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Abstract

Why is ridge regression (RR) often a useful method even in cases where multiple
linear regression (MLR) is dubious or inadequate as a model? We suggest that
some light can be shed on this question if one notes that RR is an application of
Tikhonov regularization (TR), a method that has been explored in the approx-
imation theory literature for about as long as RR has been used in statistics.
TR has proven useful for many inverse problems, but it has often been applied
without stating a statistical model at all.

In order to indicate how alternatives to MLR might be defined, we give a
subjective overview of some inverse problems from the geophysical sciences. We
conclude that estimation is often at least as important as prediction.

Key words: inverse problems, Tikhonov regularization, partial least squares,
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1 Introduction

1.1 Linear equation systems with random errors

Consider a system of linear equations:

Aθ = Y, (1)

where A is an n×p matrix, θ is a p-vector and Y is an n-vector. We assume that data

are available for A and Y , but subject to random errors. The purpose is inference

about θ.

1.1.1 Example 1: The general linear model

Assume that the uncorrelated random variables Yi, i = 1, . . . , n have equal variance

σ2 and expectations that are linear functions of p parameters θj, j = 1, . . . , p:

E[Y ] =
∑

j

Aijθj . (2)
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In this example, the numbers Aij are assumed known without error. In addition to

θ, the parameter σ is also of interest. The standard procedure is to estmate θ with

the best approximative solution, in the least-squares sense, to the equation system

(1). If the best approximation is not unique, a minimum-length requirement on θ is

often added. If ATA is nonsingular, the estimator is given by the normal equations,

θ̂LS = (ATA)−1ATY .

The general linear model model includes multiple linear regression and analysis

of variance as special cases. In regression, the matrix A is generally denoted X

and contains the values of p “explanatory” variables at each of n observations. The

purpose is to “explain” the variable Y by ascribing variation in Y to variations in

the explanatory variables. This leads up to the equation system

α+Xβ = Y, (3)

where the intercept α is an n-vector with all elements equal. The p-vector of un-

known parameters is here denoted β. It can be used, for example, for predicting the

response variable at a new observation. An extension of the regression model is mul-

tivariate regression, where several response variables are considered simultaneously.

One then needs to solve a matrix equation

XB = Y, (4)

where B is p × q and Y is n × q. In the present report we shall mainly confine

ourselves to the case q = 1.

The general linear model is not adequate for situations where A is a random

variable. Problems of this kind arise for example in regression when there are mea-

surement errors in the explanatory variables.

1.1.2 Example 2: A material balance model

Consider a simple hydrological example. Let P denote the amount of rainfall in a

region in a certain period of time, let E denote the evaporation, and R the runoff.

We want estimates of these three numbers. If the period in question is a year, then

to a good approximation P = E + R. Since R and E are difficult to measure, a
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hydrologist may use data on some chemical compound, for example the chloride ion

concentration in precipitation, cP , and runoff, cR to determine them. Unlike water,

chloride does not evaporate, so if there is no net loss or accumulation of chloride,

it must hold that cPP = cRR. Formally, we can write the balances for water and

chloride in matrix-vector notation:

(
1 −1 −1
cP 0 −cR

) 


P
E
R


 =

(
0
0

)
(5)

Here, not all the matrix elements are free from errors. Those in the first row are,

being plus or minus one by construction, but those in the second row are not. Under

hypothetical repetitions, research expeditions will observe different concentrations.

We may regard the numbers in the second row as outcomes of random variables.

Furthermore, the assumption that the right hand side is identically zero may also

be questioned, for example if the data were collected during a short period of the

year.

More elaborate models, involving many regions and many chemical compounds si-

multaneously, are important inbased on the same type of material balance consid-

erations, are important in the geosciences. We return to the subject in Section 5.

1.1.3 Example 3: Latent variable models

Suppose one has collected data about p explanatory variables and q response vari-

ables at n occasions, yielding two matrices of data, X and Y . Suppose that there

exist a unobserved “latent” variables Z1 , . . . , Za, that influence the explanatory

variables as well as the response variables, according to the linear equations

Xj =
a∑

ω=1

Zωpωj + ej , (6)

Yk =
a∑

ω=1

Zωqωk + fk, (7)

where pωj and qωk are unknown parameters, and ej and fk are random errors. This

is an example of a latent variable model. If equations (6) and (7) describe the actual

relation between X and Y , then, unless the random term sare large, any column
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vector of Y will be reasonably well approximated by some linear combinations of

column vectors of X, so that Y ≈ XB. Here, however, the usual multivariate

regression model (equation 4) can lead to erroneous conclusions. The situation has

been analyzed by Burnham et al (1999) who point out that it is not clear how the

matrix parameter B should be be related to the parameters of equations (6) and (7)

in such case.

1.2 Least squares and other methods

For the general linear model, Gauss-Markovs theorem states that the least-squares

solution is the best linear unbiased estimator for θ. However, perhaps for this

reason, θLS is often used quite uncritically as the “solution” to the problem Aθ = Y ,

although the randomness involved may be very different from what is assumed in the

model definition. In general, one has no guarantee that the least-squares solution is

an unbiased estimator of θ, or that θLS has minimal variance. A method that is often

applied to the problem where A is affected by random errors is Total Least Squares

(TLS), see van Huffel (1997). As an alternative to TLS, we focus on estimates of

the form

θ̂δ = (ATA + δI)−1ATY (8)

for this class of problems. We have two major reasons for our suggestion:

1) Statisticians have explored a technique called ridge regression, RR, which is

equivalent to equation (8). The method has thus been explored, theoretically and

practically, within the context of at least one well-defined statistical model.

2) Equation (8) defines a method known as Tikhonov regularization, which has

been the subject of much research in the approximation theory.

We next make some further comments to these two points.

2 Near collinearities and ridge regression

As mentioned, the coefficient matrix A is usually denoted X in regression, and the

unknown θ is denoted β. For uniformity we retain the notations A and θ here.

In regression, the objective is to “explain” the variation in one or more “response
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variables”, by associating this variation with proportional variation in one or more

“explanatory variables”. A frequent obstacle is that several of the explanatory vari-

ables will vary in rather similar ways. As result, their collective power of explanation

is considerably less than the sum of their individual powers. The phenomenon is

known as near collinearity. When it occurs, the covariance matrix for θ̂LS, which

is σ2(ATA)−1 will be almost singular, making θ̂LS highly sensitive to random vari-

ations in Y , that is, the estimate will depend very much on the particular way the

errors εi happen to come out. Several methods have been developed in order to

reduce this sensitivity, and one of them is ridge regression (RR), which means that

a number δ is added to the elements on the diagonal of the matrix to be inverted,

yielding a modified estimator of the form (8).

Ridge regressors are known to have favourable properties. For example, Hoerl

& Kennard (1970) showed that θ̂δ has smaller mean square error than the ordinary

least-squares estimator, provided δ is small enough, and the standard regression

model holds. A number of other properties were also pointed out early (Marquardt,

1970), for example, ridge regressors are “shrinkage regressors”, i.e the Euclidean

norm |θ̂δ| is a decreasing function of δ. The RR estimators also turn out to play

important roles in Bayesian models, provided θ has normal apriori distribution. It

has also turned out that several other countermethods often taken against near-

collinearity are closely related to ridge regression. Among such methods are con-

tinuum regression (Stone & Brooks 1990, Sundberg, 1993), partial least squares

(PLS), principal component regression (PCR), and others (Björkström and Sund-

berg, 1999). These results make it meaningful to continue to explore the properties

of ridge regression. In particular, Björkström and Sundberg (1999) have developed

an upscaled form of RR, called “least squares ridge regression”, (LSRR). The RR

regressor is multiplied by a factor, chosen so that the residuals become orthogonal

to the fitted values, hence the name “least squares”.

Often, RR is used even though the MLR model is known to be wrong. In many

cases, such applications are succesful. There is likely to be some reason for the

success, some mechanism that can be found and stated more explicitly. Results of

that kind should help users to foresee when a method will be fruitful and when it
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will not be.

It seems relevant, thus, to explore whether the well-known theoretical advantages

of RR, including its limiting cases, remain valid outside the rather strict set of

assumptions within which it was originally developed. In statistical terms, we want

to find out whether ridge regression is robust to the assumption of an error-free

design matrix.

3 Ill-conditioned problems and Tikhonov regularization

We may say that a problem is ill-conditioned if the “known” input is so uncertain

that the requested answer becomes unacceptably uncertain. Problems of this kind

drew the attention of Hadamard (1902, 1932), who noted that there were problems in

which infinitesimally small variations of initial or input data caused large variations

in the solution. Hadamard declared that meaningful mathematical problems should

have unique solutions that are stable with respect to small variations in input data.

A readable survey of ill-conditioned problems is given in Allison (1979). In Allison’s

words, “the respect for Hadamard was so great that incorrectly posed problems were

considered ‘taboo’ for generations of mathematicians, until comparatively recently

it became clear that there are a number of quite meaningful problems, the so-called

‘inverse problems’, which are nearly always unstable with respect to fluctuations of

input data”.

More formally, suppose that the ”requested” θ and the ”given” Y are elements in

Hilbert spaces H1 and H2 respectively, and let A be a given linear operator with

domain D(A) ⊂ H1 and range R(A) ⊂ H2. We want to find a θ such that Aθ = Y .

We say that Y is given, but normally Y is only known to within a margin of error.

Suppose we know Y ∈ U2, where U2 is some “small” subset of H2. Then, all we can

conclude is θ ∈ U1 = {θ;Aθ ∈ U2}. If there is a large set of elements θ ∈ H1 such

that Aθ ≈ 0, and |θ| is not negligible, then the set U1 may be so wide that learning

θ ∈ U1 adds practically nothing to what we could have said about θ beforehand.

Another complication is that one is often working with an inexact operator A.

It may be a matrix of experimentally determined coefficients, with errors to them,

6



or it may be an approximation of the true physical law connecting θ with Y ; for

example, we may use finite differences instead of derivatives. Both the “true” A

and the approximation we use may lack inverses. If all we actually know about

A is that it belongs to some set A of operators, then all we can say about U1 is

U1 = {θ;∃A ∈ A;Aθ ∈ U2}.

It is an important objective in approximation theory to gain as certain knowledge

about θ as possible in spite of all these obstacles. Tikhonov (1963) considered the

quadratic functional

I(θ, δ2) = |Aθ − Y |2 + δ2|θ|2.

He demonstrated that to every δ2 > 0 there exists a unique element θδ ∈ H1 for

which I(θ, δ2) is minimal, (i.e, ∃ θδ; θ 6= θδ ⇒ I(θδ, δ
2) < I(θ, δ2)). It has been

shown (Ivanov, 1976; Allison, 1979) that in many practical contexts, these elements

perform well as substitutes for the non-existing “solution of Aθ = Y ”. The technique

has become known as Tikhonov regularization.

In numerical applications, H1 and H2 are finite-dimensional. TR is then equiv-

alent to resolving an ill-conditioned system of linear equations Aθ = Y by using

θδ = (ATA + δI)−1ATY as an approximate solution.

4 Parameter selection

Any user of TR or RR will need a rule for determination of the method parameter

δ. In this section, we describe a method that is well known in regularization theory.

The description is intended for statistical readers, and therefore we use the notations

X and β for A and θ.

4.1 Ridge traces and L-curves

In ridge regression, the parameter is sometimes determined by inspecting the so-

called ridge trace. This is a plot of the components of the RR predictor β̂δ versus δ.

The normed residual sum of squares |y−Xβ̂δ|2/(n−1) is also included. Typically, the

ridge trace exhibits the features of Figure 1. (This figure is based on a simulated data

set, used by Brown (1993, p. 57). As δ runs through a short interval I0 beginning
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Figure 1: Ridge trace of six regression coefficients versus δ, with variance (from
Brown,1993)

at δ = 0 the predictor coefficients β̂δj approach zero rapidly and may even change

sign. To the right of the interval I0, the predictor β̂δ stays fairly constant over a

range of δ-values, δ ∈ I1. The residual sum of squares remains almost constant over

the two intervals I0 and I1. In this situation, any value of δ in the interval I1 will

correspond to almost the same predictor, call it β(I1), and this predictor yields an

error |y − Xβ(I1)| that is not much larger than the minimum achievable (i.e for

OLS). Of course, as δ increases, the residuals will eventually reach an unacceptable

size. There exists some more or less well-defined right endpoint of I1. In Figure 1, I1

might be (0.2 , 1.0). To use the predictor β(I1) instead of the OLS solution is a way

to exploit the mean square error reduction mentioned in section 1. Hypothetically,

if new data were collected, and a new Figure 1 were drawn, one would obtain a ridge

trace, probably looking quite differently in the interval I0, but being nearly the same

as before in I1. Obviously, the method is quite subjective (exactly where does I1

begin and end?), and Brown (1993, p. 56) observes that the ridge-trace technique

has been more or less abandoned in favour of objective estimates of the parameter.

The ridge-trace bears some resemblance to the so-called L-curve, used for de-
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Figure 2: L-curves for Brown’s (1993) data, for standard ridge regression (dotted)

and with least-squares correction (solid).

termining the parameter in certain other applications of Tikhonov regularization.

Instead of plotting all graphs βj(δ) separately we plot only the Euclidean length of

the vector |β̂δ |, and the residual norm |y −Xβ̂δ |. This information is arranged in a

diagram with |β̂δ| along the ordinata and |y−Xβ̂δ| along the abscissa. Theoretically,

an interval like I0, where the coefficients βj(δ) approach zero and the residuals only

increase slightly, corresponds to an almost vertical line in such a plot. The interval

I1 should be compressed to one point, ideally. Values of δ larger than the right end-

point of I1 would correspond to a segment where |β̂δ| keeps sinking, but where the

most conspicuous effect is the growth of the residuals, which makes the trajectory

appear almost horizontal. The combination of an almost vertical segment with an

almost horizontal one is the reason for the name L-curves. (The name is ascribed to

Lawson and Hanson (1974)).

As an example of an L-curve analysis of a data set from a regression context, we

consider Figure 2, which is based on the same data as Figure 1. We see that while

the image of I0 is almost vertical (as could be expected), I1 clearly is not depicted

onto one point only. The coefficient estimates β̂j are slightly dependent on δ, as is
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the residual norm |Xβ̂−y|, and this dependence stands out more clearly in Figure 2

than in Figure 1. We can also compare the L-curve for (ordinary) RR to the same

graph for least-squares RR, (LSRR) (Section 2). For small δ, these two predictors

are essentially the same, and their L-curves coincide. For parameters greater than

about 0.05, LSRR has visibly better fit and less shrinkage than ordinary RR. The

L-curve for LSRR therefore neither extends as far to the right, nor as far down, as

the curve for ordinary RR. The “L” has a more distinct “corner”.

Hansen (1992) discusses a number of rules for parameter selection in connection

with the L-curve. Most of the principles he mentions lead, in practice, to points

close to the “corner of the L”. Consequently, Hansen and O’Leary (1993) suggest

using the parameter that corresponds to the point of maximal curvature. In their

experience, most of the other rules tend to yield solutions “to the right of the corner”.

In statistical terminology, other methods oversmooth at the expense of fit.

4.2 Cross-validation

An often-used method for statistical parameter determination is cross-validation, in

practice “leave-one-out”: Determine a regression model using all the data except

one item, test it by predicting the left-out item; do this as many times as you have

items, leaving out a different one each time, and calculate the sum of squares of the

prediction errors, PRESS. By applying this procedure, different RR parameter val-

ues can be compared to each other, with respect to predictive ability. It often turns

out that PRESS decreases as δ increases from zero, and has a minimum for some

small positive δ. In order to compare results for different data sets, one sometimes

uses a cross-validation index defined as ICV = 1−PRESS/PRESS0, where PRESS0

is the PRESS-value for the “null” predictor, ŷ = ȳ.

It is of some interest to explore how much the predictor defined by a minimum

PRESS criterion differs from the one defined by maximizing the curvature of the

L-curve, as described above. We have investigated a few data sets from this point

of view. For Brown’s data, Figure 3 shows that the best achievable ICV is 0.7816

which occurs for δ = 0.17. The corresponding LSRR predictor is shown in Table

1a. The parameter value corresponding to maximal curvature is smaller, δ = 0.05.
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Figure 3: Cross-validation index for Brown’s (1993) data, for least-squares ridge
regression.

a) Brown’s data Best δ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

Cross validation 0.17 0.189 -0.088 0.014 -0.109 1.08 4.90

Maximal curvature 0.05 0.178 -0.092 0.018 -0.107 1.06 5.01
True value 0.603 0.301 0.060 -0.603 0.904 3.01

b) Fearn’s data Best δ β̂1 β̂2 β̂3 β̂4 β̂5 β̂6

Cross validation 0.067 0.021 -0.080 0.158 -0.231 0.0055 -0.0079
Maximal curvature 0.03 0.049 -0.072 -0.150 -0.250 0.0073 -0.0049

c) Hald’s data Best δ β̂1 β̂2 β̂3 β̂4

Cross validation 0.025 1.27 0.29 -0.18 -0.36
Maximal curvature 0.006 1.35 0.32 -0.10 -0.33

Table 1: Coefficients in the optimal LSRR predictor, as defined by leave-one-out
cross-validation, and by the principle of maximal curvature.
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Figure 4: Cross-validation index for subset of Fearn’s (1983) data, for least-squares
ridge regression.

This LSRR predictor is also shown. The effect of changing δ is in agreement with

Figure 1. For these constructed data we know the “truth”, which is also given in

the table. We see that both methods fail to catch β1 , . . . , β4 by at least a factor

of three. This, obviously, reflects the near-collinearity arranged by Brown for the

first four explanatory variables. As for β5 and β6, both methods overestimate them,

slightly for β5, more pronounced for β6.

Figure 4, which was taken from Björkström and Sundberg (1999) shows cross-

validation index as a function of δ when applying LSRR to a subset of Fearn’s (1983)

data from a NIR analysis of wheat samples (see Stone and Brooks (1990) for details).

The figure shows that the best parameter choice is δ = 0.067. Figure 5 shows the

L-curves for this data. We locate the point of maximal curvature (by eye) and read

off δ ≈ 0.03. The two predictors are given in Table 1b. We have no true value to

compare with, but the two estimates are in broad agreement.

Our third data set is Hald’s (1952) data on evolution of heat in cement. From

the point of view of cross-validation, the best parameter is δ = 0.025 (Figure 6).

The L-curve in Figure 7 has no easily spotted point where the curvature is largest,
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Figure 5: L-curves for subset of Fearn’s (1983) data, for standard ridge regression
(dotted) and with least-squares correction (solid).
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Figure 6: Cross-validation index for Hald’s (1952) data, for least-squares ridge re-
gression.
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Figure 7: L-curves for Hald’s (1952) data, for standard ridge regression (dotted) and

with least-squares correction (solid).

but a maximum seems to occur close to δ = 0.006. The two estimators differ only

marginally, as Table 1c shows.

To summarize, in two out of our three regression data sets, the L-curve does

exhibit if not a unique corner at least a discernible “corner region”, where it bends

from almost vertical to almost horizontal. The optimal solution, from the cross-

validation aspect, occurs somewhat to the right of the corner region. A possible

interpretation is that cross-validation overfits. Our observations are thus in agree-

ment with the above-mentioned experince of Hansen and O’Leary (1993). However,

we have found an exception to this. Figure 8 shows the L-curve for a data set on

nitrate in wastewater (Karlsson et al, 1995), used as example in an overview paper

by Sundberg (1999). For these data, Figure 6b in Sundberg’s paper shows that the

best LSRR parameter value, from the PRESS point of view, is of the order 10−3.

This is at least an order of magnitude smaller than the values in the corner region

of Figure 8. (The corner extends approximately from δ = 0.02 to δ = 0.4.)

Above the corner, the L-curve for LSRR coincides with that for RR, for all the

data sets we have seen, and to the right of the region, the curve for LSRR is above
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Figure 8: L-curves for the wastewater data by Karlsson et al. (1995) data, for
standard ridge regression (dotted) and with least-squares correction (solid).

the one for RR. Thus, in order to achieve a given “fit” (a given size of |Xβ̂ − Y |),

LSRR needs not shrink as strongly as RR. This illustrates that LSRR avoids the

part of the shrinkage that has nothing to do with near collinearities.

In the diagrams, the parameter δ runs through the interval (0 ,∞). Therefore,

the right endpoint of the RR curve corresponds to |β̂| = 0, yielding a residual norm

equal to |Y |. The curve for LSRR ends in the first-factor PLS estimator for β. We

may note that the LSRR curve for Fearn’s data (Figure 5) extends further to the

right than for the other two data sets (Figures 2 and 7). This means that one-

factor PLS does not manage to explain more than a small percentage of the total

variation in the response variable for Fearn’s data. The same phenomenon is visible

for the wastewater data (Figures 8). In contrast, the LSRR curve is very short for

Hald’s data. This is natural in light of the fact that there are only four explanatory

variables in Hald’s case, but one hundred in the wastewater example.
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Figure 9: Illustration of the law of gravity.

5 Inverse problems

It is a paradoxical fact that in much research, scientists apply the laws of Nature

coversely, logically speaking, to the way the principles can actually be used. Take

the law of gravity as example. It states that whenever an object A is at a position

r relative to another object B, then object A will be affected by a force F that

depends on r and the masses of A and B. The law provides an explicit formula

for F (Figure 9), so that if we know, for, example, the density at each point inside

the Earth, we can calculate the force exerted on a kilogram of mass located at the

surface. This calculation (a three-dimensional integration) is a “direct” problem, a

straightforward exercise that has one and only one correct answer. A more interest-

ing and important question, though, is the inverse problem: What can we say about

the distribution of mass within the Earth, given knowledge about the law of gravity

and data about the force as observed at a limited number of places? This prob-

lem has obvious economic relevance: density anomalies may indicate oil or valuable

ores. However, it has no unique answer. A point mass, located at the centre of the

Earth, would cause exactly the same force, at sea level, as does an homogeneous

three-dimensional distribution of mass.

Another geological example of an inverse problem is to reconstruct the history of

the temperature in the Earth’s interior. There are data on its present distribution.

The relevant Law, in this case, is the heat conduction equation for a sphere. It is
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a straightforward task to integrate this equation forward in time, but what can we

conclude about past times, given the present? More generally, the same logically

“inverse” situation occurs whenever one wants to reconstruct the causes of a phe-

nomenon, given knowledge about its effects. It is just as much present in disciplines

where no “hard” mathematical model is available for the “forward” problem, for

example when a palaeontologist is deducing the evolution of life on Earth.

We may formalize things this way: A ”Law” says that if variable X takes on the

value x, then variable Y takes the value f(x). The Law may or may not provide

an expression for the function f . We have observed Y = y; what can we say about

X? (Here, X as well as Y can be many variables simultaneously. We should regard

them as vectors in spaces with many dimensions, perhaps infinitely many).

An inverse problem never has a unique answer. The available data can always

be explained in more than one way, many different x:s give f(x) equally close to the

observed y. A deterministic scientist, not caring much about a statistic model, is

likely to accept a least-squares approximation and proceed by putting most belief

in the simplest x possible. Simplicity may mean that many of the coordinates xj

are equal to zero, or that |x| is small. It may also mean that there is some pattern

to the xj , so that, for example, xj falls between xj−1 and xj+1. In many cases, the

simplicity criterion can be expressed as a wish that |Lx| be small, where L is some

suitably chosen matrix. If the determinist accepts to approximate the true f(x) by

a linear expression, (f(x) ≈ Ax, for some linear operator A), one easily sees that

he or she faces a the tradeoff between, on the one hand, explaining the available

data (i.e matching Ax to y) and, on the other hand, satisfying some more or less

subjective opinion about simplicity. This leads up to minimizing some weighted

average |Ax− y|2 + δ|Lx|2, a situation typical for Tikhonov regularization.

Furthermore, if we admit that data are affected by random perturbations, we

realize that our observed y is not the true value of Y . Guided by a relevant statistical

model, we may compute a confidence region for the true Y . However, to transform

this region into a confidence region for the true X may not be rewarding if A is

close to singular. It may be better to resort to Tikhonov regularization and consider
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confidence regions of the form

{x ; |Ax− y|2 + δ|x|2 ≤ k}

.

where k depends on the degree of confidence wanted. For positive δ, these sets will

be more rounded than the very elliptic shape taken on for λ = 0.

From a statistical perspective, it seems that inverse problems would be well

suited for Bayesian analysis. Consider X as a vector of parameters describing the

unknown state of nature. The subjective preferences correspond naturally to an a

priori distribution for X . The conditional distribution for Y given X can be written

down if one knows the physical law that connects X with Y and one has a model

for the random effects at work. It is then in principle straightforward to determine

the aposteriori distribution for X . Several authors have taken this approach. An

example is given is Section 5.3.

In connection with the Bayesian approach, we may note that the ridge regressor has

a special interpretation here. If we assume, in model (??), that the intercept has a

vague a priori distribution on all of the real line, if the conditional distribution of β

given σ is N(0, σ2Ip/δ), then it turns out that the Bayes estimator for β is the ridge

estimator β̂δ, which is an unbiased estimate of the expected value of the a posteriori

distribution, since β is normally distributed a posteriori. If there is some way to

estimate the (common) variance σβ
2 of the components of β, say σ̂β

2, then a good

rule for the parameter selection might be δ = σ̂2/σ̂β
2.

A number of inverse problems are described next. The reader is referred to Allison

(1979) and Keller (1976) for more extensive reviews.

5.1 An example from the interior of the Earth

In general, inverse problems take the form of integral equations. In the gravitation

problem described above, the force of gravitation F0 at a given point at sea level is

F0 =

∫

V

γ

|x − x0|3
(x− x0)ρ(x)dV, (9)

where γ is the universal constant of gravitation, and the integral is a volume integral

over the Earth. The density at location x is denoted ρ(x), and is the unknown
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function to be estimated. Of course, one has only a finite amount of information

about F0, which limits the degree of detail in which one can resolve the function ρ(x).

If we compare equation (9) to our general linear equation system (1), the force F0

corresponds to Y . The mass elements ρ(x)dV make up θ. The expression γ
|x−x0|3 (x−

x0) corresponds to Aij . In numerical applications, the integral in equation (9) is

approximated by a sum. This can be done in more than one way, though. One

possible discretization is to think of the Earth as made up of a large number of small

cubes, each with constant density. Another option is to model it as a large but finite

number of concentric shells, each with constant density. The linear equation systems

will turn out differently in the two cases. Both models can be equally physically

reasonable, but not equally suitable for data analysis. It is important to remember

the continuous character of the underlying problem.

In a series of papers around 1970, Backus & Gilbert (1967, 1968, 1970) developed

a number of models for the interpretation of geological and seismological data. Some

of these models are one-dimensional in the sense that properties only vary with

distance from the Earth’s centre, not depending on latitude or longitude. Let ρ(r)

be the Earth’s density at distance r from the entre, and suppose that this is an

unknown function that we want to determine. We realize that the total mass of the

Earth can be expressed in terms of ρ(r) as

∫

0

R0

ρ(r) 4πr2dr, (10)

where R0 is the radius of the Earth. If we possess a numerical estimate of the mass

of the Earth, say M̂e, we can write down an equation with (10) as left hand side

and M̂e as right hand side, which provides some information about ρ(r). Further,

the laws of mechanics enable us to write the Earth’s moment of inertia in terms of

ρ(r) as ∫

0

R0

ρ(r) 4πr3dr, (11)

so if we have a numerical estimate of its value, Ĵe, we obtain more information about

ρ(r). Backus and Gilbert (1967) introduce two additional unknown functions, the

bulk modulus κ(r) and the shear modulus µ(r). The point is that these two functions

(with the density) affect a number of observable properties of the Earth, for example
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the travel times for seismic waves between two places. For each of these properties

we can derive a “theoretical” expression of the form

∫

0

R0

(G1(r)ρ(r) +G2(r)κ(r) +G3(r)µ(r))dr, (12)

where G1(r), G2(r) and G3(r) are known functions of r (often, but not always

powers rn). For example, when the property we observe is moment of intertia we

have G1(r) = 4πr3, G2(r) = G3(r) = 0.

In their 1968 paper, Backus & Gilbert generalize from 3 to N unknown func-

tions of r. (Consequently, they need N functions Gi(r), i = 1, . . . , N). They at-

tempt to find linear combinations of Gi(r) that are as similar as possible to Dirac

spikes, δ(r − r0). The reason for this is that if
∑
aiGi(r) = δ(r − r0), then the

number
∑
aiγi would be a good estimator of m(r0). They assume the covariances

Eij = Cov(εi, εj) to be known. They face a conflicting minimization problem: Find

numbers a1, . . . , aN such that, on one hand, the function
∑
aiGi(r) is as Dirac-like

as possible, while, on the other hand, the quadratic form
∑
aiajEij is kept small,

this number being the variance of the estimators. The conflicting minimization that

they encounter is similar to the tradeoff between bias and variance in ill-conditioned

regression. Backus & Gilbert do not explicitly use the term Tikhonov regulariza-

tion, but their geometrical construction and their use of Lagrangian multipliers is

equivalent, in practice.

5.2 Inverse problems in oceanography

A fundamental objective in oceanography is to determine the motion patterns in

the sea. A particularly difficult problem here is to resolve the vertical part of the

circulation. The motion of water up and down is generally slow, in most places

not more than one or a few metres per year, and there are no instruments that

can provide direct measurements of it. Instead, estimates are derived from indirect

sources. For example, if one observes that currents at the surface bring more water

into a certain region than out of it, one can conclude that downward motion must

be going in that region. Similarly, one can formulate mass balance equations for

salt and other compounds dissolved in the water in a specified region, and derive
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additional information about the water motions. Aside from its intrinsic interest,

knowledge about the vertical circulation is crucial for a correct assessment of the

risks with increasing carbon dioxide emissions.

An important source of information in this context is the “apparent age” of sea-

water sampled at various locations. This is defined as the age that an archaeologist

would assign to the water, based on the abundance of radioactive carbon. (Sea-

water contains carbon, in round numbers 2 moles per m3, mainly as bicarbonate

ion). However, the interpretation of the apparent age is not straightforward, since

any sample of water is in fact a mixture of water of different ages, having trav-

elled along different paths before the sampling. This problem is best resolved by

noting that radioactive carbon is not the only substance that carries information

about oceanic motion. Concentration profiles for compounds necessary for marine

life also contain information that can be interpreted in terms of water circulation.

Substances of this type are, typically, less abundant near the surface, where they

are continuously “eaten” by living organisms, than in the deep sea, where the de-

bris of dead organisms dissolves. Oceanographers have tried to deduce information

about the biological production and the motion patterns simultaneously, by treating

both types of material fluxes as unknowns and formulating systems of mass balance

equations. The forward problem, in this example, consists of calculating how a sub-

stance will spread, knowing the circulation and diffusion. If we put one unit of ink

at a given position in the sea, it will gradually become a more and more diffuse

“cloud”, because of random mixing. This proceeds much like heat conduction and

can be described by a similar equation. Simultaneously, the cloud as a whole will

be transported and deformed because of the large-scale circulation systems. If we

know the velocities, it is straightforward to calculate this effect also. (See Appendix

A). The forward problem is thus in principle solved, but our problem is the inverse

one: We have data on concentrations of various compounds, and wish to determine

the velocities and diffusion coefficients. Several authors have treated this inverse

problem. Their work has dealt with all of the ocean (Bolin et al, 1983) as well as

regions like the Indian Ocean (Metzl et al, 1990), the North Atlantic (Bolin et al,

1987), or the Weddel Sea (Lindegren and Josefson, 1998).

21



Figure 10: A 12-box model of the ocean, from Bolin et al (1983). The four columns
represent, from left to right: The Arctic Ocean, the Atlantic Ocean, The Antarcic
Ocean and the Pacific/Indian Oceans.

5.2.1 A case study

We consider one of the studies in more detail. Figure 10 illustrates a model to

extract information from data on radioactive carbon and other dissolved compounds

in the water. The complexity of the figure represents the state of the art some

fifteen years ago (Bolin et al., 1983), but it can serve as example here. The ocean

is modelled as twelve compartments, bordering each other at twenty boundaries.

The circulation is described by specifying two numbers at each boundary: the net

flow of water and a coefficient for “diffusion”. Water that leaves a compartment

is assumed to carry dissolved substances in concentrations characteristic for the

compartment it leaves. A balance equation can be formulated for each substance

and each compartment considered, and , assuming that the state of the ocean as

we see it today represents an equilibrium, we can set all net balances equal to

zero and obtain a linear equation system. Formulating balance equations for water,

radioactive carbon, and three more substances, Bolin et al arrived at a system

of 80 equations in 56 unknowns. Estimates obtained were in general agreement

with conventional knowledge. Although the main purpose with the work was to
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study the CO2 uptake, the estimates of the circulation rates of course attracted

interest. The authors were able to reproduce the already-known gross features of

the oceanic circulation correctly and also came up with estimates of the circulation in

the so-called intermediate ocean (down to about 1000 m below sea level). They also

concluded that their model was too simple to be adequate for CO2 uptake studies.

An obvious shortcoming with the model was the fact that some of the parameters

were clearly wrong, for example, turbulent diffusion coefficients became negative at

some places (which means that heat would flow from a colder object to a warmer

one). The only attempt the authors made to analyze the uncertainty of their reults

was to add random perturbations to their input data and compute ten alternative

solutions. For each of the unknowns, its standard deviation (over this sample of ten)

was computed and used as a measure of the uncertainty.

A better investigation of the uncertainty of this particular model was carried

out by Mansbridge & Enting (1986). They applied a number of regularization tech-

niques, among them Tikhonov regularization with various principles for selecting

the parameter. In particular, the generalized method suggested by Goldstein &

Smith (1974) was employed, and also methods similar to PCR. Having observed

that β̂δj often changes sign for small values of δ (corresponding to the interval I0 in

Section 4.1), they had hoped to correct the sign errors for the diffusion coefficients.

Unfortunately, they did not manage to come to grips with this particular fault.

Neither group of authors attempted to formulate a specific model for the errors. Ob-

viously, the right-hand side contains errors, but a regression model is not adequate,

since the most important data are measurements of concentrations of substances,

and these enter in the coefficients Aij . Actually, the structure is that we have a

number of measurements of various compounds at various locations in the sea, de-

note them c1, c2 . . ., and the structure is Aij =
∑

k τijkck. where the “design tensor”

τijk is a sparse arrangement of +1:s and −1:s. It may not be impossible to follow

up the consequences of assuming all ck to be independent, unbiased and normally

distributed. We do not plan to analyze this model further, however, since more

detailed models have superseded it nowadays. We note that although the various

regularization schemes gave quite differing results, none of them was really satisfac-
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tory from an oceanographic point of view. It is probably correct to ascribe this to

something fundamentally wrong with the assumptions. For example, turbulent mix-

ing on scales as these may not actually lend itself to modelling by a heat conduction

equation.

In later years, tracer-based inverse models have been replaced by models based

on dynamical considerations, analyzing the motions from first principles, such as

the laws of motion. However, these models also lead to a large number of inverse

problems, as described in the monograph by Bennett (1992).

5.3 A Bayesian example from the atmosphere

The material balance approach described in the previous example is also being ap-

plied in atmospheric chemistry. Then, it is not primarily the motion patterns that

are unknown. (Weather observers are measuring the speed and direction of the wind

continuously). Instead, the aim is to determine the sources and sinks (deposition

patterns) for various substances present in the air. Both the location and the magni-

tude are poorly known (where does this compound enter the atmosphere, how much

mass comes in per unit time) and the objective is to gain knowledge about these

numbers from measurements of concentrations in the air at various times and places.

The direct problem is again to solve a transport equation, i.e a system of partial

differential equations. In this case, the desired solution has a known gradient at the

boundary of the domain (the sources and sinks are at ground level). An interesting

paper by Kandlikar (1997) discusses the methane cycle from a Bayesian perspective.

Methane (CH4) is emitted into the atmosphere via a number of processes, natural

as well as man-made ones. The most important contributions are from biological

decay in wetland ecosystems, from certain mammals (ruminants), and underwater

rice fields. In recent years, leakage from handling of natural gas has become a con-

siderable source. Methane is removed from the air primarily by oxidation to carbon

dioxide.

If C(t) denotes the total amount of methane in the atmosphere at time t, we can
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write a simple balance equation as

dC

dt
=

∑

i

Qi −
∑

j

Sj (13)

where Qi are the various sources (inflows) and Sj are the various sinks (outflows).

Scientists representing different subjects have estimated the different source and sink

terms, with their individual limits of uncertainty. There are also observations of the

local rate of change of methane concentrations at a number of places around the

Earth. These numbers can be interpreted in terms of dC/dt, but one is of course

introducing some error in that extrapolation. Kandlikar (1997) gathers estimates

from diverse references, and translates this information into a priori distributions

for the terms on the right hand side of (13). He simulates from these distributions

and uses equation (13) to obtain a prior distribution for dC/dt. Comparing this

result to the observations of the rate of change, and using Bayes’ formula, he is able

to deduce updated a posteriori distributions for the source and sink terms. The

method permits him to reduce the uncertainties about the fluxes with up to 30 %,

in some cases.

Kandlikar’s method is extremely simple in that he treats all of the atmosphere as one

single reservoir. Thus he is unable, for example, to say where on Earth the different

source and sink processes go on. More elaborate models have been developed by

for example Hartley and Prinn (1993) who use a Bayesian approach to study the

geographical distribution of the emissions.

6 Conclusions

We summarize the previous sections in a few points.

1. The standard multiple regression (MLR) model can be seen as a special case

of a more general situation where one wants to solve an equation system Ax = b,

where A and b are subject to random errors. Methods designed for MLR sometimes

perform well even when the correct model is another one. We do not know why this

is the case, and therefore we are not able to foresee when a method will be adequate

for a given data set.
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2. In many applications of regression methods, the solution β is not the result

of primary interest. Instead, the important purpose has been to be able develop

predictors of new values for the response variabel, given new cases, where only the

explanatory variables are observed. Criteria for method evaluation often reflect the

prediction aspects. However, as we have seen, there are many situations where

the components of x have important scientific interpretation. It seems meaningful

to formulate and explore evaluation criteria based on the difference between the

estimated solution and the “true” x.

3. In ridge regression, several principles are known for selecting the best parameter

value. To the extent the consequences of these principles have been explored, it

has been within the framework of the standard regression model. Little seems to

be known about their performance under other models. Statisticians can probably

learn interesting methods for ridge parameter selection by getting acquainted with

of the literature about Tikhonov regularization.

4. Inverse problems is an area that seems potentially suitable for Bayesian analysis.

Several scientists have taken that approach. However, a) some people are reluctant

to translate their uncertainties into terms of probability distributions and b) it is

important to be clear about what is known beforehand and what is based on data.

5. In the above examples, as in most applications in environmetrics, data have

not arisen as the result of controlled experiments. Rather, all the variables involved

should be considered stochastic, whether they contribute to the right or left hand side

of the linear equation system. Drawing a parallel to regression, we may say that the

situation resembles the “natural calibration” case, and it is natural to assume that

explanatory and response variables have a simultaneous distribution. This is a hint

that appropriate models might be resemblant of for example canonical coordinate

regression, or latent variable models. However, we also see, particularly in the

oceanic and atmopheric examples, that the division into explanatory and response

variables seems unnatural. The situation is not similar to regression models at all.
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Appendices

A The general transport equation

Consider a substance that is dissolved in the atmosphere or in the ocean. Suppose

that the substance is being transported with the motions of the air or the water,

without itself influencing these motions. The concentration c (mass units per unit

volume) will be a function time and three spatial coordinates, c = c(x, y, z, t). We

now derive a partial differential equation for c. The flux of the compound, i.e, the

amount transported through a unit area per unit time, in made up by two processes,

F = Fa + Fd. The “advective” flux Fa is that brought about by the motions of

the fluid, Fa = cv; the “diffusive” flux Fd is accomplished by motions on smaller

scale (gusts and eddies in the wind, or the equivalent in the sea). Modellers often

assume that this flux is proportional to the concentration gradient, Fd = K∇c,

like molecular diffusion, but with a much larger K . The local rate of change of

concentration, ∂c/∂t involves the divergence of these two fluxes, ∂c/∂t = −∇(cv) +

K∇2c+ other terms.

Most important among “other terms” are processes such as biological consump-

tion, chemical decomposition and in some cases radioactive decay. To a first approx-

imation, we may assume that all these processes go on at a rate proportional to c, so

they contribute a term −λc to the equation. Also, there may be processes supplying

the compound that are independent of c. (For example, dissolution of sediments,

fires,...). We denote the sum of all these contributions by Q, and get the following

general transport equation (sometimes called the diffusion equation):

∂c/∂t = −∇(cv) +K∇2c− λc+Q (14)

For a more detailed discussion of equation (14), see for example Pasquill and Smith

(1983).

In “forward” uasge of equation (14), one assumes everything to be known ex-

cept the function c(x, y, z, t), which is required. This problem amounts to solving

(numerically) the differential equation (14), usually on a multidimensional grid. A

typical application is prediction of the spread of a pollutant.
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In inverse problems, data on the concentration c are available, and we want to

gain information from this data. In some problems, the unknowns are the three-

dimensional velocity field bfv(x, y, z, t) and the diffusion coefficient K(x, y, z, t). A

possible approach is to assume that v and K have been constant in time for very

long, so that the concentration field c as we observe it represents a stationary state.

We can then assume ∂c/∂t = 0. It is clear that equation (14) readily gives rise

to a system of linear equations, if one approximates the gradients ∇(cv) and the

Laplacian ∇2c with finite differences and assumes that c is known at all grid points.

The model by Bolin et al (1983) is an example of this approach.

In other problems, particularly in atmospheric chemistry, data are available for

v as well as c. The interesting unknowns are primarily the sources, Q.

31


