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Abstract

Even though more than one response variable are measured after each treatment
in crossover trials, they are usually analyzed separately using univariate methods. In
a multivariate framework, it is shown how the two treatments in a 2 x 2 crossover
trial with multivariate response can be compared with respect to both fixed treatment
effects and within subject covariance matrices, marginally and simultaneously. The
proposed exact statistical inferences are valid even with few subjects and without
distributional assumption made about the between subject variability.
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1 Introduction

In a 2 x 2 crossover trial, each subject are randomly assigned to one of the two sequences,
AB or BA. The subjects in the AB-sequence receive treatment A before treatment B,
separated by a washout period to minimize an eventual carryover effect from period 1 to
period 2. Each subject generates two responses, one after each treatment. Usually these
responses are thought to be univariate and measured on a continuous scale. A lot of work
have been done for such ordinary univariate 2 x 2 crossover trials and there are several
books written on this topic, Jones and Kenward (1989), Ratkowsky et al. (1993) and Senn
(1993), etc.

Even though the response often consist of more than one measured characteristic in prac-
tice, the usual way to analyze such a study is to analyze each characteristic one at a time
using standard methods for univariate crossover trials. In this paper, we show how the two
treatments in a 2x 2 crossover trial with multivariate response can be compared with respect
to both mean response levels and within-subject variability using multivariate methods.
A multivariate response comes from either repeated measurements or a true multivariate
design. In studies with repeated or longitudinal measurements, one single characteristic
is measured on more than one occasion in each treatment period. Wallenstein and Fisher
(1977) and Jones and Kenward (1989) discussed the split-plot, whereas Patel and Hearne
(1980) presented a multivariate linear approach for this design. In a crossover trial with a
true multivariate design, two or more characteristics are of interest and measured in each
treatment period. Grender and Johnson (1993) used the general multivariate linear model
to set up an unified approach that handles tests for treatment, period and carry-over ef-
fects as special cases. To test for direct treatment effects, Rodriguez-Carvajal and Freeman
(1999) used Hotelling s T? statistic together with a transformation similar to that of Jones
and Kenward (1989) for the univariate case.

Guilbaud (1993) proposed a measure of the difference between the two within subject
variances in a 2 x 2 crossover trial and showed how to make exact statistical inference
about this measure without distributional assumption made about the between subject
parameters. We extend this into the multivariate case. Thus, we propose a measure of
the difference between the within subject covariance matrices and show how to make exact
statistical inference of this measure without making distributional assumption about the
between subject parameters. We also show how to construct a simultaneous confidence set
for this measure and the difference in direct treatment effect vectors using the union of the
two marginal confidence sets. The simultaneous confidence coefficient for such a set equals
the product of the two marginal confidence coefficients.

The outline of this paper is as follows. The statistical model with assumptions and no-
tations are presented in section 2. In section 3, we present the main ideas and the main



results. In section 4, we use the results in section 3 to construct exact confidence regions
for the measure of the difference between within subject covariance matrices. It is also de-
scribed how to combine such a confidence region with a confidence region of the difference
in fixed treatment effects. Finally, in section 5, we present computer simulations that has
been a useful toy in the understanding of the results. The conclusion is that even if the
distribution of the test statistic does not depend on the distribution of the between subject
parameters, the decision drawn from such an inference depends on the actual values of the
between subject variables.

2 Assumptions and notations

Let Y;;1 and Yo denote the response column vectors from period 1 and period 2 for
subject = 1,2,...,n; in sequence group j = 1,2, where sequence group 1 corresponds to
the treatment sequence AB and group 2 corresponds to treatment sequence BA. n; > 2
denotes the number of subjects randomized into sequence group j, j = 1,2. Moreover, let

n:n1+n2 (1)

denote the total number of subjects in the study. Further, it is assumed that the random
response p x 2 matrix (Y1, Y;j2) can be represented as

(Yij1, Yijo) = (Hjh sz) + (éij + €ij1, &5 + €ij2> ) (2)

where p;, and p;, are nonrandom vectors reflecting fixed effects such as treatment effects
and period effects; &;; is a random vector reflecting the between-subject variability; and
€ij1 and €;;, are random vectors reflecting the within-subject variability in each period.

The only distributional assumption made in this report concerns the n within vectors
€;j1 and €;;5. They are assumed to be mutually independent and independent of the n
“betwee” vectors §,;;. With =; denoting equality in distribution, it is assumed that for
i=1,2,...,n;
(€a,€B), if j=1

€501, Eiin) = e 3

(i1, €:52) d{ (eB,€4), if j =2 (3)
where €4 and ep are independent multivariate normal distributed stochastic variables
with zero mean and covariance matrix A4 respective Apg, i.e. €4 ~ N,(0,A4) and ep ~
N,(0,Ap). The indexes 4 and p indicates treatments. In terms of these within-subject
covariance matrices define the multivariate analogous, I', to the univariate one defined in

Guilbaud (1993) v = (04 — 0%) /(0% + 0%)

L= (As—Ap)(Aa+Ap)"! (4)



Thus, I' is a measure of the difference between the covariance matrices A4 and Ag. If
A4 = Ap, then T equals the p x p null matrix 0.

Let YJr and Y;;, i =1,2,...,n; denote the column vectors containing within-subject sums

and (A B)-differences, i.e.

Y;; =Y1+ Yijo (5)
- Yijl_YijQH ifj:l
Yij = { Y- Yy,  ifj=2 ©)

Further, for any given p x p matrix M, define Yl-l\;[ as
M _ v+ -
Y =Y; - MY (7)

The association between Y} and Y, depends on the matrix M, and the idea is to use
this dependence to make statistical inference about T'.

The sum of squares and cross-product matrices corresponding to (5) and (6) are defined
by

2
Z (Y; - Y;)(Y; —Y3),
j=11:=1

2 Ny 3 _
S+ =22 (Y5 =Y (Y5 -Y3),

j=11i=1

with Y =377, Y5 /njand Y =507, Y /n;. S, Sy, S—m and Sy are defined in
the same way. Define Y; to be the p X n; matrix containing all of the Y;;’s, i.e.
Y, = (Y. Yy Y, )

159 2],..., njj

In the similar way, define the p x n; matrix Yj_ to be the “mean matrix”, i.e.

Y = (Y;,Y;,...,Y.‘)

J J
Further on, define the p x n matrices Y~ and Y~ as
Y = (YY) (8)

Y = (YY) (9)
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With these definitions we can express S__ as
S_ = (Y =Y )(Y -Y).

Defining Y+, YM, Y+ and YM in the same way as in (8) and (9), we have

S, = (Yr—YO)(Y -Y),
Sum = (YM - yMyyM _yMy, (10)
Sm = (Y =Y ) (YM-YM, (11)
Note that the sum of cross-product matrices not are symmetric but that S, =S’ | and
Sm- =S’ ;, where ' denotes the transpose of a matrix.

3 Ideas and basic results

We can write Y}\f as

Y =T -M)Y; +Z; +2¢

iJ j)

where

Zi; =Y} -TY; —2 (12)

i
Note that no randomness in Z;; comes from the between subject random effects &,;, imply-
ing that Z;; follows a multivariate normal distribution. Now, because Cov(Y;;,Z;;) = 0,

Y,; and Z;; are independent multivariate normal variables.

It is now evident that if M = T' then Y,; and Y?f are independent. It is also evident
that if M # T', then Y,; and Yil}/[ are not independent. Thus, the association between Y
and Y?f depends on the matrix, M. The idea is to use this dependence on M to make
statistical inference about T' = (A4 — Ap)(A4 + Ap) ™t

For the moment, assume that the between subject parameters, §,; are independent mul-
tivariate normal with zero mean vector and some proper covariance matrix. Now, under
this assumption, we can derive the likelihood ratio test for testing independence between
Y,; and YZIE/I It will be shown in theorem 1 that the distribution of this test statistic does
not depend on the distribution of the between subject parameters.

With the normality assumption described above we have that (Y, Y;)’ follows a multi-
variate normal distribution, i.e.

] J
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Where p; and u}w are the proper mean vectors and where the covariance matrix, 3 can

be partitioned as
Y. X m
»
< v Yvm )

Note that Y;; and Y} are independent if and only if M = I' (X_p; = 0). We want to test

Hy: Y;; and Y} are independent (X_p = 0)
Versus (14)
Hy: Y;; and Y2 are not independent (X_p # 0).

Adopting standard techniques used for determining likelihood ratio tests in multivariate
normal models (see for example Seber (1984)) in model (13), it follows that the likelihood
ratio test for testing (14) is
- DY
AM)= =——=— | A‘ :
PIEE[DRVIVY

where fJ,A > and f)MM are Ehe likelihood estimates for the covariance matrices, S =
S__/n, vy = Smm/n and X = (S; +Ss)/n, where S; = 307 (yi; — ;) (vi; — ¥;)'- Note
that (ny —1)S; ~ W,(n;—1,X) and (ny—1)Sy ~ W,(ny—1, X) are independent. It follows
that (n —2)(S1 + S2) ~ W,(n — 2,X), where W,(m, X) denotes the Wishart distribution
with m degrees of freedom. Instead of A(M), we can express the likelihood ratio test as

S|

AM) = —FF. 15
M= s 1
Using

S| = [Smm|[S—— — S mSyimSm| (16)

and setting E = S__ — S_mSyinSm— and H = S_p Sy Sni— we have

S —S-mSumSm-| E|

AM) = = : 17
(M) < T (17)

The statistic of the form (17) first showed up as the likelihood ratio statistic for testing
linear hypotheses by Wilks (1932). Therefore, it is sometimes named “Wilks’ likelihood
ratio test” or “Wilks’ A” in the literature. There are other tests than the likelihood ratio
test available, as for example “the maximum root test” and “Pillai’s trace statistic”. More
can be read about these tests in books in multivariate analysis, see for example Seber
(1984). The distribution of (17) when E and H are independently Wishart variables is
by some authors called “the U-distribution”. Applying Lemma 2.10 and its corollary in
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Seber (1984) [page 50-51| to S, we have that, when Hy : ¥ _p = 0 is true, the random
matrices E and H are independently distributed as W, (n —p —2,3__) and W, (p, ¥__),
respectively. We adopt the name “U-distribution” and use the commonly used notation

A(F) ~ Up,p,n—p—?

Upper quantiles for the U-distribution can for example be found in Seber (1984). However,
various approximations have been obtained. Overviews of those can be found in books
in multivariate statistics such as for example Seber (1984). Bartlett (1938) showed that
—(n—p—1.5)log A(T") is approximately x? distributed with p? degrees of freedom for large
n. By Seber (1984)[page 41|, “This approximation is surprisingly accurate for the usual
critical values”. Thus, this approximation should be adequate for most circumstances in
practice.

The following theorem assures that we can use the test statistic (17) to make exact statis-
tical inference about I', even with no distributional assumption made about the between
subject parameters, &;;.

Theorem 1:
The test statistic,
El S —S mSiuSw|

AM) =15 ) = 5 |

(18)
for testing
Hy:T=M wersus Hy:T #M

has the following properties.

(a) A(T') ~ Uy pn_p—2, where U stand for the U-distribution described above. This holds
with no distributional assumption made about the between subject parameters, §,;;. In
particular, the &§;;’s are not assumed to be independent or identically distributed.

(b) A(T) and (Y{,Y5,S__) are independent.
(c) A(S{_S~1)=1.

(d) A(.) is symmetric around S, _S~™', i.e. A(S;_S=! +A)=A(S,_S™! — A) for all
p X p matrices A.

Proof: See the Appendix.



We can use property (a) to construct statistical tests as well as confidence regions for T
In section 4.3 we use (b) to construct simultaneous confidence sets for the difference in
direct treatment effects and IT" at a certain significance level. The properties (c¢) and (d)
motivates that S,_S”! can be seen as an estimator of I.

A(M) takes values between 0 and 1, where the probability observing a value close to 0 is
small if Hy is true. Thus, H, is rejected in favor of H4 when A(M) is too small. A(M)
takes the value 1 for M = S, _S~! | which can be seen as an estimator of I'. Compare this
with the univariate case, where v* = S_, /S__ is an exactly median unbiased estimator of

v = (0% —0p)/ (04 + o}).

We now discuss some theoretical properties of the U-distribution, more can for example be
found in Anderson (1984)[Chapter 8§].

A(M) can be seen as a function of the eigenvalues of S_MSK/}MSM_S:E. The eigenvalues
are distinct with probability 1 and they can therefore be ordered as 6; > 6, > ... > 0,.

A = [1(1 - 6)

It is known that 0 < 6; < 1 and if we write 6, = r?, then the positive square root ry is
called the kth sample canonical correlation between Y;; and Ygl In the one dimensional
case (p=1) we have that 6, = S%,,/(S__Sya) where M is a scalar. Thus, r; is the sample
correlation between the one dimensional stochastic variables Y;; and Y;'. A(M) = (1—r}).

S__ and Sy can be interchanged in the expression of |S| in (16). Thus, [S| can be
written as

S| = |S__[|Sant — Sv_S~LS_ml. (19)

Property (c) together with the symmetric property (d) imply that the test statistic A(IM)
can be expressed as a function of the difference between the matrix A and the central
point S, S~'. Using (19) in (15) together with evaluating Sy, S_n and Sy for
M =S,_S~! + A using (7), (10) and (11) yield

S, —S, S1S .|
A(S _S—l A) = | ++ + —— +
(S-St A) =g g 5T .t AS_ A

(20)

which is easier to work with than (17). Inverting the right hand side of (20) and using the
fact that the determinant of a matrix equals the product of its eigenvalues we have that
(20) can be written as

A(S:_STL+A)=1/ ﬁ(l + i),

=1

where A1, Ag, ..., \, are the eigenvalues of AS"' A’(S,; —S,_S”!S_,)™ L
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3.1 Connection to the univariate case

For the one dimensional case (p = 1), the U-distribution has the following property (see
for example page 40 in Seber (1984)),

(n—3)(1 - A(v))
A(y)
Here we write v instead of I' to indicate that we consider the one dimensional case. The F

distribution with 1 degrees of freedom in the nominator and n — 3 in the denominator is
the square of the t-distribution with n — 3 degrees of freedom. Thus,

(=)

Further on, Guilbaud (1993) showed how to make exact inference about « by using that
the test statistic

~ Fl,n—?)'

~ tp_3.

T(c)= (7" —c)/sx (21)

is t-distributed with n — 3 degrees of freedom when ¢ = ~. Here v* = S_,/S__ and
82 = (Sp4/S-— — (v)3)/(n —3).

The test statistic A(.) is a function of the test statistic (21) in the one dimensional case,

(=31 A\
“”‘( A ) '

Thus, in the one dimensional case, making exact statistical inference about v using theorem
1 is equivalent to the exact statistical inference proposed by Guilbaud (1993) using (21).

4 Confidence regions

In this section we first describe how to construct confidence regions for the difference in
fixed treatment effects. This is done by adopting the same technique as in the univariate
case with the distinction that it ends up in the Hotelling"s 72 instead of the Student ‘s
t distribution. Then we show how to use the distributional result (a) in theorem 1 to
construct a confidence set for I'. Finally, we show how to combine those marginal confidence
sets using the independence result (b) in theorem 1.



4.1 Confidence region for the (A-B) difference in fixed treatment
effects

Inference about fixed treatment effects is made by examining the Y ’s defined in (6). We
have

Y =p; +ei—el (22)
where, p; and p, are fixed effects and sé and eﬁ are independent multivariate normal
distributed with zero means and covariance matrices A4 and Ap respectively. Assume
that the direct treatment effects and the period effects are fixed and additive with no other
disturbing fixed effects being present, that is no carry-over effects. This assumption implies

that the fixed effects in (22) can be written as
w, =7+
By =T —T

where, the vector of constants T equals the (A-B) difference of the fixed direct treatment
effects and the vector of constants 7 equals the (period 1-period 2) difference of the fixed
period effects. Exact multivariate statistical inference about 7 can be made using the
statistic D defined by

D= (Y; +Y,)/2
where Y; = (1/n1) 2", Y;; and Yy = (1/ny) 72, Y, are the mean differences of (treat-

ment A- treatment B) effects in sequence group 1 respective sequence group 2. Now we
have that

D ~ N,(7,%p), (23)
where the covariance matrix Xp is
Sp=(1/n1+1/ng)X__/4,
and is estimated by
Sp = (1/n1 4 1/ns)S__/4(n — 2).
Consider the Hotelling s T, which in this case is
"=D-7)Zp'(D-1).

Then, we can write a (1 — «) confidence region for 7, C+ as a function of D and S__ as

Cr(D,S__) = {T 72 < P =2) g (a)}, (24)

“n—p-— 1 p,n—p—1

where F),,,_,_1(«) denotes the upper « quantile in the F distribution with p and n —p —1
degrees of freedom. This confidence set has coverage probability 1 — «, this holds of course
even without distributional assumption on the between-subject parameters §,,’s.
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4.2 Exact confidence region for I

We now use the results in theorem 1 to construct an exact 1 — a confidence region, Cr,
for T' = (As — Ag)(Aa + Ap)~'. This is done by including matrices M that are not
statistically significant on the a-level, i.e.

Cp = {M: AM) > Uy pp2(a)}. (25)

Thus, the confidence region consists of all p x p matrices M that are not significant different
from T on level «. Using the expression (20) for A(M) we can construct the confidence
region by first including the center point S, _S~! and then expand the region by also
including non significant surroundings.

4.3 Simultaneous confidence regions

As in the univariate case (see Guilbaud (1993)), the exact confidence coefficient for a
confidence region for (7,I") defined by the union of the two marginal confidence regions for
7 (24) and T" (25) equals the product of the two associated marginal confidence coeflicients.
That is, as if the two random regions were independent.

In fact, there is as in the univariate case a certain dependence between the random regions
Cr and Cy through S__ in (24) and (25). The confidence coefficient can nevertheless be
factorized into the two marginal confidence coefficients because of the same reason as in
the univariate case. That is that the two coverage events {T € C+} and {I‘ € CI‘} are

independent. Here, this independence holds because the event {I‘ € CI‘} can be expressed

in terms of A(T') and the event {7 € C+} in terms of (Y;,Y5,S__), which by theorem 1
are independent.

We can construct a simultaneous confidence region at a desired exact coverage probability
by choosing the two marginal confidence coefficient appropriately. We may choose different
marginal confidence coefficient even though the most appropriate way may would be to
choose the same.

5 Simulations

In this section, we show computer simulations that illustrate the behavior of the test
statistic A(M) for different types of distributions on the between subject variables, ;. Tt
is sufficient to show the behavior in the one dimensional case because the same pattern
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also is seen in the multivariate case. As mentioned in section 3.1, the test based on T'(.)
defined in (21) is equivalent with the test based on A(.) in the one dimensional case. We
choose to present the results of the simulations in terms of 7'(.) because the t-distribution
is available in standard statistical software whereas the U-distribution is not.

We simulated 5000 studies, each included 20 subjects whose responses were simulated from
the univariate case of model (2). It was assumed that there were no fixed period and no
fixed treatment effects present, i.e. # = 0 and 7 = 0. Further, the two within subject
random variables €4 and g were assumed to be normal distributed with expectation zero
and variance one, i.e. €4 ~ N(0,1) as well as eg ~ N(0,1). Each subject was given a
simulated value of (e4,ep). They were also given four simulated values of the between
subject parameter ¢;;. Thus, each subject gets four simulated sets of (Y;1,Y;j2), where
the values on the within subject variables are fixed in the four sets. Thus, the only thing
differing between the sets are the values on ;;. The following cases are considered:

Normal 1: §;; ~ N(0,10). That is when ¢;; is simulated from the normal distribution
with zero expectation and variance 10.

Normal 2: Same as “Normal 1”7 but new random numbers, &;; ~ N(0, 10).

Constant: &; =0,t=1,2,...,n,,j=1,2.

Exponential: §;; = X;; — 1, where X;; is an exponential distributed random variable
with expectation 1.

The first two cases, “Normal 1”7 and “Normal 2”, contains the same normal distribution
where the variance is large compared to the variance of the within subject variables. The
“Constant”-case can be seen as if is no between subject variation present, i.e the between
subject variables are constant equal to zero, §;; = 0, for i = 1,2,...,n;, j = 1,2. Finally,
the “Exponential’-case represents a shewed distribution with the same variance as the
within subject variables.

Each study gives rise to four test statistics, one for each case of §;;. Thus, the simulation
gives us 5000 quadruples of test statistics. In Figure 1 we show scatter plots, when these
are plotted pairwise against each other. Figure 2 shows histograms of the 5000 simulated
test statistics for each of the four cases. The probability density function of Student’s t
distribution with n — 3 degrees of freedom is included as a reference curve in each of the
four histograms.

We know from theorem 1 that the test statistic follow the same distribution whatever the
underlying distribution is on the between subject variables &;;. Though, we see in Figure 1
that the values of the test statistics depend on the values of the between subject variable.
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Figure 1: Scatter plots of the simulated test statistics. “Normal 17 and “Normal
27 indicate that the between subject variables, &;;, are simulated from a normal
distribution; “Constant” indicates that they are constant equally to zero; and
“Exponential” that they are simulated from an exponential distribution, i.e. a
shewed distribution.

If there were no such dependence, the four simulated test statistics would have generated
the same value on the test statistic for all 5000 repetitions. Remember that the only thing
differing between the four test statistics is the values on the between subject variables, ;.
Even though we not necessary reach the same decision from the four test statistics, they
follow the same distribution. This is seen in the histograms in Figure 2, where we see that
the distribution of the four test statistics follows the t-distribution with n — 3 degrees of
freedom.
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Figure 2: Histograms of the simulated test statistics. In each histogram, we
have also plotted the probability density function of Student’s t distribution with
n — 3 degrees of freedom as a reference curve.

The decision drawn from a test statistic depend on the values on the between subject
variables, but the distribution on the test statistic does not depend on the distribution
on the between subject parameters. The dependence between test statistics depend on
the relation between the within subject variability and the between subject variability.
Small within subject variability compared to between subject variability generates almost
independent statistics (see Figure 1).



Appendix: Proof of theorem 1

Proof:

(a)
If we can show that E ~ W,(n —p —2,%), H ~ W,(p,¥__) and that E and H are
statistically independent, then it follows that A(T") = |E|/|E 4+ H| ~ U, n—p—2. Using the
expressions (10) and (11) we can express H in terms of Y~ as follows,

H = S uSyvSm. =

= Y (YM - YM) [YM Y YM - Y)Y - YY) =

= (Y)A(Y).

Here we have defined the p x p matrix A as

A= (YM - YM) [(yM -y (yM -yMy ]y M -y,

Thus, A contains only YM. Let for the moment YM and thus also A be fixed. When
Hy is true, fixing YM does not influence the distribution of Y~ because Y~ and YM are
independent. A theorem in multivariate statistics says that if A is idempotent, then

(Y)AYT) ~ W, (b5~ Au)) (26)

(see for example Arnold (1981)). Here, u~ A(p™)" is the noncentrality matrix; =~ denotes
the expected mean matrix corresponding to Y, i.e.

no= (l’l‘l_?l’l’1_7"'7["’;7“57“5"“7“2_);

and k is the rank of the A matrix. A is idempotent because A? = A. The rang of A
equals the rang of YM | which has the rang p (with probability 1). The noncentrality matrix,
pu~A(p~), equals the null matrix because = (YM — YM) = 0. So for fixed A, H follows
the central Wishart distribution with p degrees of freedom, i.e. H ~ W), (p, ¥__). Since this
distribution does not depend on Y™, H is unconditionally W, (p, ¥__) and independent of
YM, When Hy : ¥_y = 0is true, YM and Y~ are independent even if we only assume that
the between subject parameters, §; are independent of the within subject parameters, €;;;
and €;;5. This mean that H ~ W), (p, ¥__) holds with no distributional assumption made
on §,;. In particular, they are not assumed to be independent or identically distributed.

The same argument can be used to show that E ~ Wy (n—2—T,%__) holds with no
distributional assumption made about &£. Let by be the n x 1 vector ,

b; =1/y/ni(1,1,...,1,0,0,...,0),
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in which there are n; nonzero elements. Define by in the similar way, i.e.

by = 1/y/n2(0,0,...,0,1,1,...,1Y,

but here with n, nonzero elements. Now, we can write Y as

Y™ =Y (b;b] + byb))
Using that the n x n matrix b;b} 4+ byb), is symmetric, we can express S__ as
S_ = (Y -Y)(Yy-Y)=
= Y (Tguunm) — (bib] + byb})) (Y,
where I,y) is the n x n identity matrix. With this notation, E can be expressed as

E = S__—S_uSpuSum. =

= S —H-=
= Y (Lxn) — (bib} + bob})) (Y7) = Y A(Y ) =
= Y (Tguum) — (bib] + bybh) — A) (Y7) =

- Y B(Y),

/

where we have defined the p x p matrix B as
B = (I(uun) — (bib} + byb}) — A).
The rank of B is n — 2 — p and to show that B is idempotent we use the following facts

A=A

(bib} + bab})(b1b) + byb)) = (bib] + bybb)
(byb} + bybb)(YM —YM) =0

(YM — YM)'(b;b} + bybh) = 0.

The noncentrality matrix, = B(p ™) = 0 because
B Ly (p7) = p (biby + baby) (™)’

and p~A(p~) = 0. Arguing as before shows that E ~ W, (n — 2 — p, ¥__) holds with no
distributional assumption made about the £&’s when Hj is true.

It remains to show that E and H are statistically independent when H, is true. We use
the result from multivariate statistics that says: “the Wishart variables YAY  and YBY'
are independent if and only if AB = 0” (see for example Arnold (1981)). So, E and H are
independent if and only if BA = 0. Thus, E and H are independent because

(byb/, + bybl)A = 0
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and A% = A.

(b)
Define C;; as

Cij = (Zij —Z;j) +2(&,; — &),

where Z;; is defined in (12) and is independent of Y;;. Thus, the Y;;’s and the C;;’s are
independent. Let C; be the p x n; matrix containing the C;;’s from treatment sequence

7, 1.e.
Cj:(clj7CZj>'-'acnjj>; j:1,2
Further, let

C = (Cy,Cy).

With this notation, we can express the sum of squares and cross-product matrices S__, S_n1, Sm—
and Sy in terms of Y—, Y~ and C as

S_ = (Y =Y )Y -Y)

SmM = Y =Y )Y - Y)T-M+(Y -Y)C

SM. = OC-M)(Y =Y )Y =Y ) +C(Y -Y)

S = T=M)(Y =Y )Y =Y )T-M)+T-M)(Y -Y)C +
+C(Y -Y)(I'-M)+CC

The test statistic under H, is with these notations

(Y- —Y)C'(CCH'C(Y —Y)|
(Y= =Y )Y -Y)|

A(T)

Thus, the test statistic is a function of the random variables Y;; and C;;. According
to the assumptions made earlier, the Y;’s follow a multivariate normal dlstrlbutlon and
are independent of the C,;’s, whereas the distribution of the C;;’s is unknown. However,
we know from the proof of (a) that the conditional distribution of A(T") given C has the
same distribution as the unconditional distribution, i.e. A(T') as well as A(T') given C
follows an U-distribution, A(T") ~ U, ,, ,—p—2. Because the distribution does not depend on
the parameters, (u~,X__), specifying the distribution of the Y;’s, it follows from Basus’
theorem (see for example Lehmann (1991)) that A(T") is conditionally independent of the
sufficient statistic for (=, 3__) given C. A sufficient statistic for the mean vector and
the covariance matrix in the multivariate normal distribution is of course (Y;,Y5,S__),
which is a function of the Y;;’s. Thus (Y;,Y;,S__) and C are independent.

The fact that A(T") is conditional independent of (Y;,Y5,S__) given C and that (Y7 ,Y;,S__)
and C are independent, imply that (Y;,Y;,S__) and (A(T), C) are independent. Recall
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that the conditional distribution of A(T") given C has the same distribution as the uncon-
ditional one. This mean that A(T') and C are independent, i.e. (Y;,Y5,S__) and A(T)
are independent.

(c)
Using (7) together with (11) we see that S_pg can be written as
SmM=S_,-S_M (27)
Thus, using that S, = S_, we have for M* =S, _S~!

S_M* = S_+ - S__(S+_S:1_)/ -
== S_+ - S__S:ES_+ == 0

and it follows that A(S,;_S~!) =1.
(d)
Set M~ =S, _S~! — A and M" =S, _S~! + A. Then, because of (27) we have
S_Mf - S,,A == —S_M+. (28)

Moreover, using (7) together with (10) we have

SM+M+ - SM—M— - S++ + AS,,A/. (29)
Thus, using (28) and (29) in the expression (18) of the test statistic A(M) we see that

A(S;_S™t —A)=A(S,_S! +A),

i.e. A(M) is symmetric around S, _S~!.
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