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Abstract

In a 2 X 2 crossover trial with multivariate response, it is shown how to test for
bioequivalence when the prespecified bioequivalence restrictions can concern differ-
ences in fixed treatment effects as well as in within subject variability. The restrictions
are expressed as intervals, within which expectations and variances for a set of linear
combinations of the examined pharmacokinetic parameters should be to claim bioe-
quivalence. As in the univariate case, the intersection-union test and the confidence
set approach are the same test if the level of the confidence set is chosen appro-
priately. The probability rejecting the null hypotheses erroneously are controlled in
a conservative way. In the special case, when the restrictions only involve individ-
ual pharmacokinetic parameters, it is shown how to construct a test at desired size.
The statistical tests are semiparametric in that no distributional assumption is made
about the between subject variability, whereas a normality assumption is made about
the within subject variability.
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simultaneous inference.
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1 Introduction

In recent years, generic drug products have become very popular. For the approval of
a new generic drug product, the United States Food and Drug Administration (FDA)
usually does not require a new drug application, if the generic drug company can provide
the evidence of bioequivalence between the generic drug product and the innovator. Thus,
bioequivalence studies are important since a new drug application submission is very time
consuming and costly to obtain.

The definition of bioavailability has evolved over time with different meanings by different
individuals and organizations. However, the most common used definition is that adopted
by the FDA in 1983: the bioavailability of a drug product is defined as “the rate and
extent to which the active drug ingredient or therapeutic moiety of the drug product becomes
available at the site of drug action.” For the approval of generic drugs, a bioequivalence
assessment, as a surrogate for the clinical evaluation of the generic drug products, is based
on the following fundamental bioequivalence assumption: “when two drug products are
equivalent in the rate and extent to which the active drug ingredient or therapeutic moiety
s absorbed and becomes available at the site of drug action, it is assumed that they will be
therapeutically equivalent.” The concepts of bioavailability and bioequivalence became a
public issue in the late 1960’s when concern was raised that a generic product might not
be as bioavailable as that manufactured by the innovator.

In bioavailability studies, the blood or plasma concentration-time curve is often used to
study the absorption and elimination of the drug. The curve can be characterized by taking
blood samples immediately prior to and at various time points after drug administration.
The profile of the curve is then usually studied by means of several pharmacokinetic param-
eters, such as the area under the blood or plasma concentration-time curve (AUC'), max-
imum concentration (C,,.,) and time to reach maximum concentration (7},..), etc. The
measurements of these pharmacokinetic parameters can be estimated either directly from
the observed curve or by fitting the observed concentrations to a one or multicompartment
pharmacokinetic model, Okpako (1991). Among the pharmacokinetic parameters, AUC'is
considered the primary measure for the extent of absorption, which provides information
regarding the total amount of the drug absorbed in the body.

Statistical tests for the assessment of bioequivalence use the estimated pharmacokinetic
parameters mentioned above without taking any account of the measured concentration-
time points. It is obvious that we loose information when we replace raw data with some
estimated parameters. Even though we think that we model the estimated pharmacokinetic
parameters in the first place, our multivariate model and results are also applicable on the
raw data.



Although the FDA still recommends testing for average bioequivalence in most bioequiv-
alence studies, the present FDA guideline (FDA (2001)) also describes “population” and
“individual” bioequivalence that besides averages of the measures also focus on the vari-
ances of the measures. In the last years, a lot of work have been done on how to test for
“population” and “individual” bioequivalence, see for example the special issue on bioavail-
ability /bioequivalence in Journal of Biopharmaceutical Statistics, Chow (1997). The FDA
recommends testing for “population” respective “individual” bioequivalence by using single
criterions that contain both means and variances of the measurement. That is done for
individual pharmacokinetic parameters one at a time. We find it interesting to make a si-
multaneous test that includes restrictions on both means and variability for all interesting
measurements. Wang et al. (1999) did that for rectangular bioequivalence restrictions on
the means. We first generalize this for other restrictions on the means. Then we show how
to construct a size « test for testing equality of within subject variability and also how to
combine this to a test concerning both means and variances for all examined characteristics
simultaneously.

The outline of this report is as follows. We describe the multivariate statistical model,
assumptions and notations in section 2; In section 3 we show how to test for bioequivalence
with respect to fixed treatment effects for general equivalence regions. We also show that
the confidence interval approach and the intersection-union approach are equivalent if
the confidence level in the confidence set is chosen appropriately; In Section 4 we test for
equality in variability. In the univariate case, we show how to construct an exact size « test
without distributional assumption made about the between subject variability. Further on,
we show that intersection-union tests can be used to construct a size « test for equality in
variability for all measured characteristics simultaneously. Finally in section 5, we combine
the results in section 3 and section 4 ending up in a test for bioequivalence that includes
restrictions on both direct treatments effects and within subject variability.

2 Statistical model and assumptions

In a two-sequence, two-period crossover design with multivariate responses, we assume
that p characteristics are measured after each of the two treatments A and B. The char-
acteristics can for example be pharmacokinetic parameters such as AUC; Cyhuz; and Tz,
etc, but can also be repeated measurements of the concentration of the active drug at
fixed time points, ¢;,%,...,t, after drug administration. However, each subject gives rise
to two multivariate responses, one in each period. Let Y;;; and Y, denote the p x 1
response vectors of the ith subject in the jth sequence group in period 1 and period 2
respectively, ¢ = 1,2,...,n; and j = 1,2. Sequence group 1 corresponds to treatment
sequence AB whereas sequence group 2 corresponds to treatment sequence BA. The p x 2



matrix, (Y;;1, Y;j2) can be described by the following statistical model

(Yiji, Yije) = (11, ) + (&5 + €1, &35 + €i52), (1)

where p;; and p;, are nonrandom vectors reflecting fixed effects such as direct treatment
effects and period effects; §;; is the random effect vector of the ith subject in the jth
sequence; and €;;; and ;o are the vectors of within-subject random errors in observing
Y1 respective Y;j5. n; > 2 denotes the number of subjects randomized into sequence
group 7, j = 1,2. Moreover, let

n=mni+ ne
denote the total number of subjects in the study.

We assume that the direct treatment effects and the period effects are fixed and additive
and that there are no carry-over effects. These assumptions imply that the fixed effects
p;y and g, in model (1) satisfy

™+ T, ifj=1

where 7 is the constant vector equaling the (period 1 - period 2) difference of the fixed
period effects and 7 is the constant vector equaling the direct (treatment A - treatment
B) fixed effects, 7 = (74, 70,...,7,)

The only distributional assumption made in this report concerns the n within random
vectors €;1; and €;o; in model (1). They are assumed to be mutually independent and in-
dependent of the n between random vectors ;. Moreover, they are assumed to be normally
distributed with expectation zero and covariance matrices depending on the treatment in
the corresponding period. Thus, with =; denoting equality in distribution, it is assumed
that for ¢ = 1,2,...,n;,

v _ ) (eaep), ifj=1
(51117 51]2) —d { <€B,€A), 1fj 5 (3)

where € 4 and e are independent multivariate normal distributed stochastic variables with
zero means and covariance matrices A 4 respective A g, we write €4 ~ N,(0, A 4) respective
ep ~ N,(0,Ap). The indexes 4 and g indicates treatments. Note that no assumption is
made about the joint distribution of the n between subject random vectors, §;; in model
(1). In particular, they need neither be independent nor identically distributed.

Let Y;; and Y;;, i =1,2,...,n; denote the column vectors containing within-subject sums
and (A-B)-differences, i.e.
YZ—; =Y;i1+ Yo (4)
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= Y — Y, if j =1
Yij B { Yij? - Yz’j17 if j =2 (5)

Statistical inference about the fixed (treatment A- treatment B) effects, 7, is made by
analyzing the within subject (A-B)-differences, Y;;, whereas both Y5 and Y;; are used to
make statistical inference about the within subject variability.

3 Testing for bioequivalence with respect to differences
in fixed treatment effects

We begin this section with a description on how to make statistical inference about dif-
ferences in fixed treatment effects. This is easily done using similar transformations as
that of Jones and Kenward (1989) for the univariate case. It ends up in a test based on
the Hotelling s T2 statistic instead of Student ‘s t-distribution. Then we show how to test
for bioequivalence for general bioequivalence restrictions on differences in fixed treatment
effects. Further on, we describe the intersection-union test, likelihood ratio test and the
confidence interval approach for testing bioequivalence under this circumstances and we
claim that these three approaches in fact ends up in the same test.

3.1 Statistics to make inferences about difference in fixed treat-
ment effects

Statistical inference about the difference in fixed treatment effects, 7, is made through the
within subject (A-B)-differences, Y, defined in (5). The statistical model for Y;; can be
written as

Yi;:,u,j_—i—sf;—sg, (6)
where the vectors pu; and p, are fixed effects and siAj and 65 are independent multivariate
normal distributed with zero means and covariance matrices A, and Ap respectively.
This mean that Y;; is normally distributed with mean p; and covariance matrix 3 =

AA + AB, i.e.
Y~ Ny(p7, 30),

where the fixed effects p; and p; equals 7 + 7 respective 7 — 7 because of (5) and (2).
Exact multivariate statistical inference about 7 can be made using the statistic D defined
by



where Y7 = (1/n1) X", Y;; and Yy = (1/ny) 72, Y, are the mean differences of (treat-
ment A- treatment B) effects in sequence group 1 respective sequence group 2. Now we
have that

D ~ N,(7,%p), (7)
where the covariance matrix Xp is
Xp=1/n1+1/ny)X__/4,
and is estimated by
Yp = (1/n1 + 1/ny)E__/4,

where

2 nj

S =1/ =23 (Y, - Y)Y, - ;).

j=14i=1

~

Note that (n —2)X__ is Wishart distributed with n — 2 degrees of freedom, i.e.

(n—2)E__ ~Wy(n—2,3__).

3.2 A general criteria for bioequivalence

Wang et al. (1999) showed how to test for bioequivalence simultaneously, when bioequiv-
alence is claimed if all elements in the vector of the fixed direct treatment effects, 7, lies
inside a cube. Assume that A is the cut-off number specifying bioequivalence. Then,
testing for bioequivalence is to test

Hy : max |7e| > A versus  Hy: max || < A. (8)
For the one-dimensional case (p = 1), Schuirmann (1981) proposed what has become a
standard test of (8). It is called the “two one-sided tests” (TOST) and is equivalent to the
symmetric confidence interval approach proposed by Westlake (1981). To test (8) when
p > 1, Wang et al. (1999) proposed a test based on the intersection-union method. This
test has rejection region

Rl = k(p]l {|Dk] <A —t,_s(a) (in)kk} :

which defines a size-« test for (8). Wang et al. (1999) also conclude that this intersection-
union test is equivalent to the likelihood ratio test as well as the confidence set approach
for testing (8).



We show how to generalize these results for a more general bioequivalence criteria on the
direct fixed (treatment A- treatment B) effects, 7. A criteria defined by putting restrictions
on a number of linear combinations of 7. That is a test of

: T > : /

Hy max la,T| > A versus  Hyu max la, 7| < A, 9)
where the aj’s are row vectors of unit length, i.e. a;-a, =1, k=1,2,...,q.

If a is the kth coordinate vector, k = 1,2,...,p, then the region of equivalence is simply

the original one described by Wang et al. (1999), i.e. we test (8). We can specify other
equivalence criteria by using other linear combinations. The following are examples in the
2-dimensional case, i.e. when two characteristics are measured.

1. a; = (1,0) and a; = (0,1) gives the quadratic region of equivalence, see Figure 1.

2. a; = (1,0)/, ay = (0,1)', as = (1/\@, 1/\/5)' and a;, = (—1/\/5, 1/\/5)' gives the

region in Figure 2.

3. Including all vectors of unit length (if possible), gives a circle with radius A, see

Figure 3.
T2 T2 T2
A A A
A N N N N N
_A —-A -A
Figure 1: Figure 2: Figure 3:
If we let A denote the ¢ x p matrix with row vectors aj, k = 1,2,..., ¢, then we can use

the transformed variables, AY,;; and AY,j, instead of the original ones to test (9). The D
statistic for the transformed variables equals AD and is an observation from the g-variate
normal distribution with mean A7 and covariance matrix AXpA’, i.e.

AD ~ N, (AT, AEDA’).

Note that the covariance matrix, AXpA’, is singular if ¢ > p.



We can use the intersection-union test to test the hypothesis (9) under model (1). Let us
consider the q sets of hypotheses,

Hy, : |la,7| > A versus Hy, :|a,7| <A, for k=1,2,...,q. (10)

Note that the test proposed by Wang et al. (1999) is a test of (9) in the special case when
the vectors a;, as, ..., a, equals the coordinate vectors and ¢ = p. The null hypothesis and
alternative hypothesis in (9) can be seen as the union respective intersection of the ¢ sets
of hypothesis in (10), i.e. Hy = Uj_; Ho, and Hy = N}_; Ha, respectively. For each set of
the hypothesis in (10), the size-a TOST has rejection region

Ry, = {|aD| < A — t, 5(a)(a},Epag)'/?}. (11)
Using the intersection-union method, it follows that the rejection region
q A~
Re- = () Ri = {|ajD| < A — t,_»(a)(a}Zpay)"/?, for all k} (12)
k=1
defines a level-a test for (9).

Theorem 3.1:
The intersection-union test, Ry, for testing (9) under model (1) has size a.

Proof: As noted before, each R, defines a TOST of size a. The theorem follows from
theorem 2 in Berger and Hsu (1996), which is applicable here because there is a sequence
of parameter points, 61,60, ,in the parameter space of the alternative, H, , such that

lim P, Z(Y c Rkl) = (13)

l—o00

and, for every k =1,2,...,q, k # kK,

lim Py (Y € Ry) = 1. (14)

l—o0

Let 0, = (1, = Aay, B5 = §,25) be a sequence of parameter points, where X, is a fixed
proper covariance matrix and §; are small positive numbers that goes to zero as [ goes to
infinity, i.e. 9 — 0 as | — oo. Using (11) and that a;D is normally distributed with mean
Aajap and variance daj, X ay, for all points in the parameter sequence 6;, we have that

POZ (Y € Rk) = Pel (TH,Q < —tn,Q(a) + (A — Aakak/)/(azipak)l/g) —
—Py, (Tu-2 < tna(a) — (A + Aajap)/(a}Epag)?) , (15)

where
Tn_g = (a;D — Aa;ak/)/(a;leak)l/Q ~ tn_g.
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For k = k' we have that aj,ar = 1 so the first term in (15) equals a. The second term
goes to zero because aj,3pa, — 0 with probability 1 as | — co. Thus, (13) holds. On the
other hand if k& # &/, we have that aja, < 1 and it follows that the first term in (15) goes
to one and the second term goes to zero as [ — co. Thus, (14) holds for k # k'

[]

The intersection-union test (12) is basically a likelihood ratio test. The likelihood ratio,
A(D) equals (see for example Krzanowski (1988)).

n/2
D) = supy, L(T,%p; D) _ 1
Sup y,um, L(T, ¥p; D) 1+ —Linfrep, (D — T)’EAJ]_;(D -7)

where L(.) denotes the likelihood function for model (7). The likelihood ratio test rejects
Hy if and only if A(D) < K or equivalent if and only if

infreg, (D —7)EpHD —7) > (K" — 1)(n - 2), (16)

where K determines the level of the test. The following theorem implies that the intersection-
union test and the likelihood ratio test are equivalent for proper choice of K.

Theorem 3.2:
For 0 < K <1, A(D) < K if and only if

|a,D| < A —t,_y(a)(a,Epay)?, fork=1,2,....¢q (17)
where K = (£2_y()/(n—2) +1) """,

Proof: Wang et al. (1999) proved this in the case when the row vectors in the p x p
matrix A equal the coordinate vectors. If A is of full rang, but not includes all coordinate
vectors, then the results of Wang et al. (1999) holds if we change coordinate system, i.e
if we transform the original p characteristics into p new ones. The result of Wang et al.
(1999) holds of course for the p new characteristics. Thus, it is evident that the result of
Wang et al. (1999) holds for all p x p matrices of full rang. It remains to prove that the
theorem holds even for other matrices.

Let A,, denote the p X p matrix containing the p different row vectors, a], , k =1,2,...,p,

from A. It is possible to construct (Z) different such p x p matrices of full rank. We have

ApD ~ Ny(ApT, ApnSpAl ), form=1,2,. .., <q>
p

where A,,XpA’ is a covariance matrix. From Wang et al. (1999) we have that the
intersection-union test and the likelihood ratio test for testing

Hp,, : max |a], 7| > A versus  Hy, : max |a), 7| <A (18)

™ 1<i<p ™ 1<i<p



are equivalent, i.e.
AM(D) < K <= |al, D| < A —t, s(a)(a, Xpay,)"?, fori=1,2,...,p, (19)

where \(™) (D) denotes the likelihood ratio test corresponding to matrix A,, and

—n/2

K = (£ 5(a)/(n—2)+1)

Further, note that the restrictions in the hypothesis (18) can be expressed as restrictions
on T instead of those on a/, 7. This mean that the hypothesis (18) can be written as

p p
Ho, :7 ¢ (r(Aay,,) versus  Ha, 7€ [)7(A an,), (20)
i=1 =1
where (A, a,,,) is the region in RP where |a;, 7| < A for i = 1,2,...,p. Thus, we have
that
X"(D) < K <= _inf (D - )YS5 (D — 1) > (K" — 1)(n — 2). (21)
€110,

Using (16) and the fact that Hy in (9) can be written as the union of all Hy,, in (20) we
have that

AD)< K< inf (D-7)S5D-7)> (K" —1)(n-2).

q
P
TEUnL:l H(),m

The right hand side holds if and only if the right hand side of (21) holds for m =
1,2,..., (Z). Then, using (19) and that the a,,,’s are just the a;’s we have

AD) < K <= |a},D| < A —t,_5(a)(a,Epay)? for k=1,2,...,q.

3.3 The confidence set approach

Another way to obtain a test for (9) is to use the confidence set approach. Let C(Y') be
a 1 — a confidence set for 7. Then, the test for (9) that rejects the null hypothesis if and
only if

C(Y)CHa (22)

has level o. Consider the confidence set based on the Hotelling’s 72, which in this case is
7= (D-7)85 (D — 7).

10



Then, the set
C(Y)={r:T*<C?}, (23)

has coverage probability 1 — «, if

Cf = Fpn1-p(@)((n = 2)p)/(n — 1 —p), (24)

where F),,,_1_,(a) is the upper a quantile of the F distribution with p and n—1—p degrees
of freedom. Putting the test (22) together with the confidence set (23) yields a test with
rejection region

|a,D| < A — Cy(a,Epa)/?, k=1,2,....q (25)

That is the intersection-union test (17), despite that the t-percentile, ¢, () has been
replaced with C.

Theorem 3.3:
The test based on the confidence interval approach described above has size

o = P(Tn_g < —Cl), (26)

where T,,_o denotes a stochastic variable that is t-distributed with n — 2 degrees of freedom
and C is the positive square root of (24).

Proof: Because the confidence interval approach ends up in the intersection-union test
with rejection region (25), which despite of C} is the same as the intersection-union test
(17), the size o* equals the size of the individual tests as it is for the intersection-union
test (17). Thus, we get the size o from (15) when Aay’ay = A and [ — oco. The size
equals

o' = P((a,D-A)/(aSpay)? < —Cy) = (27)
= P(Tn,Q < —Cl),
where T, » is t-distributed with n — 2 degrees of freedom.

[]

Using the symmetry of the t-distribution we see that the probability in (27) can be written
as

P ((a,D - A)*/(a}pay) > C}) /2.

Thus, another way to express the actual size of the confidence set approach is that of Wang
et al. (1999), i.e.

0" = P (\i/xia > C3) /2

11



where x? and x2_, denotes independent chi-squared random variables with 1 respective
n — 2 degrees of freedom. That is

o =P (Fin>(n-2)CY) /2,

where F' ,,_, denotes a F-distributed stochastic variable with 1 respective n — 2 degrees of
freedom.

The actual size decreases fast with the number of parameters but does not depend on the
number of restrictions. Table 1 shows the actual size for the confidence set approach when
we reject Hy if and only if the symmetric 95% confidence set lies within H4. On the other
hand, Table 2 shows the appropriate level on the confidence set so that the corresponding
test has size 0.05.

Table 1: The actual size o of the test based on the confidence interval approach
derived from a 95% confidence set (o = 0.05 in (24)), the number of subjects
n as well as the number of characteristics p varies.

n | p=1 p=2 p=3 p=4 p=> p=10

20 | 0.025 6.5 x107% 2.0 x10™% 6.1 x10™* 1.9 x10™* 1.4 x10~"
30 | 0.025 6.7 x107% 2.2 x107® 7.6 x10™* 2.7 x107* 1.1 x107©
50 [ 0.025 6.9 x107% 2.4 x107® 8.7 x10™* 3.3 x10~* 3.2 x10°©
0o | 0.025 7.2 x107% 2.6 x107% 1.0 x10™® 4.4 x10~* 9.4 x10~6

Note that the actual size does not depend on the number of subjects for p = 1 whereas
it does for p > 1. The last row (n = o), is calculated using that 7,,_» ~ N(0,1) in (26)
and C7 — x,(a) in (24) when n — oo. To use the confidence set approach to make a test
that has an actual size a* we have to choose @ > a* in (24). To get size a* we have from
Theorem 3.3 that C has to be equal to the upper a* quantile of the t-distribution with
n — 2 degrees of freedom, t, s(a*). Solving for « in equation (24) when C} = t,_o(a*)
gives

o =P (Fup >t ,(0)(n—p—1)/(pn—2)), (28)

where F,,_,_, stand for a F distributed stochastic variable with p respective n — 1 — p
degrees of freedom. In the limit as n — oo, we have that

a = P(X?D > 22(04*)),

where X;Z) denotes a chi-squared random variable with p degrees of freedom and z(a*) is
the upper a* quantile in the standard normal distribution.

12



Table 2: The confidence level (1 — «) on the confidence set so that
the actual size equals 0.05. « is calculated from (28) when o* is set
to 0.05, the number of characteristics p as well as the number of
subjects n varies.
n |p=1 p=2 p=3 p=4 p=> p=10
201090 0.73 0.53 0.35 0.21 3.3 x1073
30090 0.73 054 0.37 0.22 5.9 x1073
50 | 0.90 0.74 0.55 0.38 024 8.3 x107?
oo | 0.90 0.74 056 039 025 1.2 x107?

4 Test for equality in variability

This section starts with a description on how to test for equivalence in variability by us-
ing the distributional results of Guilbaud (1993). However, the TOST or the equivalent
confidence interval approach generate a very conservative test. In fact, there are no pos-
sibility at all to show equivalence under most common practical situations. We show how
to modify the test such that a desired size of the test is obtained. Further on, we use this
modified test together with an intersection-union test to test for equality in variability for
general bioequivalence restrictions concerning the variability.

4.1 The one dimensional case

If we only measure one characteristic, Y;;; and Y;;» and all other elements in model (1)
are one-dimensional. In particular, e4 and ep in (3) are univariate normal distributed
stochastic variables with zero means and variances that we denote % respective 0%. We
want to test if these variances are equal. Guilbaud (1993) defined

v = (0} —05)/(0h +0p)

as a measure of the difference between the two variances. Because 7 is an one to one
function of 0% /0%, making statistical inference about 7 is equivalent to make statistical
inference about the relative variability, 0%/0%. Guilbaud (1999) showed how to make
various exact statistical inference about v using that the test statistic defined by

() = (v = o) /., (20)

follows a t-distribution with n — 3 degrees of freedom for ¢ = ~. Here, +* is an exactly
median unbiased estimator of v defined by

V= S—+/S——7

13



where S_, and S__ are the pooled within group corrected sums of squares and cross
products corresponding to the within subject sums and crossover (treatment A - treatment
B) differences, i.e.

2 nj - -
Sov =2 (Y —Y (Y] =YH)
j=1i=1
S__ and S, are defined in the similar way. The standard error of the estimator v* is
denoted by s, and is given by

57 = (S++/S—— - (7*)2) /(n—3). (30)

It may occur that v* does not belong to the interval (—1,1). It may also occur that the
confidence region for v is not included within (—1,1). This is pointed out and discussed
how to handle in Guilbaud (1999). However, when testing for bioequivalence, this is no
problem because the interesting part is when ~* is close to zero and when the width of the
confidence interval is small.

We can use TOST as well as the symmetric confidence interval approach together with
(29) to test for equivalence in variability, i.e. test
Hy: |y > A, versus Hy @ |y| < A,,

where A, is the predefined cut-off number for 7. The confidence interval approach rejects
Hy in favor of H 4 if the the entire 1 — 2a confidence interval for v lies within H4. Using
the exact distribution in (29), a symmetric 1 — 2« confidence interval for v is

C, = (7* —ta(n —3)s., 7" + ta(n — 3)5*). (31)
That is the same as the TOST, which rejects H in favor of H, if and only if
V| < Ay — ta(n — 3)s,. (32)

This test is a level « test, i.e. the probability rejecting H, erroneously is at most «. The
size is
o = sup Pg(]'y*\ <A, —to(n— 3)s*>. (33)
0cHy
Note that s, depends on the estimate v*, thus the variance of the estimate can not be
made arbitrary small for any parameter sequence in Hj as it can for estimates of the mean.
This implies that the size is less than «, i.e. the test is conservative.

The maximum in (33) is taken on the edge to Hy, i.e. for v = A,. Because the expectation
of Sy equals (n—2)(c% + 0% +4Var(&;)) and E[&;;] = 0, it is more likely that s? is small
when there are no between subject variability present. Thus, the size is given when v = A,
and &; = 0,1 =1,2,...,n;,j = 1,2. However, it is hard (impossible?) to derive the « in
(32) that gives size o analytically. Instead, we first derive a roughly, then use this rough
« as starting point in a repeated simulation procedure to find a better estimate of the «
that gives the desired size.

14



4.1.1 A rough calculation to get closer to the desired size

If we set

s, =58 =(1-0")"/(n-3)

in (33), then it is possible to calculate o*. Note that, if there are no between subject
variation, then S__ and S, have the same distribution. This motivates that we can use
32 instead of s2 in order to calculate a rough estimate of the actual size.

Using that the probability of rejecting H is maximized when there are no between subject
variability and when v = A, we have that the rough size &* equals

& = Pa, (17 < A~ tay/ (L= (7)) (0 = 3)) (34)

where we have written ¢, instead of t,(n—3). Thus, we will find a such that this probability
equals a*. It is clear that o > &* and that the choice depends on A, and n. Of course,
the width of the confidence interval has to be smaller than 2A, if there should be any
possibility to reject Hy at all. This yields the restriction

ta(n —3) < Av/n—3.
Thus, we search for o that satisfies
P(Ts > Awn=3) <a <05, (35)
where T, 3 is t-distributed with n — 3 degrees of freedom.

Even though s, takes its maximum in v* = 0 and decreases with the distance between ~*
and zero, we have that

|7 — ta 84, if v* <0

7+ todal, i 4+ > 0 (36)

max{h* - ta§*|a |’7* + ta§*|} - {

takes its minimum for v* = 0. We also have that both v* —¢,5, and v* 41,5, are monotone
increasing functions of v* in the interval

(O +e/m=3)" 1+ 2/(n=3)7"),

i.e. in the interesting part around zero. The monotonicity together with (36) gives that if
we reject Hy for v* = ¢ then we also reject Hy for v* < |¢|.

As mentioned earlier, the TOST or the equivalent confidence interval approach for testing
(44) is a level « test. But it is conservative, in fact it is common that it is impossible to reject
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Hy. For example, using a = 0.05 in a study containing n = 25 subjects. Observing v* = 0
and using S, instead of s, in (31) gives the rough confidence interval (—0.37,0.37). Thus, it
is possible to reject H, only if A, > 0.37. But A, > 0.37 allows one of the within subject
variances to be more than twice as big as the other one, i.e. A, = 0.37 = 03 /0% = 2.2.
This is a far to wide bioequivalence region for most experiments. A more reasonable limit
is 04 /0% = 1.2, which corresponds to A, = 0.091. We now show how to construct a test
at size &* for all cut-off limits by choosing « in (34) appropriately.

We have from (34) that the rough size &* can be written as

= 0 — PA ’7* + AW ta)
” (m — )/ -3)

Rewriting the inequality in the left probability in (37) as 7* < f(A,,ts,n) and using
that this probability equals a, we can calculate the distribution function of v* (under the
conditions that E[y*] = A, and no between subject variability). We have

(n=3)A, = /(n=3)82 +t4 — (n - 3)A22
Pa |7 < =a.
K n—3+41t2

The right probability in (37) is unknown, but can be calculated from the known probability
(38) if we write the inequality in terms of v* < g(A,,t,,n), i.e.

(38)

—(n = 3)A+ /(= 3)22 + ¢} — (n - 3)A%> : (39)

P t <
A”(7 n—3+41t2

We now use the known probability (38) to solve the unknown (39) by solving for ¢,/ in the
equation
f(A’wta’>n) :g(A’wtmn)' (40)

There is no explicit solution to this equation, but it can be solved by numerical methods.
However, it does not exist a solution for all ¢,, but it does for ¢, < A,v/n—3. The
condition, ¢, < t, guaranties an unique solution.

Thus, the rough size is

~ % /
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where o/ is the corresponding probability to t,..

The appropriate « such that the rough size equals &* can be found using iterative methods.
An easy way to do that is to start with an « close to the lower restriction in (35) and then
try new candidates in such a way that we successive enclose the appropriate value in a
smaller and smaller interval. We continue the iterations until we get a size sufficient close
to a*. Results are shown in Table 3.

Table 3: The « in (31) and (32) that corresponds to a test at rough

size 0.05 £ 107, The number of subjects n as well as the bioequiv-

alence limit A, varies.
n | A,=0.05 A,=0.10 A,=0.15
20 0.445 0.368 0.298
30 0.424 0.329 0.247
50 0.391 0.274 0.181
100 0.337 0.190 0.100
o0 0.05 0.05 0.05

4.1.2 An iterative simulation procedure that constructs a test at desired size

We now describe an iterative simulation procedure to find the « in (33) that corresponds
to a test of size 0.05. Note first that the distribution of v* is scale invariant. Thus, the
distribution is given by the relation between the variances, i.e. by 7.

1. Choose starting values on: &; the number of simulations m; the step length d. Choose
also an appropriate cut-off limit . We chose & from Table 3; m = 10000; 6 = 0.0005;
and d = 0.01.

2. Simulate m studies from the univariate case (p = 1) of model (1) when v = A, and
no between subject variability, {;; = 0,1 =1,2,...,n;, 7 =1,2.

3. Calculate the number of studies (X) out of the m simulated, that rejects H, using
the test (32). X ~ Bin(m,p), where p = the size corresponding to &. Calculate the
symmetric 99% approximative confidence interval (c.i.) for p, using normal approxi-
mation.

4. If the simulated c.i. is included within (0.05 — §,0.05 4 §) then

e Stop the iterations;
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o 4 =q;
Else if

e (.05 is included within the c.i. then
— increase m (m = 3m) and decrease the step length d (d = d/2).
e (.05 lies below the c.i. then

—a=a-—d.
e (.05 lies over the c.i. then
—a=a-+d
Goto step 2.

The procedure described above generates & as an estimate of the « in (33) that corresponds
to size 0.05 and is so accurate that the interval (0.04995, 0.0505) contains the true size with
probability &~ 0.99. The results are shown in Table 4 below.

Table 4: &’s from the iterative simulation procedure correspond-

ing to tests at size 0.05. The number of subjects n as well as the

bioequivalence limit A, varies.
n | A,=0.05 A,=0.10 A,=0.15
20 0.441 0.357 0.278
30 0.421 0.320 0.232
50 0.390 0.270 0.172
100 0.336 0.186 0.098
00 0.05 0.05 0.05

The last row in Table 4 equals 0.05 because s, — 0 as n — oo.

4.2 Multivariate extension

We can transform the multivariate model (1) into an one-dimensional one by taking linear
transformations of Y;;; and Y;;,. If aisa px1 vector, then a/Yijl and a/YZ‘jQ are univariate
random variables that can be written as

(alYijh a/Yz’j2> = (allijh a//*l’jQ) + (algz’j + alaijla algij + aleijZ)a (41)

where a'sz-jl and a’sijg are normally distributed random variables with zero means and
variances depending on the treatment. From (3) we have that a’e4 ~ N(0,a’A a) and
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a'eg ~ N(0,a’Apa). Thus, we can make exact statistical inference about a’AAa/a/ABa
or equivalent about

v(a) = (a/AAa — a/ABa)/(a/AAa + a,ABa) =
(a'(Aa — Ap)a)/(a' (A + Ap)a) (42)

in the same way as described in section 4.1. Because A, and Ag are covariance matrices,
it is assumed that they are positive definite. That is, a’/A a > 0 and a’Aga > 0 hold
for all vectors a # 0. Thus, the denominator in (42) is > 0 and we have that —1 <
v(a) < 1, for all column vectors a # 0. Note also that y(a) is an one to one function
of a'Aa/ a'Apa, which may be the measure we are interested in. The choice of the
vector a depends on the comparison we are interested in. If we only want to compare
the variances of the first characteristic we choose a to be the first coordinate vector, i.e.
a=(1,0,...,0). Other choices than choosing a coordinate vector includes covariances as
well as variances in the comparison. In bioequivalence applications, the choice of a depends
on the bioequivalence restrictions. Thus, by choosing a we can test for bioequivalence for a
bioequivalence criterion that includes both variances of the characteristics and covariances
between the characteristics.

For example, if two characteristics are measured (p = 2) and a’ = (ay, ay), we have that

/ _ 22 2 2

alAja = ajoy, + a0y, + 2010204,
/ 2 2 2 2

aApa = ajop, +a0p,, +201020p,,

where 0% |, 0%,, and 04, are the elements in the 2 x 2 covariance matrix A; and 0% |,
0%,, and op,, are the elements in Ap. If it is more important that the variances in the first
characteristic are equal than in the second characteristic we should choose a large value
on a;. We have to take account of that there are different variability in the measurements
of the two characteristics when we choose the vector a. These variances are of course
unknown but we may a priori have an idea about the relative magnitude between them
that can be of use.

We see y(a) as a measure of the difference between the covariance matrices A4 and Ap.
If Ay = Ap then y(a) = 0. The estimate of y(a) is derived from the estimate in one
dimension,

v*(a) =a'S,_a/a’S__a (43)
and the corresponding standard error, s,(a) is given by,
(@) = (/S 1afa’S a7 (af)/(n )
We can test

Hy: |y(a)] > A, versus Hy : |y(a)| < A,, (44)
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by the same technics described in section 4.1. The confidence interval approach rejects
Hy if and only if the 1 — 2o/ confidence interval for v(a), C, ) lies within the equivalence
limits (—A,, A,). Here,

C('y(a) = (7*(3) —tuo (77, - 3)8*(8[), 7*(a) +iw (n - 3)5* (a))

This test is of course equivalent with the TOST with rejection region

Ry = {7 @] < Ay — tw(n - 3)s.(a)}. (45)

If we choose o by the same procedure as described in section 4.1 this test has size «.

4.3 Intersection-Union test

Adopting the intersection-union method, we can simultaneously test (44) for more than
one linear combination. That is a test of
: > :
Hy max [v(ag)| > A, versus Hy max v(ak)| < A, (46)
where ¢ is the number of linear combinations and A, is the equivalence limit for the kth

comparison. The hypothesis in (46) can be expressed as the union respective intersection
of the following hypotheses

Hy, :|v(ag)| > A, versus Hy, : |v(ag)| < A,,
i.e. Hy=U}_, Hy, respective H4y = Nj_; Ha,. Thus, using the intersection-union method,

the rejection region defined by

q

= () Ry = (1 {1 (@0 < &, = = 3.} (47)

defines a level « test for (46) because each marginal test is a test of size a. Thus, the
probability of making an error of type I is at most . However, the following theorem as-
sures that the intersection-union test (47) has size « if a; equals the kth coordinate vector,
kE=1,2,...,p.

Theorem 4.1:
The intersection-union test defined by (47) for testing (46) has size « if the vectors ay,
k=1,2,...,q are orthogonal.

Proof: It is sufficient to prove this when a, equals the kth coordinate vector because
transforming the data using the orthogonal vectors generates an equivalent problem.
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The theorem follows from theorem 2.2 in Berger and Hsu (1996). Let the parameter
sequence 0; belong to Hy, in such a way that there are no between subject variability;
v(a;) = A,; and y(ay) = & where §; — 0 as [ — oo for k # 1. From the results in section
4.1 we have that

lhm Pgl (Y S Rl) = Q.
For k # 1 we have that v*(a;) — 0 with probability 1 as [ — oco. This implies that
llim Pgl (Y € Rk) =1,

which completes the proof.

]

Of course, the number of vectors ¢ has to be less then or equal to the number of charac-
teristics p.

5 Tests including restrictions on both means and vari-
ability

We now combine the results from sections 3 and 4. Thus, we test for bioequivalence when
the bioequivalence region contains restrictions on both means and variances. First we use
an intersection-union test to test for bioequivalence for a general bioequivalence region.
Then we show how to control the size of this test in the special case when the same
orthogonal restrictions are made for both means and variability.

5.1 General test

The following test includes restrictions on both means and variablity.

. / /
Hy : max lajT| > A and/or max [v(bw)| > A,

versus (48)

. / < ’ <
Ha: max fay7| < Aand max |y(by)| < A,
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where the a;’s are vectors on length 1 whereas the by.’s are orthogonal. The null hypothesis
can be expressed as the union of the null hypothesis in (9) and (46), whereas the alternative
is the intersection of the alternatives in (9) and (46). The intersection-union test for testing
(48) rejects Hy if and only if both (9) and (46) are rejected. That is, using the intersection
of (12) and (47), a test with rejection region

R'=RLNR.

Suppose that the corresponding sizes are « and o for the means respective the variances,
then this is a level o* test, a* = max {«, @’} (Berger and Hsu (1996)). Thus, the probability
rejecting H, erroneously is at most a*.

5.2 Restrictions on both means and variances for each character-
istic

Suppose a;, is the kth coordinate vector £k =1,2,...,q, ¢ < p and we want to test
Hy, - {lay7| > Afu{v(an)]| > Ay} vs Ha, : {Jagr] <Afn{y(an)| <A} (49)

The intersection-union test of this has rejection region that is the intersection of the
marginal rejection regions Ry, in (11) and R,(,) in (45), i.e.

Ri = RN Rv(ak)'

Now, because (a,D,a;3paj) and the statistic corresponding to (29), T(A,) = (v*(ax) —

A,)/s.(ay) are independent (Guilbaud (1993)) and that Ry is a function of (a;,D, a;y¥paj,)
whereas R, (,,) is a function of T'(A,), we have that the probability of rejecting Hy, is

Po(Y € R)) = Py(Y € Ry)Py(Y € Rya))- (50)

We have from the proofs of theorem 3.1 and theorem 4.1 that each of the two probabilities
in the right hand side of (50) are maximized in the parameter sequence belonging to Ho,
defined by, no between subject variation; a,7 = A and Xp — 0 in such a way that
v(ar) = A,. It is now evident that the probability of rejecting H,, erroneously using the
intersection-union test is maximized in the limit of this parameter sequence. Thus, the size
equals the product of the sizes of the marginal tests. To construct a test of a desired size
we choose the marginal sizes so that they multiplies to the desired size.

We now use the intersection-union test once again to construct a test including all relevant
characteristics, i.e. we test

. /
Hy : max lajT| > A and/or max Iv(ag)| > A,
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versus (5 1 )

. /
Hy max |ajT| < A and max Iv(ag)| < A,

Thus if R! is a rejection region determining a size « test for (49), then the intersection-
union test of (51) has rejection region

q
R' = R;.
k=1
This test has of course level o but the following theorem assures that it also has size «.

Theorem 5.1:
The intersection-union test RT for testing (51) has size a.

Proof: The theorem follows easily by the same technique as used in the proofs of theorem
3.1 and theorem 4.1. That is in this case using theorem 2.2 in Berger and Hsu (1996)
together with (50) for the parameter sequence in H,, determined by, no between subject
variation; ayT = A; ayT = 0 for k' # k; and Xp — 0 in such a way that y(a;) = A, and
v(ag) — 0 for k' # k.

L]

It should be noted that the theorem not only holds for the coordinate vectors but even for
orthogonal vectors, aj, as,...,a,, ¢ < p.
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