard deviations to 1 %
the number of complication free tumor controls are much lower and closer to the historical
model than in the cases with 5 % and 10 % as are the numbers of tumor controls and normal
tissue injuries. The convergence is slower than in the previous cases.

When starting out with a historical dose that is too low compared to the true optimal
dose, (D0B,D0I)=(10Gy,7Gy), the dose is escalated over sequences. Both the numbers of
tumor controls and injuries increase, the former faster than the latter, to obtain a higher
number of complication free tumor controls than for the historical model. Also here the
number of achieved complication free tumor controls are very close to the true model when
standard deviations on the historical radiobiological parameters are 5 % and 10 %. When
lowering the standard deviations from 5 % to 1 % the convergence is slowed down, and after
200 patients the updated model has still not converged.

15



historical # # complication free
parameters patients tumor controls under

D0B D0I (sd) treated historical true updating
in total treatments (sd) [%]

1 14 10 (10%) 20 4.5 (2.0) [.23] 6.9 (2.2) [.35] 7.9 (2.0) [.40]

2 14 10 (10%) 20 4.5 (2.0) [.23] 6.9 (2.2) [.35] 7.4 (1.7) [.37]

3 14 10 (10%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 18.4 (3.5) [.37]

4 14 10 (5%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 18.4 (3.4) [.37]

5 14 10 (5%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 16.0 (2.7) [.32]

6 14 10 (5%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 15.7 (1.8) [.31]

7 14 10 (1%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 9.7 (3.8) [.19]

8 14 10 (1%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 9.8 (1.6) [.20]

9 14 10 (1%) 50 11.2 (2.7) [.22] 18.3 (3.6) [.37] 7.7 (2.8) [.15]

10 14 10 (10%) 200 43.1 (6.4) [.22] 75.1 (5.7) [.38] 79.5 (7.1) [.40]

11 14 10 (10%) 200 43.1 (6.4) [.22] 75.1 (5.7) [.38] 83.2 (6.3) [.42]

12 14 10 (5%) 200 43.1 (6.4) [.22] 75.1 (5.7) [.38] 76.6 (4.6) [.38]

13 14 10 (1%) 200 43.1 (6.4) [.22] 75.1 (5.7) [.38] 53.9 (4.1) [.27]

14 14 10 (10%) 2001) 43.1 (6.4) [.22] 75.1 (5.7) [.38] 81.8 (6.6) [.41]

15 14 10 (10%) 2002) 43.1 (6.4) [.22] 75.1 (5.7) [.38] 81.8 (7.0) [.41]

16 14 10 (10%) 2002) 43.1 (6.4) [.22] 75.1 (5.7) [.38] 80.6 (6.5) [.40]

17 14 10 (5%) 2003) 36.8 (4.7) [.18] 80.2 (6.5) [.40] 77.8 (6.8) [.39]

18 10 7 (10%) 50 9.4 (2.4) [.19] 18.3 (3.6) [.37] 19.4 (3.8) [.39]

19 10 7 (5%) 50 9.4 (2.4) [.19] 18.3 (3.6) [.37] 17.9 (2.1) [.36]

20 10 7 (1%) 50 9.4 (2.4) [.19] 18.3 (3.6) [.37] 14.0 (3.0) [.28]

21 10 7 (10%) 200 41.9 (5.9) [.21] 75.1 (5.7) [.38] 77.8 (4.4) [.39]

22 10 7 (5%) 200 41.9 (5.9) [.21] 75.1 (5.7) [.38] 81.3 (8.4) [.41]

23 10 7 (5%) 200 41.9 (5.9) [.21] 75.1 (5.7) [.38] 78.2 (2.4) [.39]

24 10 7 (1%) 200 41.9 (5.9) [.21] 75.1 (5.7) [.38] 57.0 (5.8)[.29]

25 12 8.2 (10%) 50 18.3 (3.6) [.37] 18.3 (3.6) [.37] 19.6 (3.0) [.39]

26 12 8.2 (10%) 200 75.3 (6.5) [.38] 75.3 (6.5) [.38] 81.0 (4.7) [.41]

27 12 8.2 (10%) 200 75.3 (6.5) [.38] 75.3 (6.5) [.38] 79.0 (5.5) [.41]

28 12 8.2 (1%) 200 75.3 (6.5) [.38] 75.3 (6.5) [.38] 86.2 (5.0) [.41]

29 12 8.2 (1%) 200 75.3 (6.5) [.38] 75.3 (6.5) [.38] 79.6 (4.5) [.41]

The standard deviations of the true radiobiological parameters are 10 % if nothing else stated.

The number of repeats is 10 if nothing else is stated.

1) 20 repeats were done.

2) 40 repeats were done.

3) Only 5% sd on true parameters.

Table 2: Results of simulation studies. Complication free tumor controls.
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Figure 4: Illustrating true, historical and updated models for example 15 in tables tables 2

and 3.

In �gure 4 the historical, true and �nal updated probability curves are drawn for example
15 from tables 2 and 3. Since the standard deviations are large and many patients are treated,
the �nal updated model is overlapping the true model. Convergence is achieved.

To convince ourselves that results over 10 repeats in tables 2 and 3 capture the perfor-
mance of the updating procedure we compared in table 4 the standard deviations of means
and the means of standard deviations over repeats for the �nal radiobiological parameters for
some of the simulations. The columns to the left are the reference number (corresponding
to the reference number in table 2), the historical mean values and standard deviations of
the radiobiological parameters, and the number of repeats in the simulations. It is seen that
the standard errors are closer to the mean of the standard deviations when 40 repeats are
done than when 10 repeats are done. However, when comparing with the results in tables 2
and 3 the estimates of tumor controls, injuries to the normal tissues and complication free
tumor controls are similar for 10 repeats (reference numbers 10 and 11) and for 40 repeats
(reference numbers 15 and 16) concluding that the 10 repeats done in most simulations are
enough.

In table 5 optimal doses are given for di�erent values of the means and the standard
deviations of the radiobiological parameters when simulating the optimal dose from the left-
hand side of ( 7) and when approximating from the right-hand side of ( 7). Comparing the
two methods it is seen that the approximation works very well.

We conclude that the standard deviations for the historical radiobiological parameters
are important factors for controlling the updating speed of the radiobiological parameters
and hereby the optimal doses. In reality it is not known whether the historical dose is too
high or too low compared to the true optimal dose. Regardless of which is the case the
results presented here show a gain in the number of complication free tumor controls from
sequentially updating the dose.
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standard deviations means of standard
refers to # # of means of the deviations of the

numbers in historical parameters patients repeats radiobiological radiobiological
tables 2 treated parameters parameters
and 3 D0B D0I (sd) D0B D0I D0B D0I

3 14 10 (10%) 50 10 .319 .156 .348 .139

4 14 10 (5%) 50 10 .182 .110 .310 .123

10 14 10 (10%) 200 10 .155 .087 .182 .074

12 14 10 (5%) 200 10 .110 .043 .174 .066

15 14 10 (10%) 200 40 .191 .069 .179 .071

18 10 7 (10%) 50 10 .321 .184 .376 .148

19 10 7 (5%) 50 10 .350 .165 .340 .134

21 10 7 (10%) 200 10 .169 .041 .200 .076

22 10 7 (5%) 200 10 .219 .091 .195 .084

Table 4: Standard errors and means of standard deviations.
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radiobiological optimal dose optimal dose
setups parameters (simulated) (approximated)

D0B D0I (sd) in Gy in Gy

true/historical 12 8.2 (10%) 79.6 78.7

true/historical 12 8.2 (1%) 78.7 78.7

historical 14 10 (10%) 95.5 94.5

historical 14 10 (5%) 94.8 94.5

historical 14 10 (1%) 94.5 94.5

historical 10 7 (10%) 67.3 66.6

historical 10 7 (5%) 66.8 66.6

historical 10 7 (1%) 66.6 66.6

Table 5: Optimal doses simulated according to criteria and approximation in ( 7).

10 Discussion

A simple radiobiological model built into a feedback-system has been presented. Information
from previous treated patients was built into the model and used to forwardly taylor a
treatment to the future patients coming in for treatment.

When designing an optimal updating procedure for clinical use there are a number of
issues worth exploring further. Distributions on N0B and N0I may be imposed and should
be carefully chosen in order to reect the complexity of di�erent cells and cell structures in
both tumor and normal tissues described in section 3. The normality assumption for the
parameters in the linear predictor could be released and the covariance structure between all
the radiobiological parameters could be further explored. From a substantive point of view it
is reasonable to assume that the radiation sensitivity in the tumor cells and the normal tissues
are correlated, cf. [Geara et al (1996)], but it remains unclear at present whether inclusions of
the correlation structure in the updating procedure would substantially increase convergence
speed for the optimal dose. Together with the exploration of a covariance structure the
hyperprior structure could be built in. Comments on software needs for these extensions can
be found in appendix D.

It is desirable to account for the dose fractionation by compensating for the between frac-
tions tumor growth, cell repair and reoxygenation which will violate the Poisson assumption.
Di�erent endpoints for normal tissues could be considered and a competing risk moment
between the tumor and the injury side be built in. The dose concept may be extended to ac-
count for non-uniform dose distributions. Other objective functions than the one in equation
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( 7) could be considered. For example [L�of J (2000)] consider maximizing the probability
of tumor control subject to an upper restriction on the probability of inducing injury to the
normal tissues. This extension will change the likelihood part of ( 8) and introduce additional
posterior correlation between the tumor and the injury part.

Besides convergence from the historical model to the true model, there are convergence
issues due to Monte Carlo error when calculating the posterior distributions using MCMC.
In the simple model presented here the latter is a minor problem, but for more complicated
models the number of chains may be extended and formal convergence diagnostics built into
the process.

In order for the model to be clinically relevant the dose must be monitored in a clinically
acceptable way. For implementing the feedback model in the clinic only a short dose interval
will be of relevance. The prior historical variance controls the changes of the radiobiological
parameters and the optimal dose. It should reect the number of patients that were used to
derive the parameters estimates. However, other things need to be taken into account, too. If
treatment techniques have changed or the target population di�er from the original one a at
prior with large standard deviations will let changes happen fast. The �rst patients will then
have a huge e�ect on the treatment for the next patients. An informative prior, with minor
standard deviations, will protect the new patients from odd acting historical patients but
also slow down changes. Other control mechanisms can be built in, for example by limiting
the size of the dose change between two sequences.

For taking the last step from section 1 and implementing the dynamic dose optimization
procedure into a clinical setting in Sweden routines are needed for storing dose information as
well as information on old and new tumor molecular markers. Inclusion of patient individual
molecular information in the model, e.g. on molecular markers for sensitivity to radiation,
cf. [Haghdoost et al. (2001), Friesland et al. (2002)], can be used to get the subgroups in the
population under study more homogeneous. This allows for more individualized treatment
schedules and a decrease in the variance of the model parameters. With new molecular
information for tumor classi�cation the need for individually targeted treatment planning and
for new knowledge of optimal treatment allocation in subgroups will increase. The statistical
tools proposed here are a �rst step in building a procedure for sequentially updating treatment
schemes.

APPENDICES

A Interpreting the radiobiological model as a generalized lin-

ear mixed model

De�ning a univariate generalized linear model. A GLM is fully characterized by three
components (to be explained below): The type of the exponential family, the link function
and the design vector [McCullagh & Nelder (1989), Fahrmeir & Tutz (1997)].
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Assume that y is an observation on a stochastic variable Y and that a set of observations
is given. To each observation is attached an m-dimensional covariate vector x. Assume that
the conditional mean of Y given x is equal to �, E(Y jx) = �, that the Y jx's, are conditionally
independent given � and that the distribution of Y jx belongs to a simple exponential family.
For an exponential family the density function of Y can always be written as

f(yj�; �; !) = exp

�
y� � b(�)

�
! + c(y; �; !)

�
; (10)

where � is called the canonical parameter, � is the additional dispersion parameter, b(�) and
c(�) are speci�c functions de�ning the type of exponential family distribution, and ! is a
known weight. If data are grouped with n persons in each group and if the average of the
individual responses is used as the group response then ! = n, if the sum of the individual
responses is used as the group response then ! = 1=n. For ungrouped data ! = 1. It can be
shown that E(Y jx) = � = b0(�) and that V ar(Y jx) = (b00(�)�)! where b0(�) = @b(�)=@� and
b00(�) = @2b(�)=@�2. Assume further that the conditional means E(Y jx) = � are related to
the linear predictor � = z

0
� by

E(Y jx) = � = h(�) = h(z
0
�) resp. � = z

0
� = g(�) (11)

where h is a known one-to-one, monotone, suÆciently smooth response function, g is the link
function i.e. the inverse of h, � is a vector of unknown parameters of dimension m, and z is
a design vector of dimension m, which is determined as an appropriate function z = z(x) of
the covariates x.

The Binomial distribution. Assume that Y is binomially distributed with index n and
parameter �. Y belongs to the exponential family since the density function can be written

f(yj�) =

�
n

y

�
(�)y(1� �)n�y

= exp

�
ylog(

�

1� �
) + nlog(1 � �) + log

�
n

y

��
= exp

(
y
n
log( �

1�� )� log[(1 � �)�1]

1
n+ log

�
n

n y
n

�)

= exp

(eylog( �
1�� )� log[(1 � �)�1]

1
n+ log

�
n

ney
�)

(12)

where ey = y=n. Treating the average as response and identifying the canonical parameter
� = log( �

1�� ), the dispersion parameter � = 1, b(�) = log(1 + e�), c(ey; �; !) = log
�
!
!ey

�
and

! = n it is seen that Y is also a GLM. For the special case where Y is Bernoulli distributed
(n=1) with parameter �

f(yj�) = exp

(
ylog( �

1�� )� log[(1 � �)�1]

1
1 + 0

)
(13)

the canonical parameter � = log( �
1�� ), the dispersion parameter � = 1, b(�) = log(1 + e�),

c(y; �; !) = 0 and ! = 1.
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The radiobiological model is recognized as a (GLM) with a Bernoulli response, YB, and a
log-log link function for the probability, PB,

log-log(PB) = log(N0B) +

�
�1

D0B

�
D; (14)

where log-log(PB) = log(-log(PB)). The right-hand side of equation 14 is the linear predictor,
(log(N0B);�1=D0B) corresponds to the � vector, (1;D) to the z vector in ( 11).

Population heterogeneity can be captured by assuming a distribution on the mean value
PB, resulting in a Generalized Linear Mixed Model (GLMM) with a mixing distribution on
the mean value.

The Beta-binomial model - a simple GLMM. Assume that Y is a stochastic variable,
binomially distributed with index n and parameter �, and that � is Beta distributed with
parameters � and �. Then the posterior distribution of � given the observed data y of Y is
given by:

P (�jy) / p(�)p(yj�)

=

�
�(�+ �)

�(�)�(�)
���1(1� �)��1

�
�

��
n

y

�
�y(1� �)n�y

�
/ �(�+y)�1(1� �)(��y+n)�1;

(15)

which is again a Beta distribution, this time with parameters � + y and � + n � y. When
the prior and posterior have similar distributional form the prior is said to be a conjugate
distribution for the likelihood. The Beta prior on the probability � is thus conjugate for the
binomial likelihood.

To force a Beta distribution on PB is very restrictive. A more exible and generalizable
family of models, random e�ects models is obtained by assuming distributions on (functions
of) the radiobiological parameters as in ( 8). The posterior distribution of PB then no longer
has a known distributional form but numerical methods facilitates calculating the posterior
distribution of PB and similarly PI.

B Priors and posteriors

Assume that Y is a stochastic variable and that y is the observed outcome of Y . The
likelihood p(yj�) is a function of the distribution parameter � conditional on the observed
outcome. In the Bayesian framework the parameter � is treated as a stochastic variable with
prior distribution p(�). By Bayes rule the posterior distribution for the parameter �, given
the observed data Y, p(�jY ) is proportional to the prior, p(�), multiplied by the likelihood
of the data given �, p(Y j�):

p(�jY )B) =
p(�)p(Y j�)

p(Y )
/ p(�)p(Y j�) (16)

where B) indicates the de�nition of Bayes rule.
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The joint posterior distribution of the radiobiological parameters is given in ( 8). Marginal
posterior distributions of one of the radiobiological parameters are obtained by integrating
over the righthand side in ( 8) with respect to all the other parameters. Also the posterior
distributions of the probabilities of achieving tumor control and inducing injury to the normal
tissue, can be calculated.

C Computation using Markov chain Monte Carlo simulation

Gibbs sampling, an algorithm performing Markov chain Monte Carlo simulation, can be used
to calculate the posterior distributions [Gilks et al. (1996)] of the radiobiological parame-
ters and of the probabilities of achieving tumor control and inducing injury. The Gibbs
sampler was given its name by [Geman & Geman (1984)] who used it for analyzing Gibbs
distributions on lattices in connection with image analysis. It is known from statistical
physics as the heat-bath algorithm. [Geman & Geman (1984)] based their work on work
by [Metropolis et al. (1953)] and [Hastings (1970)] but it was articles by [Gelfand & Smith(1990)]
and [Gelfand et al. (1990)] that explained how MCMC could be of widespread and important
use in Bayesian statistics as a tool for calculating posteriors which was not possible before.

A short description of algorithms and how the theory of Markov chains Monte Carlo
integration can be used to get information about the posterior distributions of the random
parameters in the radiobiological model is given. For more detailed descriptions with refer-
ences see for example [Gilks et al. (1996)]. Denote by X be the set of random parameters
from the radiobiological model, let f be a function of X that we want to evaluate (the mean,
the variance, upper percentile, etc), and denote by �(�) the posterior distribution of X.

First a remark on Markov chains. A stochastic process is a sequence of h-dimensional
stochastic variables fX0;X1;X2; :::g and a Markov Chain is a stochastic process with a tran-
sition distribution Pt(�j�) that satis�es

Pt(Xt+1jXt;Xt�1; :::;X0) = Pt(Xt + 1jXt); (17)

i.e. at time t the probability of going to Xt+1 only depends on the position at time t, Xt,
not on the whole history of steps from the start at X0. The transition probabilities might
or might not depend on t. If the Markov chain is irreducible (the chain can reach any
non-empty set with positive probability in some number of iterations), aperiodic (prevent-
ing it from oscillating between di�erent sets of states in a regular movement), and positive
recurrent (if the initial value X0 is sampled from the stationary distribution �(�) then all
subsequent iterates will also be sampled according to �(�)) then the distribution of Xt will
converge to a unique stationary distribution which does not depend on t and X0. cf. for
example [Roberts (1996), Meyn & Tweedie(1996)].

If f(X) is hard or impossible to calculate analytically Monte Carlo integration can be
used to get information about the mean value of f given by

E[f(X)] =

R
f(x)�(x)dxR
�(x)dx

: (18)

When performing Monte Carlo integration the samples fXt; t = 1; 2; :::;mg are drawn in-
dependently from �(�) and then the mean value, E[f(X)], is approximated by the sample
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mean,

E[f(X)] �
1

m

mX
t=1

f(Xt); (19)

the Monte Carlo estimate. By increasing the number of samples the estimate can be made as
accurate as desired. If the samples fXtg are drawn by running a Markov chain having �(�)
as its stationary distribution the method is called Markov chain Monte Carlo. Thus after a
suÆciently long burn-in of say k iterations, the points fXt; t = k+1; :::;mg will be dependent
samples approximately from �(�). The output from the Markov chain can then be used to
estimate E[f(X)], the Markov chain Monte Carlo estimate, by

E[f(X)] � f =
1

m� k

mX
t=k+1

f(Xt) (20)

where f is called the ergodic average. The variance of f is called the Monte Carlo vari-
ance. Convergence to the required expectation is ensured by the ergodic theorem, cf. for
example [Roberts (1996), Meyn & Tweedie(1996)].

There are several algorithms for sampling by running a Markov chain such that its unique
stationary distribution is the distribution of interest �(�), cf. for example [Gilks et al. (1996)], [Gilks (1996)], [Gelm

First consider theMetropolis-Hastings sampler [Hastings (1970)] which is a generalization
of the Metropolis algorithm. Denote by X the set of stochastic variables in the radiobiological
model, X = (N0B;D0B; N0I;D0I; PB; PI) At each time t the next state Xt+1 of the Markov
chain is chosen by �rst sampling a candidate point ~X from a proposal distribution, q(�jXt).
The candidate point ~X is then accepted with probability �(Xt; ~X) where

�(Xt; ~X) = min

 
1;

�( ~X)q(Xtj ~X)

�(Xt)q( ~X jXt)

!
(21)

� being the posterior distribution of interest. If the candidate point is accepted the next state
becomes Xt+1 = ~X . If the candidate is rejected, the chain does not move.

The Metropolis sampler [Hastings (1970)] only considered symmetric proposal distribu-
tions leading to the following acceptance probability

�(Xt; ~X) = min

 
1;

�( ~X)

�(Xt)

!
: (22)

The single-component component Metropolis-Hastings sampler updates one component of
the h-dimensional state vector X at a time, thus if at time t + 1 an update component i is
wanted, and if X�i

t+1 = (X1
t+1;X

2
t+1; :::;Xt+1;

i�1 ;Xi+1
t ; :::;Xh

t ) and
~Xi is the candidate for

the i'th component then equation 21 becomes

�(X�i
t+1;

~XijXi
t+1) = min

 
1;

�( ~XijX�i
t+1)q(X

i
t+1j

~Xi;X�i
t+1)

�(Xi
t+1jX

�i
t+1)q(

~XijXi
t+1;X

�i
t+1)

!
: (23)

Here �(Xi
t+1jX

�i
t+1) is the full conditional distribution for X

i
t+1 under �(�), i.e. the distribution

of Xi
t+1 given all other stochastic quantities in the model. If ~Xi is accepted set Xi

t+1 =
~Xi,
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otherwise set Xi
t+1 = Xi

t . The remaining components are not changed at step i. That
the single-component Metropolis-Hastings algorithm does indeed generate samples from the
target distribution �(�) follows from the fact that �(�) is uniquely determined by the set of
its full conditional distributions [Besag (1974)].

The Gibbs sampler is a special case of the single-component Metropolis-Hastings sampler.
The proposal distribution for updating the i'th component of X is

qi( ~XijXi
t ;X

�i
t ) = �( ~XijX�i

t ) (24)

where �( ~XijX�i
t ) is the full conditional distribution. Substituting ( 24) into ( 21) gives an

acceptance probability of 1.
Thus the Gibbs sampler proceeds by visiting the stochastic quantities in the model draw-

ing a sample from the full conditional distribution of the stochastic variable in question given
values of all the other variables from the previous round. Since the walk is constructed
as a Markov chain the probability of visiting a variable in the model only depends on the
previous position. The candidate points are always accepted and after a number of rounds
(the burn-in), the samples will constitute dependent draws from the posterior distribution in
question. From the sampled joint posterior distribution of the stocheastic quantities in the
model the marginal posterior distributions of the radiobiological parameters and the posterior
distributions of tumor control and injury can be calculated.

Methods for assessing convergence of the chain exist, cf. for example [Gelman et al. (1995),
Raftery and Lewis (1996), Gelman (1996)]. Notice that this area is still developing. For ex-
ample block updating of the Gibbs sampler has made it more eÆcient, but also new algorithms
are continuously being developed.

D Software and programs

The simulation study is built into an S-plus [Insightful] program that is run on the Linux plat-
form. The optimal way to run it is by specifying a number of characteristics such as link func-
tion (logit or log-log), objective function, number of patients to be treated, number of repeats
(to ensure stable estimates), values and standard deviations on true and historical radiobio-
logical parameters and treatment doses (optimal or �xed) in an in�le, and then running the
program in batch mode. For every update (i.e. every time a patient is treated) subprograms
are called for example for getting ready for posterior calculations. The posterior calculations
are done in the program Bugs [Spiegelhalter et al. (1995)], that implements Gibbs sampling,
cf. appendix C, via Adaptive Rejections Sampling [Gilks (1996), Spiegelhalter et al. (1995),
Gilks (1992), Gilks & Wild (1992)]. A unix shell script is written in order for the program to
escape to unix, run the script and calculate the posterior distributions and then getting the
results back into Splus. For the simple model reported here, the model is run without regular
MCMC convergence tests. The convergence of the MCMC model in each sequence of the
posterior model can be checked in the program BOA [Smith (2000)]. Sporadic checks have
been done, showing �ne quadratic posterior distributions, but for more complicated models
regular checks should be done!

Bugs assumes a full probability model when calculating posterior distributions using Gibbs
sampling. A full probability model representation incorporates hyperpriors on the mean
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values and the variances of the radiobiological parameters. Typical choices of noninformative
hyperpriors choices are a normal distribution for the mean value, � and a Wishart distribution
for the inverse of the variance, ��1. We tested a simpli�ed form of the radiobiological model
in the simulation studies ignoring the hyperlevel uncertainty, outomes were sampled from the
true distribution, and the prior mean and variance of the radiobiological parameters were
incorporated directly in the program calculating posteriors without integration with respect
to the hyperprior distribution.

The pros of the program Bugs are that it is readily available to do posterior calculations.
The cons are that since it is a general purpose program there are many restrictions on what
is possible, and other software might do the job more e�ective. For example some kind
of block-updating of some of the variables in the model would likely be more e�etive, cf.
appendix C. One of the restrictions in the model has been that the multivariate normal prior
distribution for the radiobiological parameters on the Linux platform did not work. Another
awkward restriction was the need to de�ne the normal distributions for the variables in the
linear predictor. For the radioresistances we might have wanted other distributions, such as
a truncated normal distribution on D0B. A number of tricks have been introduced now to
overcome some of the limitations in Bugs. At the time when this project was initiated one
major force was to get familiar with modern tools for Bayesian posterior inference. During
the course of the work it turned out that simulations involving the radiobiological model
are rather too complex for Bugs, and if starting anew it would be important to write new
computationel subroutines.

In subsections D1 - D10 (seperate appendix) we have documented the Splus, Bugs and
shell scripts used in the simulation studies. D1 contains an example of an in�le, (example
13 from tables 2 and 3), D2 contains the main program for the simulation studies and calls
all the other subprograms and routines to be executed. D3 contains a subprogram preparing
for posterior calculations, D4 contains the Bugs program �le for calculating posteriors, D5
contains a shell script getting the Bugs program and command �les ready for executing and
D6 contains the Bugs command �le. D7 contains a shell script to run the Bugs program, D8
contains Splus functions called by the main program in D2, D9 contains a shell script to start
the simulation program and D10 contains parts of the result �le from simulating according
to the model in D1. The programs have been written such that extension of the model was
possible.
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