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Abstract

The main aim of this study is to verify empirical techniques for

clustering symptoms experienced in gynecological cancer patients, by

comparing the results with a clustering based on clinical experience.

Data are taken from a survey of symptoms experienced by 516 cancer

patients who received radiation therapy at Karolinska University Hos-

pital in Stockholm or at Jubileumskliniken at Sahlgrenska University

Hospital in Gothenburg. The study finds that Wards clustering algo-

rithm based on the phi correlation matrix gives the closest agreement

out of several empirical clustering combinations, as measured by ad-

justed Rand index. An alternative approach based on factor analysis

is also considered.
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CHAPTER 1

Introduction

1.1 Introduction

Gynecological cancer is one of the most common types of cancers among women in Sweden.
Five major gynecologic cancers are: ovarian cancer,cervical cancer, uterine cancer, vulvar
cancer and endometrial cancer, and affects female’s life, reproductive system, sexuality and
intimacy. According to Swedish National Board of Health and Welfare (2008), in Sweden,
about 2700 new gynecological cancer cases were diagnosed annually [2]. The risk of gyneco-
logic cancer increases with age and the majority of the patients are diagnosed at their age of
60 years or older [3]. Early detection and diagnosis of the disease and increased treatment ef-
fectiveness may improve the mortality rate and lead to the cancer survivors to live for several
years after treatment. So, an in depth knowledge about the treatment and treatment related
symptoms (knowledge about the disturbed physiological functions, i.e., pathophysiologies)
are necessary.

Radiation therapy is one of the widely used method for treating gynecological diseases and
often treat in combination with other cancer treatments. Pelvic radiotherapy can make major
injury on the anorectal region of the survivors. So, cancer patients may have experience a wide
variety of treatment related adverse side-effects which usually refer as symptoms, that can
arise long after their treatment and make negative impact on their usual life style. In cancer
research, the assessment of symptoms can be determined by using various instruments/tools.
Dodd et al [4] defines symptom as a subjective experience of a patient that reflects changes in
the individuals’ biopsychosocial functioning, sensations, or cognition. In this study, symptom
is referred by the cancer survivors’ self-reported responses of a questionnaire. Earlier study
shows that the most common gastrointestinal symptoms for radiotherapy are: diarrhea(loose
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2 Introduction

stools), flatulence, defecation urgency, abdominal pain and bloating, fecal leakage [3].

Effective symptom management strategies can play a important role for the improvement of
the cancer patients’ quality of life. Symptom management research is a versatile field which
mainly focused on evaluating multiple symptoms and to give care for the improvement of
patients quality of life from their serious or life-threating diseases. The objective of symptom
management is to prevent or treat the symptoms of the disease as early as possible, their side
effects caused by treatment of the disease, and psychological, social, and spiritual problems
related to the disease or its treatment [5]. An important area related to the aspect of symptom
management research is identifying the nature of clinically significant clusters of symptoms
and their associated prevalence rate [6]. In the area of intervention studies symptom cluster
plays a vital role. Kim et al [7] defined symptoms clusters based on a concept analysis as a
group of two or more symptoms that are related to each other and are relatively independent
of the other symptom clusters. In the clustering symptoms, there exist high relationships
among symptoms within a cluster than the relationships among symptoms across different
clusters. The etiology of the clustering symptoms in a group may or may not be the same
[8]. Several theoretical frameworks are available in literature to symptom cluster, but the
method which can provide optimal clusters empirically is still not clear [9]. Some of those
approaches group symptoms by considering the occurrence or experiences of symptoms by
the patients (refer as symptom cluster), and some approaches group patients or individuals
by considering the probability of getting a symptom (refer as patient cluster). The objective
of this article is to cluster gynecologic cancer treatment related symptoms by using two
widely used multivariate techniques cluster analysis and factor analysis, which are also very
important tools in oncology research for clustering symptoms. In this study we consider the
method of cluster analysis to identify groups of symptoms by analyzing patients’ experience
data and alternatively the method of factor analysis was used to discover underlying factors
of the study symptoms.

Clustering is essentially about exploring natural groups in data that are meaningful, useful or
both. In oncology, this technique is important for understanding the experience of treatment
related effects occurring in various chronic illness. Clustering methods are used extensively in
situations where there exits no pre-specified and well-defined groups in data. The attributes
of the data are then used with the assistance of clustering techniques to assign elements
into artificial groups. So, this statistical technique is very appealing for medical research.
Ideally, symptoms are not independent entities and they are associated with each others in
some way. Some symptoms are likely to stay together in a cluster and some shows opposite
tendency. The meaning of relation can be expressed in various manners. It may be observed
that the relation of symptoms to each other can be related to some biological mechanisms
of the disease such as high inflammation. Another way to look at the relations is through
the weights in which they are reported by the patients. For example, the symptoms reported
with high frequency by the individuals are clustered together than the symptoms reported
with lower frequency.
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Ideally, many clustering methods have been developed based on the aim and goal of particular
research question, and each having certain advantages and disadvantages. One of the most
widely used technique for clustering is agglomerative hierarchical cluster analysis, which is a
set of nested clusters that creates a tree of the data by progressively adding similar groups of
elements. The advantages of the technique are that it considers a measure of similarity (or
dissimilarity) among the elements and a clustering algorithm. For these advantages and well-
known characteristics, the study executed this clustering technique for determining clusters
of symptoms that are clinically similar to each other.

Alternatively, another multivariate data-driven method factor analysis is considered for clus-
ter symptoms. This technique determines factors or clusters that are related to multiple
symptoms and the symptoms may appear meaningfully to more than one symptom factor
[10]. In factor analysis, Exploratory factor analysis is the simplest one and probably the
widely used technique that can provide informative results of the data [11]. The results
of factor solution are not unique and therefore the interpretation can varies. However, the
optimal decision depends on the choices of following attributes: sample size, the number of
factors, and the method of factor rotation techniques [12].

This master thesis has used data collected from a long-term gynecological cancer study,
on survivors after radiation therapy in Stockholm and Gothenburg, Sweden. The data was
collected by the Division of Clinical Cancer Epidemiology at the Department of Oncology and
Pathology of Karolinska Institute, Stockholm, Sweden and the Division of Clinical Cancer
Epidemiology at Sahlgrenska Academy of Gothenburg University,Gothenburg. The aim of
the main study was to assess the quality of life of the cancer survivors and to identify which
symptoms they may suffer as a treatment related side effects from their cancer treatments
for radiotherapy and or combinations with other therapy. Data was collected by a survey
questionnaire sent to gynecological cancer survivors in 2006 that had been treated with
pelvic radiotherapy between 1991-2003. In this study we basically focused our interest to
the scientific questions: how many classes of the symptoms are available in the questionnaire
for the gastrointestinal symptoms from a clinical point of view and what are the underlying
constraints for these classifications for measuring the symptoms? Hierarchical cluster and
factor analysis are essentially about discovering answers to such questions.

1.2 Background of the Study

In literature for classifying cancer symptoms, different approaches were applied, but not found
any intensive work on the area of gynecological cancer using hierarchical clustering and factor
analysis techniques. Some study also proposed symptom clusters based on previous empirical
research study. One of the main objective of this study is to determine clusters among the
gastrointestinal symptoms by using hierarchical clustering in where we consider a distance
metric that can yield a closest clusterings in compare to an external clusterings. As an
alternative approach for identifying factor models of the symptoms we also consider a factor
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analysis technique. Some background studies of these two techniques used extensively on
several areas are discussed below:

The background of the primary study of this thesis is available on Dunberger et al. [3]
Ph.D. research study. They investigated long-lasting gastrointestinal symptoms and assess
the quality of life of the cancer survivors after pelvic radiotherapy.

Bender et al. (2005) [13] used hierarchical cluster analysis on the symptoms experienced
by breast cancer patients and identified three symptoms clusters corresponding to three
different phases. Their suggested clusters are fatigue, perceived cognitive impairment, and
mood symptoms cluster.

In [14], Wilmoth et al. performed a clustering technique on breast cancer related symptoms
after chemotherapy and proposed that fatigue, weight gain, and altered sexuality are three
symptom clusters for a patient. They also suggested that every cluster has a significant
impact on the cancer survivors quality of life and considering them as a group can magnifies
their affect.

In [15], Eisen et al. (1998) suggested a clustering algorithm that can use to study genome-
wide expression from a hybrid DNA microarray data. The designed of the study was based
on microarrays for developing yeast genome and a human fibroblast cell line. The authors
proposed an hierarchical clustering algorithm based on the average criterion and used the
correlation coefficient as a dissimilarity measure suggested by Sokal and Michener [16]. In
this study, they used the dissimilarity matrix to cluster the genes and not on the samples as
the samples were measured on an ordered list for which the clustering was useless.

In 2010, Wentzensen et al. [17] suggested a hierarchical clustering technique on human
papilloma viruses (responsible for anogenital cancers) genotype. Their proposed hierarchical
clustering system used complete linkage algorithm and Euclidean distance metric as a dissim-
ilarity measure. They clustered both their referred disease combinations and HPV genotypes
simultaneously and created dendrograms to visualized the clustering results. They ended up
with the conclusion of four major disease clusters and three major groups of HPV genotypes.

Guillaud et al. [18] studied in the evaluation of optimal technologies for the screening and de-
tecting on cervical neoplasia an early emerging of cervical cancer. They performed numerical
histo-pathological analysis of biopsies from their 1800 patients. On that study, the authors
performed linear discriminant analysis to assess the diagnostic information in three different
sets of features on a cell-by-cell and sample-by-sample basis. Their selected feature values
and summary scores were used to evaluate intra- and inter-observer variability.

A specifically designed clustering algorithm using gene expression data for breast cancer can
be found in [19]. In their study, the authors performed an unsupervised two way cluster
analysis independently: clustering of gene and clustering of tumor, using an hierarchical
agglomerative clustering technique. For the clustering of gene, the pairwise similarity/ dis-
similarity were measured on the basis of tumor expression ratio measurements to all tumors,
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and for clustering of tumor, pairwise similarity/ dissimilarity were measured based on ex-
pression ratio to all significant genes.

Perou et al. [20] followed the similar method as Eisen et al. [15] for clustering genes using
their expression profiles of normal breast tissue, breast cancer bulk tissue, and breast cancer
cell lines. Using the known or suspected sequences of genes involved in cancer, the authors
presented their own microarrays data for clustering. Some of their suggested gene clusters
are co-regulated.

1.3 Objective

The study considers long-lasting gastrointestinal gynecological cancer survivors self-reported
symptoms and their classes. The specific objectives for this thesis work are:

• determining whether a group of questions measure the same symptom by the responses
or they measure separately.

• exploratively identifying the clusters that are most similar to hypothesized clinical clus-
terings comparing various empirical clustering results.

• finding the differences between the most similar clustering and the hypothetical clus-
tering by observing in which variables are to be assigned to which classes.

• identifying the method of estimating pairwise dissimilarity for such a study.

• implementing exploratory factor analysis for explaining the correlations among the gas-
trointestinal symptoms by considering a smaller number of unobserved latent constructs
or factors.

• defining the meaning of latent constructs or factors.





CHAPTER 2

Method

2.1 Study Sample

This paper has analyzed data collected for a long-term gynecological cancer survivors quality-
of-life study after radiation therapy in Stockholm and Gothenburg, Sweden. The primary
study of this thesis was carried out to the gynecological cancer survivors who were received
pelvic radiation therapy (RT) only or as part of other combination therapy: Operation (Op),
Brachytherapy (Br) and Chemotherapy (Ch), which gives a total of 23 = 8 treatment com-
binations, during their treatment period [21]. The cancer survivors were treated in their
pelvic region 2 − 10 years earlier. The selected survivor cohort were then asked to fill in
a study-specific questionnaire consisting of 351 questions pertaining symptoms from various
regions of human functions, such as the gastrointestinal region, urinary bladder, genitals,
pelvic bones, abdomen and legs, as well as symptoms on psychological behavior and their
quality-of-life and social functioning [3].

The questionnaire was sent to gynecological cancer survivors in 2006, that had been treated
with pelvic radiation therapy between 1991 − 2003 at Karolinska University Hospital in
Stockholm or at Jubileumskliniken at Sahlgrenska University Hospital in Gothenburg. The
questionnaire was developed following interviews with 26 cancer survivors where the women
were asked to describe their symptoms in their own words, and the questions of the ques-
tionnaire were formulated to follow the wording used by the interview participants. Out of
1800 identified cancer patients, 789 met the eligibility criteria of being alive and free from
tumor recurrence in 2006, being born 1927 or later (i.e. less than 80 years of age), and being
able to read and understand Swedish. Of the 789 invited, 616(78%) agreed to participate
and returned a completed questionnaire. The regional ethics committees in Stockholm and

7



8 Method

Gothenburg approved of the project. More details of the questionnaire development and data
collection has been published [3].

2.2 Study Data

In this study, we excluded 11 survivors from our primary data that had a stoma since indi-
viduals with stomata are unable to have fecal leakage symptoms. Also the number of missing
data per question among the patients lies between 0.5% and 3% for the study 37 gastroin-
testinal symptom questions of the questionnaire, makes a total of 89 participants (15% of
605) that have at least one missing value. The study analyzes complete cases, omitting the
missing observations and that yielded a number of 516 individuals. The reason behind is, the
amount of missing value is low and also in our assumption the alternative of imputing data
may risk to create clusters that are not there to start with.

Details about demographic and treatment characteristics for the cancer survivors are shown
in Table A.1 on page 68.

2.3 Gastrointestinal Self-reported Symptoms

From the large questionnaire we have focused our this study only on the "Bowel section", which
involves questions about bowel functions as a side effect after giving the radiotherapy and
or surgery treatment. The dataset contains a sample of 516 completed survivor information
with an ID number for each patient, and a total of 37 questions that all have various response
alternatives. The responses are typically stored as integers on different scales, all of which
are at least ordinal (for example, 0="Not applicable" if a question has such an alternative,
otherwise in the order that they’re stated in the questionnaire, i.e. 1="No, never", 2="Yes,
occasionally", · · · , 6="Yes, at least once a day"). In the study, the term "symptom" represents
cancer survivors’ self-reported responses of the questionnaire.

The questions used from the gastrointestinal section of the questionnaire for performing
hierarchical clustering are presented in Table A.2 on page 69.

The response scales for all of the questions are described shortly below:

N38, N44, N52, N53, N60, N62, N65, N67, N70, N73, N77, N81, N82, N84, N85,
N88, N91, N92, N93, N94, N95, N96, N97, N98, N114, N137 : Have you had [· · ·
this symptom · · · ], in the last six months.

1= No,
2= Yes, Occasionally
3= Yes, at least once a month
4= Yes, at least once a week
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5= Yes, at least three times a week
6= Yes, at least once a day

N48, N74, N139, N140, N141: Have you had [· · · this symptom · · · ], in the last six
months.
0= Not Applicable, Haven’t had [· · · this symptom · · · ]
1= No,
2= Yes, less than half of occasions
3= Yes, more than half of occasions
4= Yes, at every occasion

N49: Have you had ability to push out feces, in the last six months. 0= Not Applicable, I
haven’t had any need
1= No ability
2= Small ability
3= Moderate ability
4= Great ability

N75: How long have you been able to keep the stools at the urgency, the last six months
0= Not Applicable, I havn’t had stool efforts
1= Less than 1 minute,
2= Between 1 and 5 minutes
3= Between 5 and 10 minutes
4= Between 10 and 30 minutes
5= 30 minutes or more

N76, N99, N102: Have you had [· · · this symptom · · · ], in the last six months

0= Not Applicable
1= No,
2= Yes, Occasionally
3= Yes, at least once a month
4= Yes, at least once a week
5= Yes, at least three times a week
6= Yes, at least once a day

N138: how strong is the pain in the abdomen was when it was at its worst, the last six
months (Visual Digital Scale/ Numeric Rating Scale)
1= No pain



10 Method

2=· · · · · ·
3=· · · · · ·
4=· · · · · ·
5=· · · · · ·
6=· · · · · ·
7= Worst imaginable pain

It is obvious that the questionnaire has different formatting of variables, so there are some
additional things we have been considering for the ease of our analysis:

• All "Not applicable"’s are handled as a "No" (i.e., 0→1).

• N49 (ability to push feces): inverse scale, lower values mean more severe symptom (op-
posite to most other questions). 0="not applicable" should probably not be considered
a 1="no" for this question. We have changed "0" to the maximum response 4, and that
the scale is inverted (so that 1→ 4, · · · , 4→1).

• N75 (ability to hold feces): inverse scale, lower values mean more severe symptom (op-
posite to most other questions). 0="not applicable" should probably not be considered
a 1="no" for this question. We have changed "0" to the maximum response 5, and that
the scale is inverted (so that 1→ 5, · · · , 5→1).

Figure B.1 on page 76 presents the marginal distributions of our 37 categorical gastrointestinal
variables which illustrates the proportion of counts for each category next to each other for
ease comparison. The height of each bar is the respondents proportionate response to a
particular category of a variable. We can also observe that the marginal distributions of the
variables are heterogeneous, most likely reflecting that questions asked concerns both rare
and common symptoms.

2.4 Hypothetical Cluster

In clustering, it is often desirable to compare the empirical clustering results with some
external criteria. Based on this, we have tried to formulate an external clinical symptoms
classification for the given 37 gastrointestinal questions of the questionnaire with the help of
a clinical expertise in where the questions that they would believe are related to each other
without looking at the data. Elisabeth Åvall Lundqvist, specialist on gynecologic oncology
at Karolinska Institute and who is also responsible for the development of the questionnaire
of the primary study, formulate a hypothetical clinical classification [Figure 2.4] from her
clinical point of view for these questions based on long term side effects of cancer survivors.
The objective of clinical classification is that to compare it with the empirical hierarchical
clustering results and to evaluate a clustering result of the data out of our many combinations
of hierarchical clusterings which is appropriate from mathematically and clinically.
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Figure 2.4 on the next page shows our proposed hypothetical clinical clustering of the cancer
survivor questions on the focus of 37 gastrointestinal symptoms. At the beginning of our
grouping we considered that each original question of the questionnaire measure a particular
symptom and construct a single cluster. We grouped them then based on their clinical
association and formed sixteen large and small clusters as shown in the picture. Later on,
we realized that this forming still bearing very large clusterings as compared to the number
of questions, so we collapsed those sixteen clusters more compactly in where symptoms we
thought to be most associated to each other. In this way we have found eight smaller number
of clusters which are marked clearly on the picture also. It is assumed, the symptoms in
the same cluster are strongly related to each other than the symptoms of other clusters.
As the formulated grouping is hypothetical, so the distances from one group to another is
arbitrary. As an example, Anal pain and Hard stools are two separated groups and they are
staying far away in the figure, but this doesn’t mean that these two groups have large distance
compare to other groups. Intuitively they are not so closely correlated as like they are with
their nearest other groups. In the middle of the figure (all "green" and "blue" colors) actually
represents a very big group about the abdominal questions to which we can refer as abdominal
pain and flatulence group and the small groups within this big group are showing very close
association, i.e.,the small groups are correlated and that some of the groups are combinations
of two or more. Loose stools is a very well known side effects after radiotherapy and it’s very
common among the survivors [3]. In the figure Loose stools is on a separate group and have
strong association with Loose stools leakage, Solid stools leakage, defecation urgency, urgency
with leakage and return to bathroom within an hour groups, i.e., large association with the
leakage questions groups. Anal pain group is separated from the Leakage of blood or mucus
groups, which is in turn separated from all the other abdominal groups of questions, solid
stools leakage and hard stools.

From the above hypothetical clinical consideration, all the gastrointestinal questions were
grouped separately later on into eight clusters for comparison. Table 2.1 represents these
hypothetical eight groups or clusters.

Table 2.1: Hypothetical eight clusters
Cluster No. Cluster Name Cluster Size Variable Names

1 Leakage of blood and mucus 8 N62, N65, N91, N92, N95, N96, N99, N102
2 Abdominal pain and flatulence 9 N60, N84, N85, N88, N137, N138, N139, N140, N141
3 Defecation Urgency 5 N53, N73, N74, N75, N77
4 Leakage of loose stools and urgency 6 N76, N81, N82, N93, N97, N114
5 Anal pain 2 N67, N70
6 Loose stools 1 N38
7 Leakage of solid stools 2 N94, N98
8 Hard stools 4 N44, N48, N49, N52

Total 37
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Figure
2.1:

H
ypotheticalclinicalclustering
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2.5 Basic steps and Numerical methods for hierarchical clus-
tering analysis

Often clustering is used for clustering individuals, but in this study we consider methods for
clustering variables rather than individuals. Clustering individuals usually attempt to identify
relatively homogeneous groups of cases (individuals) where as clustering variables identifies
a set of non-overlapping homogeneous grouping variables. Variable clustering can be used
for estimating collinearity, redundancy, and for separating variables into similar clusters that
can be interpret as a single variable and this reflects to data reduction.

In this study, for grouping variables, the basic steps involve in a hierarchical cluster analysis
are:

• Select a measure of similarity or dissimilarity between variables.

• Choosing a appropriate clustering algorithm.

• Deciding the number of clusters. and

• Validate and interpret the cluster solution.

Suppose, we have an n× p multivariate data matrix, X, containing the individuals responses
at the row and at column describing each variable to be clustered; that is,

X =


x11 x12 · · · x1p

x21 x22 · · · x2p
...

... . . . ...
xn1 xn2 · · · xnp



The generic entry xij in the X matrix gives the value of the jth variable on individual i. Our
main interest center on clustering the variables which define the columns of the above data
matrix X.

Generally, the characteristics of the variables in matrix X can be a mixture of continuous,
ordinal and/or categorical, and often some entries can be missing, while we have a data set
where variables are in ordinal and with missing observations. cluster analysis techniques
usually begin by converting this matrix X into an p × p matrix of inter-object similarities,
dissimilarities or distances which we generally call proximity measures. Using the proximity
matrices and with selected hierarchical clustering algorithms, a clustering process can be
obtained which generates similar clusters/groups of variables from the data set and where
the number of groups g is smaller than or equal to p (i.e., g ≤ p). Thus cluster analysis
summarize data redundancy by reducing the information on the whole set.
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2.6 Data Dichotomization and Standardization

Usually, the raw data or the original measurements are not directly used for cluster analysis.
Therefore, arrangement of data is necessary and important for cluster analysis. Preparing
data involves some way of transformation, such as dichotomization, standardization or nor-
malization.

2.6.1 Data Dichotomization

Since our data have varying response scales and not identically distributed, one way to
simplify the data is to dichotomize at the median to get similar distributions for the variables.
We split the variable at the median of the data and not of the items on the scale, as that
is conceptually the middle response of the data. For example, in our study question N38,
where this loose stools question ranges from 1 to 6 and the median of this question is 3. We
transformed the variable to a new dichotomous variable, zero and one, by categorizing each
subject of the variable as either have low loose stools scores (1 through 3(i.e.,median value))
or have high loose stools scores (4 through 6) respectively. Mathematically we can write it
in the following way.

Let, x1, x2, ......., xp be the variables in the dataset where j = 1, 2, ....., p. Also let, Mj be the
median response of the variable j. We dichotomize the ith observations of the jth variable xij
based on the following criterion:

x∗ij =
{

0 ; if xij ≤Mj

1 ; if xij > Mj

(i = 1, ...., n and j = 1, ....., p) (2.1)

where, x∗ij entities will formulate a new binary dataset with approximately the same marginal
distributions of the variables, but slightly differs from the formulations of many methods for
dichotomization in which "0" and "1" usually signifies absence or presence of symptom for a
particular question.

As for many ties observations at the median values of the original variables in our data, the
dichotomization can not be done uniformly. We assumed that the losing of information of
the data with this dichotomizing is minor and could use this binary dataset for our further
cluster analysis.

Figure B.2 on page 77 shows the marginal distributions for our new dichotomize variables.
The figure reveals that though the dichotomization has done based on the median, the shape
of the marginals (binary categories) are not evenly distributed for many of the variables. This
is because there are many observations lie on the median value for that particular variable
and that makes the data skewed instead of symmetric even after the dichotomization.
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2.6.2 Data Standardization

Generally, data standardization concentrates on variables and it makes data dimensionless.
When there are unequal scales of the variables in a dataset then it is meaningful to convert
the data to some standard indices. By standardization we may loose all original information
about the location and scale of the data, but it is useful to standardize variables in cases when
using Euclidean distance as for dissimilarity measure and also where the data is sensitive to
the differences in the original scales of the variables [22]. There are various ways to standardize
variables and the appropriate method depends on the dataset and the particular field of study.
In this study we recalculate each variable by using the following equation:

x∗ij = xij
maxi(xij)

(i = 1, ...., n and j = 1, ....., p) (2.2)

where x∗ij denotes the recalculated value, and maxi(xij) is the maximum observed value of
the jth variable.

After standardization of data, all variables transformed to a unique closed scale [0,1] with the
same ordering and consistency as the source data had. That is, the minimum value means
low severity of a symptom and maximum value means high severity of the symptom for a
question and can be comparable with other variables. This method of standardization allows
variables to have different means and standard deviations but equal ranges.

2.6.3 Normalization of Rank Transform Data

Another way to handle ordinal variables with different distributions and value ranges is to
transform them into quantitative variables taking values in the interval [0,1] using their ranks.
This will make the distributions more similar, but relies on the strong assumption that the
minimum and maximum values of one variable are comparable to the minimum and maximum
values of another variable. After that the usual distance methods (such as, Euclidean distance
, correlation coefficient, etc.) for quantitative variables can be used to calculate distance by
treating the ordinal variables as quantitative variables from the rank normalize data.

The transformation can be done on the following ways:

• Rank the values of the original variable from t = 1 to n.

• For ties observations, used average of ranks.

• The rank entities are normalized into standardized value of zero to one [0,1] by [23]:

x∗ij = t− 1
T − 1 (2.3)
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where x∗ij denotes the normalized value, r is the rank of the observed value for a variable
and T is the maximum rank of the variable after averaging ranks for ties observations.

2.7 Notation

To describe the dissimilarity measure between variables and clusters we used following some
notations in our subsequent sections:

Let,

n = number of cases/observations.
p = number of questions/variables.
x = (x1, x2, · · · , xn)T and y = (y1, y2, · · · , yn)T ,

be two vectotrs of variables which denote two survey questions.
xij = value of the ith observation and jth variable in the data matrix,

where, i = 1, · · · , n and j = 1, · · · , p.
x∗ij = value for the ith observation and jth variable of the

transformed data. where, i = 1, · · · , n and j = 1, · · · , p.
wi = weight for the jth objects, where j = 1, · · · , n.
d(x,y) = the distance between variables x and y .
s(x,y) = the similarity between variables x and y .
nc = number of concordant pairs between variables x and y.
nd = number of discordant pairs between variables x and y.
Gk = {y1, y2, · · · , yr}denotes cluster k of size r.
rk = number of elements in cluster Gk.

2.8 Dissimilarity measures between variables

In hierarchical clustering, it is required to define a measure of dissimilarity between sets of
variables in order to decide how clusters or variables will be merged together by agglomerative
method, or how a large cluster will be splited out into smaller clusters by divisive method.
A wide variety of distance and similarity measures are proposed based on the nature and
characteristics of the data. Moreover, there are no general theoretical guidelines for selecting
a measure for any given application. Different methods in defining the distance between
two data points can lead to different clustering results. Ideally, field knowledge should be
used to guide the formulation of a suitable distance measure. However, for the questions in
this study, sufficient field knowledge about this study-specific questionnaire is lacking, and
we take a more explorative approach where we can consider a number of different distance
measure. In this study we consider the following common distance methods.



2.8 Dissimilarity measures between variables 17

2.8.1 Distances for numerical data

In clustering, Euclidean distance and Pearson correlation distances are probably the most
commonly used measures for numerical data [24].

2.8.1.1 Euclidean Distance

This is the fundamental distance measure between two points and are also known as the
"straight line distance". It is defined as the positive square root of the sum of squares of
the differences between corresponding points of two data sets. Given two n-dimensional data
vectors x and y, the standard Euclidean distance is defined by

deuc(x,y) =

√√√√ n∑
i=1

(xi − yi)2 =
√

(x− y)(x− y)T (2.4)

where xi and yi are the value of the ith observations of x and y, respectively.

This distance is sensitive to the differences of the measure variables with their magnitude or
scale [24]. Therefore it is often necessary to standardize the variables beforehand to compute
this distance.

The squared Euclidean distance, which is the square of the standard Euclidean distance, often
use in situations when we would like to put higher weights to the objects which have greater
distances from each other. So, in the cases when distances only have to be compared then we
usually use the squared Euclidean distance instead of the standard Euclidean distance. The
general formula is,

dsqeuc(x,y) =
n∑
i=1

(xi − yi)2 = (x− y)(x− y)T (2.5)

2.8.1.2 Pearson’s correlation distance

Pearson Correlation measures the similarity with direction (shape) between two variables.
Given two n-dimensional data vectors x and y, the Pearson correlation distance is defined by

dpearson(x,y) = 1− r (2.6)

where r denotes Pearson product-moment correlation coefficient,

r =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2∑n
i=1(yi − ȳ)2
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where xi and yi are the ith attributes of x and y, respectively and x̄ and ȳ are the respective
vector means.

It is to consider that the ranges of Pearson correlation is [−1, 1] and that the 1−r lies between
[0, 2]. A convenient measure between 0 and 1 is 1

2(1− r) in where the low distance signifies
for positive correlation.

2.8.2 Distances for binary data

Out of many proposed methods for the dichotomize categorical variables, we used Jaccard’s
distance and phi correlation coefficient as a distance measure. Jaccard’s distance usually
focus on the asymmetric information in the binary variables. Where the asymmetric means
the value of present (1) and absent (0) do not carry equal information. On the basis of our
binary data, we made our first believe that the co-absences (0 and 0) in both variables are
not important and counting the values may have no meaningful contribution to the distance
measure. Based on this believe, we used Jaccard’s distance as a measure of dissimilarity
between two binary variables excluding all co-absences information. In contrary, phi corre-
lation coefficient considers symmetric information in our binary variables i.e., equal weight
has given to presences and absences cases. This phi method is binary analogue of the usual
Pearson correlation coefficient.

2.8.2.1 Jaccard’s distance

Suppose, we have two data vectors A and B with binary attributes and the counts of pres-
ences (1) and absences (0) in the pairs are represent in a 2× 2 contingency Table 2.2 below.

Table 2.2: Table for counts of binary samples.
Object B

1 0

Object A 1 m n m+n

0 p q p+q

m+p n+q m+n+p+q

where,

m = number of presences (1 and 1) on both objects.

n = number of mismatches where object A has value 1 but object B has value 0.

p = number of mismatches where object A has value 0 but object B has value 1.

q = number of absences (0 and 0) on both objects.

r = m+ n+ p+ q = total counts for both objects.
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Given two n-dimensional data vectors x and y, the Jaccard’s distance (dissimilarity measure)
is defined by

djac(x,y) = 1− sjac(x,y) (2.7)

where, sjac(x,y) is the Jaccard’s similarity coefficient and can defined by

sjac(x,y) =

 1 ; if m=n=p=0
m

m+n+p ; otherwise
(2.8)

which ranges in [0, 1].

Thus the Jaccard’s distance becomes,

djac(x,y) = 1− sjac(x,y) =

 0 ; if m=n=p=0
n+p

m+n+p ; otherwise
(2.9)

From the above equations we can say that if our two study symptoms (variables) have sets
of cases with many co-presences and few mismatches (regardless of co-absences) then their
dissimilarity measure (distance) will be minimum.

2.8.2.2 Phi correlation coefficient

For the categorical binary variables, the correlation coefficient also can be used to estimate
the dissimilarity between two objects. Given two n-dimensional data vectors x and y, the
Phi distance can be defined by

dφ(x,y) = 1− rφ(x,y) (2.10)

where rφ(x,y) is defined as the binary correlation coefficient and can be represent by

rφ(x,y) = mq − np√
(m+ n)(p+ q)(m+ p)(n+ q)

(2.11)

where m, n, p and q represent similarly as above in Table 2.2.

Note that the ranges of binary correlation coefficient, rφ(x,y) is [−1, 1] and that the 1 −
rφ(x,y) lies between 0 (when np = 0, no mismatches) to 2 (when mq = 0, no matches). A
convenient measure between 0 and 1 is 1

2(1− rφ(x,y)) in where the low distance signifies for
positive correlation.
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2.8.3 Gower’s similarity/dissimilarity coefficient

Generally, we consider Gower’s similarity or dissimilarity measure for mixed data types, i.e.,
a dataset having mixture of binary, nominal, ordinal and continuous variables and therefore
is one of the most popular measures of proximity. Gower’s original method was proposed
to estimate the distances between pair of cases by considering variables. Therefore for the
purpose of our this study we slightly modified the Gower’s original method by considering
to estimate the distances between variables instead of cases/objects. In this case we have
only ordinal variables and we focused our attention on specifying the contribution made to
measure the dissimilarity between variables done by a single object/case. Overall distance
between a pair of variables is then obtained by summing weighted such contributions over all
the objects.

Given two n-dimensional data vectors x and y, the Gower’s dissimilarity Coefficient is defined
by

dgower(x,y) =
√

1− Sgower(x,y) (2.12)

where, Sgower(x,y) is the Gower’s similarity coefficient defined by

Sgower(x,y) =
∑n
k=1w(xk, yk)s(xk, yk)∑n

k=1w(xk, yk)
(2.13)

in where, s(xk, yk) denotes the similarity provided by the kth object, and

for ordinal variables,

w(xk, yk) =


1 ; if the data points x and y are comparable for the kth object. i.e., for an

object/survivor who answered a constant value for all the variables has
Rk = 0, is not comparable and hence discarded those objects.

0 ; otherwise

Also for ordinal variables the value of s(xk, yk) can be computed as

s(xk, yk) = 1− |xk − yk|
Rk

(2.14)

where Rk is the range, which represent the difference between the maximum and the mini-
mum values of object k present in all samples under consideration.

So, the Gower’s distance can be simplified as
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dgower(x,y) =

√√√√ 1
n

n∑
k=1

|xk − yk|
Rk

; iff w(xk, yk) = 1∀k and
n∑
k=1

w(xk, yk) = n

(2.15)

where n is the number of objects and Rk is the range for kth object. The ranges of Gower’s
distance is [0, 1].

2.8.4 Distances for Rank Data

To deal with pure rank of our ordinal data, we used Kendall tau, Spearman footrule, and
Goodman-Kruskal gamma coefficient as our distances measure.

2.8.4.1 Kendall-Tau rank distance

The Kendall tau rank distance is a metric that consider the pairwise disagreements and counts
the total number of discordant pairs between two ranking lists.

Given two n-dimensional data vectors x and y, the normalized Kendall tau distance can be
represented by

dkendall(x,y) = nd
1
2n(n− 1)

∈ [0, 1] (2.16)

where, nd denotes the number of discordant pairs between x and y and nd ∈ [0, 1
2n(n− 1)] ,

and, 1
2n(n− 1) denotes the kendall’s distance normalizing factor, which defines the total

number of pairs of items in the two ordered list and in where n is the list size and is thus the
upper limit of nd.

The value dkendall(x,y) = 0 means that the two measure ranking list are identical where as
dkendall(x,y) = 1 means they are in opposite order.

For the computation of Kendall’s tau distance, it is simple to verify that

dkendall(x,y) = 1
2(1− τ) (2.17)

where τ is Kendall’s tau rank correlation coefficient and can be defined by

τ = nc − nd
1
2n(n− 1)

(2.18)
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where,
nc = total counts for the pairs of items ranked in the same order on both variables (i.e.,
number of concordant pairs for two rank list), and
nd = total counts for the pairs of items ranked differently on both variables (i.e., number of
discordant pairs for two rank list).

Therefore,

nc = |{(i, i′) : i < i′, (xi < xi′ and yi < yi′)

or (xi > xi′ and yi > yi′)}|

and

nd = |{(i, i′) : i < i′, (xi < xi′ and yi > yi′)

or (xi > xi′ and yi < yi′)}|

2.8.4.2 Footrule distance

Footrule distance is defined as an absolute distance between two rank list, i.e., it computes
the total element-wise displacement from a identity combination. This method is similar to
the city block distance or Manhattan distance that used for numerical data, but in where
Footrule distance is used for rank data. This measure is also named as "Spearman footrule
distance".

Given two n-dimensional data vectors x and y, the Spearman Footrule distance can be defined
by

dfootrule(x,y) =
n∑
i=1

∣∣∣ρ(xi)− ρ(yi)
∣∣∣ =

n∑
i=1

∣∣∣ρij − ρij′

∣∣∣ (2.19)

where ρ(xi) denotes ranking of variable x for individual i.

The distance matrix is always positive definite.

2.8.4.3 Goodman and Kruskal’s gamma

Goodman and Kruskal’s gamma usually measure a rank correlation statistic, i.e., it assess
the strength of association of the orderings of the data when ranked by each of their entities.
The method is relevant and good in the situation where there are many ties or zeroes in the
data and the variables are in ordinal level.

Given two n-dimensional data vectors x and y, the Goodman and Kruskal’s gamma distance
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measure can be defined by

dgamma(x,y) = 1
2(1− γ) (2.20)

where, γ is the Goodman and Kruskal’s measure and defined as,

γ = nc − nd
nc + nd

where, nc and nd are defined earlier.

For the tied observations between two ordered list, the method drop them from the calcula-
tion, i.e., no adjustment for ties observations.

The value of Goodman and Kruskal’s gamma ranges from −1 (perfect negative association)
to +1 (perfect positive agreement) and a value of zero indicates the absence of association.
Hence, the range of gamma distance becomes [0, 2] and for the convenience of our computation
we divide this range by 2 to make it [0, 1].

2.9 Dissimilarity measures between clusters

Hierarchical cluster analysis is a set of nested partitions and follows two types of algorithms:
agglomerative (bottom-up clustering) or divisive (top-down clustering). In bottom-up clus-
tering algorithm, each element is considered as a singleton cluster at the outset and then
successively merge (or agglomerate) pairs of clusters which have minimum distance. The
process of merging clusters is repeated until all clusters have been assembled into a one big
cluster that contains all data points. In top-down (divisive) clustering algorithm, the mech-
anism starts in a opposite way by considering all data points in a single cluster and then
successively splitting into minor clusters based on their distances. For the both scenario, it
is necessary to compute the distance between two clusters.

In practice the agglomerative hierarchical clustering is the most widely used method and
we consider it for our this study as well. In agglomerative hierarchical clustering, the clus-
tering methods differ based on the way to define the distance between two clusters. Lance
and Williams [25] proposed a general linear relation to calculate the distance between two
groups/cluster and have been using most widely in the practice of hierarchical clusters.

2.9.1 Lance and Williams Dissimilarity measure

In all hierarchical agglomerative clustering algorithm, it is required to calculate the inter
group dissimilarities between points of new cluster formed by two clusters and existing clus-
ters. Lance and Williams (1966) [25] suggested a general formula which is known as the
Lance-Williams combinatorial dissimilarity formula, that measure the differences between
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new clusters and other existing clusters, based on the distances prior to merge of the new
cluster. If two clusters Gi and Gj with ri and rj elements respectively have been merged
to form a new cluster Gk with rk(= ri + rj) elements, then the distance D(., .) between the
new cluster Gk and any existing cluster Gh in the space is given by the following recurrence
formula:

D(Gh, Gk) = D(Gh, Gi ∪Gj)

= αiD(Gh, Gi) + αjD(Gh, Gj) + βD(Gi, Gj)

+ γ|D(Gh, Gi)−D(Gh, Gj)|

(2.21)

where the parameters αi, αj , β and γ in equation (2.21) determine the nature of the clustering
strategy. The hierarchical clustering algorithms with various inter-cluster dissimilarities can
be achieved by choosing suitable values of the above Lance-Williams parameters, which are
presented in Table 2.3.

Table 2.3: Some chosen values commonly used for the Lance-Williams parameters in hierar-
chical clustering.

Hierarchical Algorithm αi αj β γ

Single Linkage 1
2

1
2 0 −1

2
Complete Linkage 1

2
1
2 0 1

2
Group Average ri

ri+rj

rj

ri+rj
0 0

Ward’s Method rh+ri
∆ijh

rh+rj

∆ijh
− rh

∆ijh
0

where, ri is the number of elements in cluster Gi and ∆ijh = ri + rj + rh.

Unlike to the general clustering algorithms, there exists also some algorithms specific to
individual hierarchical agglomerative clustering methods which are known as linkage criterion.
These criterion represent the differences between sets of elements, that is a function of the
distances between elements in pairs. Some most widely used linkage methods as well as used
for this study are discussed below.

2.9.1.1 Single linkage method

Single linkage is the simplest and oldest of the conventional agglomerative methods. In the
single linkage method, it consider the smallest distance between two elements each of which
is in one of the two groups and merges those closest elements as a new cluster. Therefore,
this algorithm is also known as the nearest-neighbor method or the minimum method.

Let G = {y1, y2, · · · , yr} and G′ = {z1, z2, · · · , zs} are two nonempty, non-overlapping clusters



2.9 Dissimilarity measures between clusters 25

of size r and s, respectively. So, the single linkage method can be defined as:

D(G,G′) = min
y∈G,z∈G′

d(y, z) (2.22)

where d(., .) denotes the distance function between data points from which the proximity
matrix is computed.

Equation (2.22) is equivalent to and easy to compute from the general Lance-Williams equa-
tion (2.21).

Suppose, we have three clusters of elements Gi, Gj and Gh. Then the dissimilarity between
cluster Gh and cluster Gk (Gk = Gi ∪Gj) can be measured from equation (2.21) as follows:

D(Gh, Gk) = D(Gh, Gi ∪Gj)

= 1
2D(Gh, Gi) + 1

2D(Gh, Gj)−
1
2 |D(Gh, Gi)−D(Gh, Gj)|[

when αi = αj = 1
2; β = 0 and γ = −1

2 in equation (2.21)
]

= min{D(Gh, Gi), D(Gh, Gj)}

(2.23)

where D(., .) is a distance function between two groups.

Figure 2.2(a) shows a graphical representation of the single-linkage method for two groups,
in where it consider the shortest distance between two closest points in different subsets of
points.

2.9.1.2 Complete linkage

Complete linkage algorithm usually suggests for the needed of intense grouping and is the
exact opposite of the preceding, in which the dissimilarity between two clusters defines by
the distance between two furthest pair of elements, one from each group.

Let G = {y1, y2, · · · , yr} and G′ = {z1, z2, · · · , zs} are two nonempty, non-overlapping clusters
of size r and s, respectively. So, the complete linkage method can be defined as:

D(G,G′) = max
y∈G,z∈G′

d(y, z) (2.24)

where d(., .) denotes the distance function between data points from which the proximity
matrix is computed.

Equation (2.24) is equivalent to and easy to compute from the general Lance-Williams equa-
tion (2.21).
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Suppose, we have three clusters of elements Gi, Gj and Gh. Then the dissimilarity between
cluster Gh and cluster Gk (Gk = Gi ∪Gj) can be measured from equation (2.21) as follows:

D(Gh, Gk) = D(Gh, Gi ∪Gj)

= 1
2D(Gh, Gi) + 1

2D(Gh, Gj) + 1
2 |D(Gh, Gi)−D(Gh, Gj)|[

when αi = αj = 1
2; β = 0 and γ = 1

2 in equation (2.21)
]

= max{D(Gh, Gi), D(Gh, Cj)}

(2.25)

where D(., .) is a distance function between two groups.

Figure 2.2(b) shows a graphical representation of the complete-linkage method for two groups,
in where it consider the longest distance between two furthest points in different subsets of
points.

Figure 2.2: Representation of inter-cluster dissimilarity

2.9.1.3 Group Average

The distance between two clusters can also be measured as the average distance between
elements from the first cluster and elements from the second cluster. Such a method is
known as the group average clustering algorithm. The averaging is considered over all pairs
of elements in both groups.

Let G = {y1, y2, · · · , yr} and G′ = {z1, z2, · · · , zs} are two nonempty, non-overlapping clusters
of size r and s, respectively. So, the group average method can be defined as:

D(G,G′) = 1
r × s

∑
y∈G,z∈G′

d(y, z) (2.26)

where r = |G| and s = |G′| are the numbers of elements in clusters G and G′ respectively.
and
d(., .) denotes the distance function between data points from which the proximity matrix is
computed where y ∈ G, z ∈ G′ .
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Equation (2.26) is equivalent to and easy to evaluate from the general Lance-Williams equa-
tion (2.21).

Suppose, we have three clusters of elements Gi, Gj and Gh. Then the dissimilarity between
cluster Gh and cluster Gk (Gk = Gi ∪Gj) can be measured from equation (2.21) as follows:

D(Gh, Gk) = D(Gh, Gi ∪Gj)

= |Gi|
|Gi|+ |Gj |

D(Gh, Gi) + |Gj |
|Gi|+ |Gj |

D(Gh, Gj)

= ri
rk
D(Gh, Gi) + rj

rk
D(Gh, Gj)

(2.27)

when αi = |Gi|
|Gi|+|Gj | = ri

rk
, αj = |Gj |

|Gi|+|Gj | = rj

rk
; β = 0 and γ = 0 in equation (2.21).

where |Gi| = ri is the number of elements in cluster Gi and |Gi| + |Gj | = ri + rj = rk and
D(., .) is the distance function between two clusters.

2.9.1.4 Ward’s Minimum-Variance criterion

Ward Jr. (1963) [26] and Ward Jr. and Hook (1963) [27] proposed an agglomerative clustering
algorithm which is established on the error sum of squares (E) criterion and can be defined
as the sum of squared distances of each data points from the mean of it’s assigned cluster. At
each stage of the merging, the aim of Ward’s method is to find compact, spherical clusters by
minimizing the increase in the total within-group error sum of squares. Hence, this method
is also referred to as the Ward’s minimum variance criterion [24]. At the beginning of the
algorithm E is set to 0 as each elements is then appear in its own cluster.

Suppose there are h singletons clusters G1, G2, · · · , Gh, then the Ward’s minimum variance
criterion can be expressed as:

E =
h∑
j=1

E(Gj) (2.28)

which is the total within-cluster sum of squares and where

E(Gj) =
rj∑
l=1

pm∑
m=1

(
xjlm − x̄jm

)2
(2.29)

in which x̄jm = ( 1
rj

)
∑rj

l=1 xjlm; is the mean of the jth cluster for the mth variable, and, xjlm
be the score on the mth variable (m = 1, 2, · · · , p) for the lth object (l = 1, 2, · · · , rj) in the
jth cluster (j = 1, 2, · · · , k).

In matrix notation we can write the equation (2.29) as follows:
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Let we have a cluster G with data points {z1, z2, · · · , zs} of size s = |G|, the error sum of
squares for the cluster G can be computed by:

E(G) =
∑
z∈G

(z− Ḡ)(z− Ḡ)T

=
∑
z∈G

(
zzT − ḠzT − zḠT + ḠḠT)

=
∑
z∈G

zzT − Ḡ
(∑

z∈G
z
)T

=
∑
z∈G

zzT − 1
s

(∑
z∈G

z
)(∑

z∈G
z
)T

=
∑
z∈G

zzT − sḠḠT (2.30)

where Ḡ is the mean of cluster G, that is,

Ḡ = 1
s

∑
z∈G

z (2.31)

At each step of clustering the pair of clusters are merged whose cluster distance is minimum.
Therefore, one can implement this method by finding the pairwise clusters at every stage
that accounts for the minimum increase in total within-cluster variance after fusion.

Performing hierarchical clustering with Ward’s criterion above is equivalent to and easy to
evaluate from the general Lance-Williams equation (2.21).

Suppose, we have three clusters of elements Gi, Gj and Gh. Then the dissimilarity between
cluster Gh and cluster Gk (Gk = Gi ∪Gj) can be measured from equation (2.21) as follows:

D(Gh, Gk) = D(Gh, Gi ∪Gj)

= |Gh|+ |Gi|∆ijh
D(Gh, Ci) + |Gh|+ |Gj |∆ijh

D(Gh, Gj)

− |Gh|∆ijh
D(Gi, Gj) (2.32)

when αi = |Gh|+|Gi|
∆ijh

= rh+ri
∆ijh

; αj = |Gh|+|Gj |
∆ijh

= rh+rj

∆ijh
; β = − |Gh|

∆ijh
= − rh

∆ijh
and γ = 0

in equation (2.21).

where ∆ijh = |Gh|+ |Gi|+ |Gj | = rh + ri + rj .

During the process of clustering, the dissimilarity matrix is updated with equation (2.32) and
the two clusters with minimum distance will be fused together. Then the increase in error
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sum of squares, E, of the matrix is computed by:

∆Eh(ij) = 1
2D(Gh, Gi ∪Gj) (2.33)

For example, suppose we have squared Euclidean distance as a distance matrix and suppose
groups Gi and Gj are chosen to be merged to make a new cluster Gk, i.e., Gk = Gi ∪ Gj .
Then the increase in E is

∆Eij = E(Gk)− E(Gi)− E(Gj)

=
( ∑

z∈Gk

zzT − |Gk|ḠkḠk
T
)
−
( ∑

z∈Gi

zzT − |Gi|ḠiḠi
T
)

−
( ∑

z∈Gj

zzT − |Gj |ḠjḠj
T
) [

From equation (2.30)
]

= |Gi|ḠiḠi
T + |Gj |ḠjḠj

T − |Gk|ḠkḠk
T

where Ḡk, Ḡi and Ḡj are the means of clusters Gk, Gi and Gj , respectively.

2.9.2 Dendogram

To visualize the clustering results various versions of the dendrogram have been proposed
and widely used. The main objective of this visualization is a tree based structure yielded by
a hierarchical algorithm which is easy to understand the similarities/dissimilarities between
elements. It demonstrates both the cluster and the sub-cluster relationships and also the
order in which the clusters are merged for agglomerative algorithm or split for divisive case.
Usually a dendrogram is read from left to right.

In a dendrogram, the data points are represented along the bottom and referred to as ex-
ternal/terminal nodes, and clusters to which the data belong are formed by joining with the
internal nodes. The name of objects added to the terminal nodes are known as labels. The
height of the dendrogram shows the distance between objects or clusters. Therefore, the small
values of the height indicates a high similarity between the objects and the large values of the
height indicates more distance. This can be shown in the figure 2.3. The coalition between
each internal node and the height can be explain mathematically by the following condition:

h(Q) ≤ h(R)⇔ Q ⊆ R



30 Method

for every subsets of objects Q and R and Q ∩R 6= Φ,
Here, h(Q) and h(R) represent the heights of Q and R, respectively .

Let we have a set of p variables x1, x2, · · · , xp and the pairwise distances of these variables
can be represent in a p× p matrix of D.

Figure 2.3: Visualization of five variables in a dendrogram

2.10 Method for Comparing Partitions

2.10.1 Adjusted Rand Index

A difficulty often arise during clustering when it comes to make a decision about the optimal
number of clusters. There are many procedures available in literature for this purpose based
on the external and internal criteria of the clusterings. However, for the objective of this study
we carried out external criteria approach to evaluate the results of our clustering algorithms
and to make a decision about the optimal cluster numbers. This criterion suggests that the
evaluation is done by comparing a pre-specified arrangement of a data set during clustering
with reflects to the intuitive structure on it.

"Rand index" proposed by Rand [28] and "Adjusted Rand index" indices are probably the
most popular and frequently used measures for the cluster validation with external criteria
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approach. Both of these methods compare pairwise cluster partitions agreement, in where one
partition is obtained by the clustering procedure and the other is defined by some external
criteria of the data, i.e., the comparison is based on comparing pairs of objects concerning
their group attributes.

Suppose we have a set of p variables S = {x1, x2, · · ·xp} and also consider Q = {q1, q2, · · · qC}
and T = {t1, t2, · · · tR} represent two different partitions of the same items in S such that
∪Ck=1qk = S = ∪Rl=1Tl and qk ∩ qk′ = ∅ = tl ∩ tl′ for 1 ≤ k 6= k′ ≤ C and 1 ≤ l 6= l′ ≤ R.
Let Q be the partition of the data done by some external criteria with subset C and T is the
partition of a clustering result with subset R. The group overlap between Q and R can be
represent in a contingency matrix [mcr] shown in Table 2.4 where each entities mcr denotes
the number of variables that is common between partitions qk and tl i.e., mcr =

∣∣qk ∩ tl∣∣, and
mc. and m.r are the marginal totals of qc and tr respectively.

Table 2.4: Contingency tables for pair of observations between Q and T .

Partition
T

TotalGroup t1 t2 · · · tr · · · tR

Q

q1 m11 m12 · · · m1r · · · m1R m1.
q2 m21 m22 · · · m2r · · · m2R m2.
...

...
... . . . ... . . . ...

...
qc mc1 mc2 · · · mcr · · · mcR mc.
...

...
... . . . ... . . . ...

...
qC mC1 mC2 · · · mCr · · · mCR mC.

Total m.1 m.2 · · · m.r · · · m.R m.. = p

For a dataset with p variables there will be
(p
2
)
pairs of possible combinations which we can

define in the following four ways:

n11 = number of pairs of variables in S that are in the same set in Q and in the same set in
T ;
n10 = number of pairs of variables in S that are in the same set in Q and in different sets in
T ;
n01 = number of pairs of variables in S that are in different sets in Q and in the same set in
T ;
n00 = number of pairs of variables in S that are in different sets in Q and in the different
sets in T .

The quantities n11 and n00 measure the agreements, and n10 and n01 measure the disagree-
ments between two partitions.

From the above we can construct an alternative 2× 2 contingency Table 2.5 as:
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Table 2.5: Contingency table for agreements and disagreements.

Partition T TotalQ Pairs in same set Pairs in different sets
Pairs in same set n11 n10 n11 + n10

Pairs in different sets n01 n00 n01 + n00
Total n11 + n01 n10 + n00 p

Hence, the formula for the Rand Index can be represented by:

Rand Index = n11 + n00
n11 + n10 + n01 + n00

(2.34)

The range of Rand index is [0, 1]. It takes the value of 1 when the two comparing sets of
partitions are perfectly agreed, and 0 when no pair of objects occur in the same group or in
different groups in both partitions, i.e. n11 = n00 = 0 . This scenario usually happens when
one partition holds a single cluster of the data objects while the other partition contains
only of clusters of single objects. Thus, this method provides higher weights to those pair of
objects that are classified together and apart in both clustering partitions. However, though
it is desirable, the expected value of the Rand index between two random labeling won’t yield
zero values, or at least a constant value. Therefore, the similarity index takes its upper limit
of unity when the number of clusters becoming larger. To overcome this problem and also
for the purpose of this study we implemented Adjusted Rand Index, proposed by Hubert and
Arabie (1985) [29], as our measure of agreement between the external criteria of the data
and the clustering results. The Adjusted Rand index has been suggested as the index of
choice for assessing agreement between two random cluster labelings, in a study comparing
the performance of several agreement indices with different numbers of clusters [30, 31].

The Adjusted Rand index is a modification of the Rand index that is corrected for the
chance grouping of objects and by considering general hypergeometric distribution of this
randomness. This means the two cluster partitions, say Q and T , are chosen at random in
where the number of elements in both partitions are fixed. The suggested modified version
of the Rand index is:

Adjusted Index = Index− Expected Index
Maximum Index− Expected I1ndex (2.35)

Therefore, the Adjusted Rand index proposed by Hubert and Arabie can be written in more
specifically as:
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Adjusted Rand Index =

∑
c,r

(mcr

2
)
−
[∑

c

(mc.

2
)∑

r

(m.r

2
)]
/
(p
2
)

1
2

[∑
c

(mc.

2
)

+
∑
r

(m.r

2
)]
−
[∑

c

(mc.

2
)∑

r

(m.r

2
)]
/
(p
2
) (2.36)

where mcr, mc., m.r are values obtained from the above contingency table.

The Index above can yield a value between −1 and +1 and equals to its expected value when
it takes the value 0. So, the maximum value of the index indicates strong similarity between
two partitions.
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2.11 Exploratory Factor Analysis

Exploratory Factor Analysis is a multivariate statistical technique used to discover the under-
lying structure of a relatively large set of variables. As one of the technique of factor analysis,
the aim of exploratory factor analysis is to reveal the underlying relationships among mea-
sured variables and reduce the dimensionality of the data. Ideally, this method is used in
situations where there is no a priori hypothesis about the factors or structure of measured
variables and also before applying confirmatory factor analysis for developing an index. The
exploratory factor analysis technique follows the principle of common factor model in where
the measured/observed variables are expressed as a function of common factors, unique fac-
tors, and errors of measurements. According to MacCallum [32], in a analysis the accuracy of
the exploratory factor procedures can be measured when every factor is described by numer-
ous indicators/observed variables and there should be at least 3 to 5 indicators on each factor.
In this study our objective is to identify the numbers of underlying common factors that is
responsible for the correlation among symptoms. We performed exploratory factor analy-
sis parallely with the cluster analysis as factor analysis uses correlations among variables to
search for common clusters. Hence, to identify number of clusters of inter-correlated variables
and nature of latent constructs or factors that describe our phi correlation structure we exe-
cuted the factor analysis methodology. For the simplicity of this study we assumed that the
underlying factors of the indicator variables (symptoms) are independent (i.e., orthogonal).
For this study the basic steps involved to use the factor analysis are:

• Use of phi correlation matrix for the analysis.

• Estimate communalities with principal component method.

• Decide on the number of factors to be retained.

• Factor rotation (Varimax).

• Interpretation of results (i.e., factor loadings).

2.11.1 The Orthogonal Factor Model

The goal of factor analysis is to interpret the effect of observed variables in a data matrix X
using fewer random variables, are called factors. These factors are underlying constructs and
referred as latent variables or unobserved factors which share common characteristics of the
observed x ∈ Rp.

Suppose we have X̃ of p observed variables, X̃ = (x1, x2, · · · , xp)T . The factor analysis model
describe each of the observed variables as a linear combination of underlying common factors
l1, l2, · · · , lg associated with an error term that is unique and account for that particular
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variable only. For each observed X̃ = (x1, x2, · · · , xp)T , we can write

xj =
g∑

k=1
λjklk + εj + µj ; j = 1, 2, · · · , p (2.37)

Ideally, the choice of g must be substantially lower than p. In euation 2.37, the coefficients
λjk denote pattern or factor loadings and considered as weights of the factors, µj denotes the
mean of variable j and the term εj denotes jth error term of variable xj which is referred as
unique factor.

Then in matrix notation the equations can be written as:

X̃ = ΛL + ε+ µ (2.38)

where, X̃ is a p-dimensional random vector, X̃ = (x1, x2, · · · , xp)T

µ is a p-dimensional mean vector of X̃ , µ = (µ1, µ2, · · · , µp)T

L is a g-dimensional vector of the g factors, L = (l1, l2, · · · , lg)T

ε is a p-dimensional vector of specific factors ε = (ε1, ε2, · · · , εp)T and
Λ is a (p× g) matrix of factor loadings,

Λ =


λ11 λ12 · · · λ1g

λ21 λ22 · · · λ2g
...

... . . . ...
λp1 λp2 · · · λpg


For our factor models 2.37 and 2.38, we assume that the factors are not correlated with the
unique factors (error components), and the means and variances of the random variables and
factors are zero and one, respectively.

i) E(lk) = 0, var(lk) = 1 and cov(lk, lj) = 0, k 6= j

ii) E(µj) = 0, var(µj) = 1 and cov(µj , µh) = 0, j 6= h

iii) E(εj) = 0, var(εj) = ψj and cov(εj , εh) = 0, j 6= h

iv) cov(εj , lk) = 0 ∀i, j


k = 1, 2, · · · , g and j = 1, 2, · · · , p

where Ψ = (ψ1, ψ2, · · · , ψp)T refers as error componest or unique variances.

2.11.2 Graphical representation

Figure 2.4 illustrates a general pattern of factor structure among five hypothetical indica-
tors/variables (A, B, C, D and E) and a common factor or unobserved construct (l).
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Figure 2.4: Relationship among five indicators and a common factor.

Some general terms use in a one factor analysis are:

• The total variance of any random variable can be partitioned into two components:
(a) variance that is common with the factor (l) and can be obtained from the square of
the patter loadings. The part of this variance is referred to as communality. In a factor
model it is ideal to consider that the greater the communality the better the measure
is and vice versa. and

b) variance that is common with the unique factor (ε) and can be obtained from (the
variance of the variable − the communality). This part of the variance is referred to as
the unique or specific or error variance.

• The relationship (coefficient) between the common factor (l) and a random variable
(xj) is called pattern loading.

• The simple correlation between any variable (xj) and the factor (l) is called structure
loadings. So, pattern loadings and structure loadings are usually the same.

• The square of the structure loadings is referred as the shared variance between the
variable and the factor.

• The correlation between any two indicators/variables is given by the product of their
respective pattern loadings.
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2.11.3 Estimation of Factor Loadings

Principal Components Method

There are various approaches available that can be used to estimate the factor loadings and
its communalities. Principal component factoring method (PCFM) is one of a widely used
technique in exploratory factor analysis for extracting the factors. PCFM yields equal eights
to all measured variables and seeks a linear combination of the variables such that the maxi-
mum possible variance is extracted from the variables. It then removes this variance and seeks
a second linear combination which explains the maximum proportion of the remaining vari-
ance, and so on. Successive factoring continuing until there is no further meaningful variance
left. The factors obtained by this method are orthogonal (uncorrelated). PCFM analyzes
total variance explained by a factor as a combination of common and unique variances.

Recall our factor model defined on equation 2.38 as

X̃ = ΛL + ε+ µ (2.39)

In practice, our goal is to estimate Λ̂ of the factor loadings Λ and estimates Ψ̂ of the specific
variances Ψ. The PCFM decomposes the correlation matrix R or the sample covariance
matrix S of the random variables X̃. In this study we used phi correlation matrix for the
decomposition and estimation.

In the above model, we assume that the factors are not correlated with the unique factors
(error components), and the means and variances of the random variables and factors are zero
and one, respectively. Based on these assumptions, the correlation matrix R of the variables
can be obtained as

E(X̃X̃T ) = E[(ΛL + ε+ µ)(ΛL + ε+ µ)T ]

= E[(ΛL + ε+ µ)(ΛTLT + εT + µT )]

= E(ΛLLTΛT ) + E(εεT ) + E(µµT )

=> R = ΛΦΛT + Ψ (2.40)

where Φ is the correlation matrix of the factors, and Ψ is the diagonal matrix containing
the unique variances. The communalities can be estimated from the diagonal of the R −Ψ
matrix. In a factor model Λ, Φ and Ψ are considered as model parameters. The goal of our
factor analysis is to estimate these parameter matrices by using the correlation matrix.

For an orthogonal factor model, Φ = 0, and hence equation 2.40 becomes

R = ΛΛT + Ψ (2.41)
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and with the estimated parameter values the equation becomes

R = Λ̂Λ̂T + Ψ̂ (2.42)

In the PCFM estimation method, we ignore Ψ̂ and factor R into R = Λ̂Λ̂T .

Suppose, the eigenvalues of the R matrix are ζ = (ζ1, ζ2, · · · , ζp) with the corresponding
eigenvectors Γ = (γ1,γ2, · · · ,γp).

Hence from equation 2.42 the jth unique variance can be obtained as

ψ̂j = rjj −
g∑

k=1
λ̂jk

2 (2.43)

and the jth communality is the sum of squares of the jth row of λ̂ and can be represented as

ĥj
2 =

g∑
k=1

λ̂jk
2 (2.44)

The kth eigenvalue of R is the sum of squares of the kth column of Λ̂ as
∑p
j=1 λ̂jk

2.

The variance of the jth variable is partitioned into two component parts as:

rjj = communality + unique variance

= ĥj
2 + ψ̂j

= (λ̂j1
2 + λ̂j2

2 + · · ·+ λ̂jg
2) + ψ̂j (2.45)

So the kth factor contributes λ̂jk
2 to rjj and the contribution to the total sample variance ,

tr(R) = r11 + r22 + · · ·+ rpp is,

Variance accounted by kth factor =
p∑
j=1

λ̂jk
2 = λ̂1k

2 + λ̂2k
2 + · · ·+ λ̂pk

2 (2.46)

which is the sum of squares of factor loadings in the kth column of λ̂ and this is equal to the
kth eigenvalue, ζk.

Therefore the proportion of total sample variance accounted by the kth factor is estimated
as,

∑p
j=1 λ̂jk

2

tr(R) = ζk
p

(2.47)

where p is the number of variables.
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2.11.4 Deciding the Number of Factors

A number of approaches have used here for determining the appropriate number of factors
or components to retain. The proposed criteria are:

2.11.4.1 Kaiser’s eigenvalue-greater-than-one rule

The eigenvalue-greater-than-one rule proposed by Kaiser (1960) is often used by researcher
in practice. According to this rule, only the factors that have eigenvalues greater than one
are retained for interpretation. However, many studies have criticized on this approach and
argued that this method overestimate the correct number of factors when taking decision on
it [33].

2.11.4.2 Cattell’s Scree test

Another popular method proposed by Cattell (1966) is based on the scree test, which is a
graphical representation of the eigenvalues. According to this method, the eigenvalues are
plotted in descending order and then joined with a line. Later, the plot is examined to
determine the point at which the graph reflects a significant drop or break,i.e. the point
where the line cuts off or have much smaller slope. The scree plot is a two dimensional plot
in where factors represents on the x-axis and eigenvalues on the y-axis. The idea behind
this rule is that this cut point distinguish the major and important factors from the other
minor factors and one should select the factors before this point. Hence, by this method for
choosing the number of factors requires a kind of subjective judgment.

2.11.4.3 Variance Criterion

This method consider the proportion of variance accounted for retaining a factor. Therefore,
the maximum number of factors (g) is achieved if the proportion of variance accounts for a
predetermined percentage level, say (75%), of the total variation (tr(R)) [34].

2.11.4.4 Parallel Analysis

Horn (1965) [35] suggested a method for determining the number of factors based on Monte
Carlo simulation technique which is known as Parallel analysis method. The idea behind this
method is to generate a number of correlation matrices of random variables considering the
same number of variables and sample size as the original data set have. Then the average
of the eigenvalues from these various random correlation matrices are compared with the
eigenvalues estimated from the original data correlation matrix. The comparison is made on
the basis that the first real data eigenvalue is compared with the first randomly generated
eigenvalue, the second eigenvalue is compared with the second randomly generated eigenvalue,
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and so on. Factors that have original eigenvalues greater than the randomly generated parallel
average eigenvalues are retained and the real data eigenvalues which are less than or equal
to the parallel average random eigenvalues are considered as sampling errors [36].

2.11.4.5 Root Mean Square Error Residuals

We can use the residual matrix to examine and estimate the square root of the average
squared values of the off-diagonal elements. This measure is known as the root mean square
error residual (RMSER) and has been suggested as a factor retention criterion. The RMSER
of the rasidual matrix can be define as

RMSER =

√√√√∑p
j=1

∑p
h=1 res

2
jh

p(p− 1)/2 (2.48)

This measure estimates the differences between the factor model and the data per degree of
freedom for the model. The value of RMSER suggested to be small for obtaining a good
factor structure. A value less than 0.05 can be considered as a good fit and values greater
than 0.10 considered as poor fit [34].

2.12 Significant Factor Loadings

For a meaningful interpretation of a factor, a decision is needed regarding factor loadings
which are considered to be significant. In practice, the decision can be yielded by taking into
account on various criterion including the number of variables, that makes the interpretation
of factor loadings.

At a first glance, the most frequently used rule of thumb was given by Hair et al (1998) [1] on
making a preliminary investigation of the factor loading matrix. The rule is not based on any
mathematical or statistical proposition, instead it relates more to assess practical significance.
Ideally, a significant factor loading defines the responses of the variables that are influenced
by the underlying construct. The rule suggested various cut-offs of factor loadings going from
±30 to ±75, respective of sample size. Table2.6 shows that the higher loadings are required
when the sample size is small and needs a minimum sample size of 350 to achieve the minimal
level of significance (0.30) for variables. The authors also suggested that the large absolute
value of the factor loadings are considered to more practically significant and important in
interpreting the loading matrix.

Field (2009) [37] suggested another guidelines for choosing significant loadings from a loading
matrix. He advocates that without considering the sample size, if a factor has four or more
loadings of at least 0.6 is considered as reliable.
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Table 2.6: Hair et al (1998) [1] suggested thresholds for significant factor loadings respective
of sample size.

Sample Size Thresholds for Significant Factor Loading
50 0.75
60 0.70
70 0.65
85 0.60
100 0.55
120 0.50
150 0.45
200 0.40
250 0.35
350 0.30

Based on these above guidelines and considering the sample size of 516 for this study, we have
considered lower loadings of 0.30 as a significance level in our factor loading interpretation.

2.13 Factor Rotation

After obtaining the initial factor solutions, one is interested to rotate the loadings. The goal
of factor rotation is to find simpler factor structure that can use to make interpretation of
the resulting factors easily and meaningfully and to determine the appropriate number of
factors. It is a way of maximizing high loadings and minimizing low loadings so that the
simplest possible structure is achieved. To accomplish this and for the simplicity of this
study, orthogonal rotations are done using the varimax procedure. Here we only focus on the
orthogonally rotated solutions as they can produce more simplified factor structures from a
large amount of data. The methodology behind this technique has described below:

Varimax Orthogonal Rotation

In an orthogonal factor model it is assumed that the factors are uncorrelated, i.e. Φ = I.
Orthogonal rotation approach involves to introduce a transformation matrix (orthogonal
matrix) G, which can use to estimate the new rotated loading matrix as Λ̂∗ = Λ̂G and
R = Λ̂∗Λ̂∗T .

Λ̂∗ matrix holds the rotated pattern loadings in where the variance accounted for could be
measure by the sum of squares of each column of Λ̂∗ and the communalities by the sum of
squares of each row of it.

Varimax rotation proposed by Kaiser (1958) [38] is probably the most commonly used or-
thogonal rotation technique for obtaining the transformation matrix (G). The objective of
this rotation is to determine this transformation matrix in such a way that for any given
factor there will have some variables that will load very highly on it and some variables will
load low or very low on it. This is achieved by maximizing the sum of the variances of the
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squared loadings λ̂jk in each column of Λ̂ 1, subject to the constraint that the communality
of each variable is unchanged.

Let the simplicity of a factor can be defined as the variance of its squared loadings as

Vs =
∑p
j=1(λ2

js − λ.s)2

p

=
p
∑p
j=1(λ2

js)2 − (
∑p
j=1 λ

2
js)2

p2 (2.49)

where Vs is the variance of the communalities of the variables within factor s and λ.s is the
average squared loadings for factor s.

Therefore, the total variance for all the factors can be obtained as

V =
g∑
s=1

Vs

=
g∑
s=1

(
p
∑p
j=1(λ2

js)2 − (
∑p
j=1 λ

2
js)2

p2

)
(2.50)

For fixed number of variables, maximizing equation 2.50 is equal to maximize

V =
g∑
s=1

[
p

p∑
j=1

(λ2
js)

2 −
( p∑
j=1

λ2
js

)2
]/
p2 (2.51)

Hence, the orthogonal matrix, G, is obtained when equation 2.51 is maximized, based on the
limitation that the communality of each variable remains the same. .

Data analysis was done by using R statistical software for Cluster Analysis and SAS 9.2 (SAS
Institute, Inc., Cary, North Carolina) for Factor Analysis.

1This mean, when the loadings in a column of the loading matrix Λ̂ are almost equal, then the variance
will be close to 0. Since the squared loadings technique suggests 0 and 1, the variance will tend to approach a
maximum. Thus the varimax rotation tries to make the loadings either large or small for simpler interpretation.



CHAPTER 3

Analysis

3.1 Demographic and Clinical Characteristics

Table A.1 on page 68 lists some demographic and clinical characteristics of the study gyne-
cologic cancer patients who were diagnosed and treated. The table shows that most of the
patients were high school or vocational educated, old pensioner, married and living together,
Swedish born, and came from big cities, such as, Stockholm, Göteborg or Malmö. The mean
age of the survivors at the time of questionnaire is 64 years (SD= 10.5) with a range 28
to 79 years. From the table it is observed that Endometrial cancer-C54.9 is the most com-
mon (about 59%) gynecologic cancer among the study cancer survivors in Sweden. Also the
Medical journal from where the patients were selected reports that very few of the patients
received radiation therapy (RT) alone as for their cancer treatments. Almost all of the study
patients received radiotherapy as a combination with other treatment. Among the treatment
combinations, the combination is high (56%) for the cohort who received radiation therapy
(RT), Operation (Op) and Brachytherapy (Br) altogether for their cancer treatment.

3.2 Frequency and Co-Occurrence of self-reported gastroin-
testinal symptoms

In the questionnaire the symptoms are measured by various ordinal scales. Survivors who are
reported other than 1 of the scale, carry some kind of symptoms which is either severe or not.
At a first glance, it could be interesting to look at the data with a distribution that represents
the number of symptoms present and reported by each patient. For this reason we converted

43



44 Analysis

our original categorical data to a binary data with "Yes" and "No" in where the term "Yes"
represents the presence of symptoms reported at least 1 or more of the original scale by the
participants and the term "No" represents the absence of symptom reported 0 of the original
scale by the participants. The reason for this dichotomization is to make the different uneven
categories for various questions to a equal scale for comparison and interpretation whether the
survivors are experienced in a symptom or not. From this consideration we can observe that
respondents of the cancer survivors contributed on an average of 13.4 (standard deviation 7.5)
gastrointestinal symptoms with a median value of 13. Summary statistics of the distribution
of self-reported symptoms for 516 survivors are presented on Table 3.1.

Table 3.1: Summary of number of self-reported gastrointestinal symptoms of the question-
naire.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 8 13 13.4 19 36

Figure 3.1 present a bar-plot of this distribution in where the horizontal axes represents the
number of symptoms and the vertical axes represents the count of participants reported for
each number.
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Figure 3.1: Barplot for Number of questions answered other than "no" in terms of the number
of patients.

The figure exhibits that most of the patients seem to experience at least some degree of gas-
trointestinal symptoms, with no clear separation between a low-frequency and high-frequency
symptom group. Of the 516 cancer survivors, 14 survivors (2.7 %) reported "no" symptom
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at all and about 279 (54%) survivors reported they have experienced with thirteen or more
concurrent symptoms. From the bar-plot on Figure 3.1 and the table on Table 3.1, it has been
clear that 75% of the binary data is scattered within 0 − 19 number of symptoms. Besides,
a few (approx. 22%) survivors have reported that they received 20− 37 symptoms for their
treatment. Moreover, there are only six patients out of 516 who have experienced more than
thirty symptoms.

From the dichotomized data we construct the Table A.3 on page 70 which describes the
frequency for each symptom reported by the cancer survivors, their percentage of occurrence,
median, mean of original scores with corresponding standard deviations. Based on this
table, the five most frequently reported gastrointestinal symptoms by the cancer survivors
are N38:Loose stools, N73:Defecation urgency, N53:Returned to bathroom within an hour,
N75:Ability to hold feces and N84:Involuntary flatulence. Symptoms’ mean of original scores
ranges from 3.08 for N38: loose stools to 1.01 for N96: leakage of blood when asleep. The
five most symptoms irritating scores reported by the cancer survivors are N38: loose stools,
N75: ability to hold feces, N73: defecation urgency, N138: abdominal pain intensity and N53:
returned to bathroom within an hour.

3.3 Cluster Analysis

The hierarchical cluster analysis assign our multiple self-reported symptoms into distinct
groups or clusters. The survey data used to analyze and identify significant groups among
the questions that may define a clinically important (but previously unknown) relationship,
but this is speculative. We used agglomerative hierarchical clustering to identify clusters and
also used our hypothesized clinical clustering to validate the clustering results with adjusted
Rand index method.

In this study our objective is to evaluate a clustering structure exploratively with many dis-
tance methods that can give us a clustering results which is close enough to the hypothesized
clinical clustering. For deciding and choosing the closest distance method we used adjusted
Rand index for our two clustering agreement measurement.

Figure 3.2 depicts the clustering agreements between hypothetical clinical clusterings and our
empirical clusterings concerning with phi correlation as distance measure and Ward linkage as
clustering algorithm. The horizontal axis represents the number of clusters and the vertical
axis represents the corresponding adjusted rand index value calculated from two defined
partitions. The value of the line starts with zero for one cluster and end with zero again
for 37 clusters. The figure exhibits that the value of adjusted Rand index increases (i.e. the
agreement between hypothesized and empirical clusterings become closer) as the number of
clusters for the empirical clustering increases, and the agreemented adjusted rand index get
its pick (0.73) when the number of clusters for the empirical cluster is nine. Afterwards, the
line gradually goes down as the number of clusters increases more and when there are 37
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Figure 3.2: Agreement between clinical clustering and empirical ward clustering with phi
correlation distance for binary data.

clusters for the empirical clusters (i.e., each element is considered as a single cluster under
study) then the agreement with adjusted Rand index between the two partitions (empirical
vs hypothetical) becomes zero.

This study is particularly involved in comparing various distance measures that can fit our
survey data precisely and can classify symptoms into hierarchical groups in compare to the
clinical groupings. Table A.4 on page 71 represents a number of combinations of different
methods we used and to compare them with our clinical clusterings in order to get some
feel of stability of the results under various clustering algorithms. Each of these methods
has its’ own objectives to use them in any scientific research problem. For example, for the
binary data, the Jaccard’s coefficient excludes elements that are both zero or absent where
as the phi coefficient is the binary equivalent of the Pearson correlation coefficient and use
all present and absent elements information. Most combinations of clustering algorithms and
distance metrics showing meaningful and high values with agreement to the clinical clustering,
while a few combinations showing poor agreements. The calculated adjusted Rand index for
various approaches is presented at the last column of the table. From our mathematical
and statistical point of view, the method for which the adjusted Rand index obtained its’
highest value, represents the method which can make our clusterings closer to the clinical
clusterings. We can observe that for our dichotomize (binary) data, the use of phi correlation
as similarity measure among treatment effects and the use of Ward clustering algorithm
provides maximum adjusted Rand index value 0.73 with nine clusters. Therefore we consider
this clustering method as our suggested method for this particular validation study and will
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continue our further research and cluster interpretations with this distance method which are
also one of the main interesting parts of this study.

From Table A.4 on page 71 we can also observe that there are some distance methods for
which complete linkage algorithm process well, for some methods average linkage showing
good results and also for some distance methods Ward method provides good clusterings
compare to others. It is also visible that none of the distance method perform well with the
single linkage clustering algorithm.

3.3.1 Correlation Matrix

The phi correlation distance measure gives the clustering results which is closest to our
hypothetical clusterings. Figure 3.3 presents a heat-map of the selected correlation matrix in
different colors. The correlation plot indicates the strength of correlation with color-coded
squares, so that more highly positively correlated treatment effects are appeared with darker
green color and negatively correlated treatment effects are presented with darker red color .
The figure also reveals that most of the correlations among the self-reported symptoms lie
within the range (0, 0.25).

Figure 3.3: Heat-map for phi correlation matrix

The results of the clusterings can also be visualized using a Matrix Tree plot. Figure 3.4 shows
another color coded heat-map for the correlation matrix as before but with a dendrogram
added to the left side on it. In the figure the dark green color represents high positive
correlation and dark red color represents negative correlation among the various symptoms.
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Figure 3.4: Heat-map for correlation matrix with dendrogram

From Figure 3.3 and Figure 3.4, some negative relations among symptoms are visible. It has
been observed that the symptoms, N77:Immediate need of toilet and N38:Loose stools, are
negatively associated with the symptoms N44:Hard stools, N48:Hard to push out feces and
N49:Ability to push out feces. Besides, rare symptom N96:Leakage of blood when asleep,
is negatively associated with the other symptoms N48:Hard to push out feces, N88:Foul-
smelling flatulence and N98:Leakage of solid stools when asleep. Although the values of
these correlations are small, they could be interesting for further research.

3.3.2 Clusters of Self-reported Symptoms

The results of our hierarchical clustering by phi correlation distance method can be visualized
graphically with a dendrogram, a tree structure of the symptoms and presents which ele-
ments are group together or clustered to each other. The dendrogram in Figure 3.5 suggests
nine empirical clusters of symptoms in comparison with the clinical hypothetical cluster-
ings. N84:"Involuntary flatulence", N85:"Loud flatulence" and N88:"Foul-smelling flatulence"
symptoms are clustered into a cluster that we have named flatulence. N38: "Loose stools",
N73: "Defecation urgency", N75:"Ability to hold feces", N74:"Stomach ache with bowel move-
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ments" and N77:"Immediate need of toilet" symptoms are merged into a cluster which have
been named as loose stools and defecation urgency. N94:"Leakage of solid stools when awake"
and N98:"Leakage of solid stools when asleep" symptoms form a cluster which have been
named leakage of solid stools. N76:"Defecation urgency with fecal leakage", N81:"Leakage of
stool without forewarning despite previous defecation", N82:"Leakage of all stool into cloth-
ing without forewarning", N93:"Leakage of loose stools when awake", N97:"Leakage of loose
stools when asleep" and N114:"Smells of feces" symptoms are merged into a cluster called
leakage of loose stools. N91:"Leakage of mucus when awake", N95:"Leakage of mucus when
asleep", N99:"Soiled clothing due to leakage of mucus" and N65:"Mucus in stool" symptoms
are merged into a single cluster which have been referred as leakage of mucus. N92:"Leakage
of blood when awake", N96:"Leakage of blood when asleep", N102:"Soiled clothing due to
leakage of blood" and N62:"Rectal bleeding" symptoms are merged into a cluster which we
call leakage of blood and rectal bleeding. N44:"Hard stools", N52:"Incomplete bowel empty-
ing", N48:"Hard to push out feces" and N49:"Ability to push out feces" symptoms are merged
into a single cluster which we have named as hard stools. N67:"Anal itching" and N70:"Anal
pain" symptoms are merged into cluster which we refer to anal pain, and the last cluster of
the dendrogram that we have named as abdominal pain and bloating, have involved with the
symptoms N141:"Abdominal pain with bloating", N137:"Abdominal pain", N138:"Abdominal
pain intensity", N139:"Abdominal pain with vomiting", N140:"Abdominal pain with defeca-
tion", and N60:"Abdominal bloating". The naming of the clusters are done here subjectively
and from clinical perspectives.

The dendrogram divides the whole set of symptoms into two different parts. On the right part
of the figure is holding the groups: Leakage of mucus, Leakage of blood, Hard stools, Anal
pain, and Abdominal pain. On the other hand, the left part of the dendrogram is holding
the groups: Flatulance, Urgency leakage, Leakage of solid stools, and Leakage of loose stools.
The groups within a part are closer to each other than the groups on the other part. The
dendrogram roughly agrees with our hypothetical clustering.

Table 3.2 shows the number of clusters with their sizes, cluster members and name of different
pathophysiologies of the 37 gastrointestinal self-reported symptoms.

Table 3.2: Table of nine clusters with their pathophysiology names and cluster members
Cluster No. Cluster Name Cluster Size Variable Names

1 Loose stools and defecation urgency 6 N74, N38, N53, N75, N73, N77
2 Hard stools 4 N52, N44, N48, N49
3 Abdominal pain and bloating 6 N139, N138, N140, N141, N60, N137
4 Leakage of blood and rectal bleeding 4 N96, N62, N92, N102
5 Leakage of mucus 4 N95, N65, N91, N99
6 Anal pain 2 N67, N70
7 Leakage of loose stools 6 N76, N81, N93, N82, N97, N114
8 Flatulence 3 N88, N84, N85
9 Leakage of solid stools 2 N94, N98

Total 37



50 Analysis

Figure 3.5: Clustering dendograms for Pearson phi method with Ward Clustering algorithm

3.3.3 Comparison between clinical and empirical clusterings

It is interesting and one of our main objective is to compare our empirical clusterings with
our formulated hypothetical clinical clusterings. When we make the comparison between
Table 2.1 on page 11 and Table 3.2 on the previous page, they actually seem not too far from
each other. This is not strange or unexpected as the criterion for this clustering was that the
empirical should be similar to the clinical clustering. We could observe that the four clusters
"Leakage of solid stools", "Hard stools", "Anal pain" and "Leakage of loose stools and urgency"
are separated same way in both clustering. N38:"Loose Stools", which was an separate group
on the hypothetical clustering, was merged with the group "Defecation urgency" on the em-
pirical clustering. "Abdominal pain and flatulence" separated to two clusters in the empirical
clustering, but they were within a big cluster referred as abdominal group in the hypothetical
clustering. In hypothetical clustering, one of the big groups "Leakage of blood and mucus",
become well separated in our empirical clustering and turn to two distinct clusters "Leakage
of blood and rectal bleeding" and "Leakage of mucus".
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3.4 Exploratory Factor Analysis

Based on the interest to exploratively identify a factor structure of the symptoms of cancer
survivors, we next conducted a exploratory factor analysis. The principal objective of this
idea is to group together all those symptoms which are highly correlated with each other and
extract factors representing the consequences. The factor analysis executed in this study is
based upon analyzing the phi correlation matrix obtained from the earlier section of cluster
analysis.

The analysis consists of 37 cancer survivors self-reported symptoms with 516 observations.
The phi correlation matrix was analyzed using SAS with principal components factorization
method (PCFM). Results from the factor analysis shows that the Kaiser’s measure for overall
sampling adequacy is equal to 0.8699 which is higher than the proposed level 0.80 by kaiser
and Rice [39]. This high value suggests that the correlation matrix (phi correlation) is
appropriate for factoring.

The determination of the number of factors needed to explain the correlation among symp-
toms is heuristic. However, in this study we have obtained this by several approaches: table of
eigenvalues, proportion of variance explained by eigenvalues, scree plot and parallel analysis
plot.

Table 3.3 shows the result of first 11 largest eigenvalues computed from the sample correlation
matrix and their corresponding proportion of variances explained. The first eigenvalue to
account for the largest proportion of the total variance (23%), the second eigenvalue to
account for the second largest proportion of the remaining variance (7%), and so on. The
table also suggests that 10 factors have eigenvalue greater than one and all these factors to
account for 65% of the total variance.

Table 3.3: Eigenvalues of the Covariance Matrix: Total = 37 Average = 1
No. Eigenvalue Difference Proportion(variance) Cumulative
1 8.73405489 5.95286856 0.2361 0.2361
2 2.78118633 0.47354291 0.0752 0.3112
3 2.30764342 0.23822073 0.0624 0.3736
4 2.06942269 0.32125269 0.0559 0.4295
5 1.74816999 0.06610791 0.0472 0.4768
6 1.68206209 0.27061031 0.0455 0.5222
7 1.41145178 0.29056911 0.0381 0.5604
8 1.12088267 0.07120744 0.0303 0.5907
9 1.04967522 0.04518012 0.0284 0.619
10 1.00449511 0.03665996 0.0271 0.6462
11 0.96783515 0.07114527 0.0262 0.6723

*10 factors will be retained by the MINEIGEN criterion.
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Figure 3.6: Scree plot for the eigenvalues of the correlation matrix

Figure 3.7: Parallel analysis plot

The scree plot and the parallel analysis plot of the correlation matrix are given in Figure
3.6 and Figure 3.7, respectively which search for significant break on the plot. These plots
with an elbow in the seven largest eigenvalue indicates that a 7 factors should be retained.
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Although the Kaiser-Guttmann’s criterion (eigenvalue-greater-than-one rule) suggests that
10 factors should be retained [Table 3.3]. However, these procedures are arbitrary and has
been criticized by many researchers [34]. The seven retained factors to account for 56.04% of
the total variance in the data and we therefore suggest a seven factors solution are acceptable
for this data.

A structure matrix of pattern loadings from factor analysis can be obtained in a p× g form,
which shows the correlations between the symptoms and their latent factors and where p is
the number of symptoms and g is the number of factors retained . Table A.5 on page 72
shows the initial unrotated factor structure matrix, which consists of the correlations between
the 37 symptoms and the seven retained factors.

For this study we assumed, the underlying factors for measuring the treatment-related symp-
toms are orthogonal (uncorrelated) and performed varimax orthogonal rotation technique for
obtaining interpretability factor solutions. The pattern loadings after rotation are reported
on Table A.6 on page 73, leadings to meaningful factor interpretations.

Figure 3.8: Figure for initial and rotated pattern loadings in terms of first two factors.

Figure 3.8 exhibits an example of pattern loadings in terms of first two factors before and after
rotation. Rotation technique makes the factor structure more interpretable by increasing the
number of pattern loadings close to 1, 0 or −1.

The overall root mean square error residuals (RMSER) is equal to 0.047. The value is
considered to be small and hence indicating that the factor solution is good.
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3.4.0.1 Interpretation of Factors

In Table A.5 on page 72 and Table A.6 on page 73, the significant loadings are marked
with a symbol "*". For identifying the significant loadings on factors we used the suggested
threshold, loadings greater than the absolute value of 0.30. The extracted seven factors can
be described as follows:

• Factor 1 is identified with the subsets of all the symptoms except symptoms N96:Leakage
of blood when asleep, and N98:Leakage of solid stools when asleep. In this factor all
significant loadings have high positive correlations and can be considered as general
factor of the symptoms.

• Factor 2 consists of symptoms N48:Had to push out feces, N49:Ability to push out
feces, N44:Hard stools, and N52:Incomplete bowel emptying, which have high posi-
tive loadings, respectively, and with symptoms N77:Immediate need of toilet, N38:
Loose stools, N76: Defecation urgency with fecal leakage, N73:Defecation urgency, and
N93:Leakage of loose stools when awake, which have high negative loadings, respec-
tively.

• Factor 3 is identified with the subset of symptoms N102:Soiled clothing due to leak-
age of blood, N92:Leakage of blood when awake, N91:Leakage of mucus when awake,
N99:Soiled clothing due to leakage of mucus, and N95:Leakage of mucus when asleep,
which have high positive loadings, respectively, and with symptoms N141:Abdominal
pain with bloating, N140:Abdominal pain with defecation, N138:Abdominal pain inten-
sity, and N137:Abdominal pain, where they have high negative loadings, respectively.

• Factor 4 consists of symptoms N84:Involuntary flatulence, N85:Loud flatulence, N88:Foul-
smelling flatulence, N48:Had to push out feces, N44:Hard stools, and N49: Ability to
push out feces, where they have high positive loadings, respectively, and with symptoms
N140:Abdominal pain with defecation, N138:Abdominal pain intensity, N95: Leakage of
mucus when asleep, N141:Abdominal pain with bloating, N91:Leakage of mucus when
awake, and N99:Soiled clothing due to leakage of mucus, which have high negative
loadings, respectively.

• Factor 5 consists of the subset of symptoms N92:Leakage of blood when awake,
N62:Rectal bleeding, N96:Leakage of blood when asleep, and N102:Soiled clothing due
to leakage of blood, where they have high positive loadings, respectively, and with
symptoms N97:Leakage of loose stools when asleep, and N94: Leakage of solid stools
when awake, where they have high negative loadings, respectively.

• Factor 6 is identified with symptoms N82:Leakage of all stool into clothing without
forewarning, N98:Leakage of solid stools when asleep, and N102:Soiled clothing due to
leakage of blood, which have high positive loadings, respectively, and with symptoms
N65:Anal leakage of mucus, N91:Leakage of mucus when awake, N99:Soiled clothing
due to leakage of mucus, and N84:Involuntary flatulence, which have high negative
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loadings, respectively.

• Factor 7 is identified with symptoms N98:Leakage of solid stools when asleep, N85:Loud
flatulence, and N94:Leakage of solid stools when awake, which have high positive load-
ings, respectively, and with symptom N76:Defecation urgency with fecal leakage, where
it has high negative loading.

From the complex interrelationships outlined above in factors, it seems complicated to inter-
pret them by labeling. However, by following the varimax rotation the loadings have changed
quite a lot to a simpler structure and is possible to obtain meaningful interpretation about
the factors. Therefore, the rotated factors can be labeled as follows:

• Factor 1 is identified with the subsets of symptoms N38:Loose stools, N53:Returned
to bathroom within an hour, N67:Anal itching, N73:Defecation urgency, N74:Stomach
ache with bowel movements, N75:Ability to hold feces, N76:Defecation urgency with
fecal leakage, N77:Immediate need of toilet, N81:Leakage of stool without forewarning
despite previous defecation, N82:Leakage of all stool into clothing without forewarning,
N93:Leakage of loose stools when awake, and N114:Smells of feces. Therefore, this
factor may be named "Loose stools and defecation urgency" .

• Factor 2 consists with symptoms N60:Abdominal bloating, N70:Anal pain, N74:Stomach
ache with bowel movements, N137:Abdominal pain, N138:Abdominal pain intensity,
N139:Abdominal pain with vomiting, N140:Abdominal pain with defecation, and N141:
Abdominal pain with bloating. This factor may be labeled "Abdominal pain".

• Factor 3 is identified with the subset of symptoms N65:Anal leakage of mucus, N91:
Leakage of mucus when awake, N93:Leakage of loose stools when awake, N95:Leakage
of mucus when asleep, N97:Leakage of loose stools when asleep, and N99:Soiled clothing
due to leakage of mucus. This factor may be named "Leakage of mucus" .

• Factor 4 consists with symptoms N44:Hard stools, N48:Had to push out feces, N49:
Ability to push out feces, and N52:Incomplete bowel emptying. This factor may be
named "Hard stools" .

• Factor 5 is consisted with the subset of symptoms N60:Abdominal bloating, N84:
Involuntary flatulence, N85:Loud flatulence, and N88:Foul-smelling flatulence. This
factor may be named "Flatulence" .

• Factor 6 is identified with symptoms N81:Leakage of stool without forewarning de-
spite previous defecation, N82:Leakage of all stool into clothing without forewarning,
N93:Leakage of loose stools when awake, N94:Leakage of solid stools when awake,
N95:Leakage of mucus when asleep, N97:Leakage of loose stools when asleep, N98:
Leakage of solid stools when asleep, N114:Smells of feces, and N139:Abdominal pain
with vomiting. This factor is very tricky to categorize since it seems to load on variables
all over the place, but the factor does seem to capture severe leakage symptoms like
leakage of solid stools and leakage when asleep. Therefore, the factor can be named as
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"Severe leakage".

• Factor 7 is identified with symptoms N62:Rectal bleeding, N70:Anal pain, N92:Leakage
of blood when awake, N96:Leakage of blood when asleep, and N102:Soiled clothing due
to leakage of blood. This factor may be named "Bleeding" .



CHAPTER 4

Discussion & Conclusion

4.1 Discussion

To our knowledge, this is the first study that investigate gastrointestinal symptom clusters
on the survivors of Gynecologic cancer. Symptom cluster research is still in its early stage,
and the statistical techniques used to analyze the data varies from study to study.

This study focuses on validating empirical clusterings based on clinical perspectives. As we
seek for a clusterings that is closest to the hypothetical clinical clusterings, so, the clusterings
empirically we obtained from the data (phi correlation and Ward minimum variance) indi-
cate that a clinical mechanism is associated to link the symptoms together within a cluster
and separated the clusters from each. Discovering clinical mechanism of the symptoms is
essentially important for symptom cluster research because such behavior of the symptoms
suggest that treatment for one symptom may be effective in treating all symptoms in the
cluster [40].

We have used several dissimilarity measures and all of these methods have their own advan-
tages and disadvantages. Euclidean distance applied in this study uses the actual ratings
between two symptoms. As we have some rare cases and uneven scaling in some symptoms,
this method affects the distance measure highly and gives very poor agreement in compare
with the clinical clustering. On the other hand, for non-normal and ordinal data, we have
used some nonparametric distance methods such as Kendall’s tau, Spearman’s footrule, and
Goodman and Kruskal’s gamma. In our data as we have many ties, Goodman and Kruskal’s
gamma measure explains better output results than the other two nonparametric methods,
where Kendall’s tau and Spearman’s footrule are useful for a dataset with few ties in the
observations.
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Different linkage algorithms were implemented in combination with various distance measures
in clustering. The study found that dichotomized data clustering with phi correlation matrix
and ward minimum variance criterion gave the closest agreement with the clinical clustering,
as measured by adjusted Rand index. The complete explanation for this behavior is unknown.
Moreover, it could be informative to compare distance method and clustering algorithms for
symptom clusters in cancer and non-cancer groups to observe the changes of the clusters differ
by diagnosis. Such an investigation might provide a clearer explanation for relationships
between after treatment and current symptoms in gynecological cancer survivors. Future
studies also should examine the possible mechanisms underlying symptom clusters to better
understand how and when symptoms interact.

As a data reduction technique, alternatively we also performed an exploratory factor analysis
with principal component factoring method (PCFM) to construct scales of the symptoms.
We have assumed that the underlying factors are uncorrelated in nature as we are primarily
more interested in the generalizability of our results. These scales are also identified based on
clinical perspectives as we have used phi correlation matrix for our factor extraction. Future
studies should examine by considering non-orthogonal (correlated) factors and a confirma-
tory factor analysis technique to examine better symptom measurement tools for old adult
gynecologic cancer survivors.

The study finds that varimax rotation transformed all the symptoms initial negative high
loadings to positive loadings and that gave us a simple factor structure for meaningful inter-
pretation. To us, the idea behind this mechanism is unclear.

Generally, factor analysis is sensitive to outlying cases and as the factor solutions are not
unique, several solutions could be possible which can alter our factor interpretations too.

4.2 Limitations

The first limitation to this study is the use of cancer survivors’ self-reported data that can
be associated with reported bias and weakened correlations. To overcome this limitation,
future studies of symptom clusters would be useful if the underlying biological mechanisms
of symptom clusters are to be revealed in oncology.

The second limitation is that the sample for this study considered only women survivors
who had been diagnosed and treated for their gynecological cancer in only Stockholm and
Gothenburg. Participants are basically aging old women, pensioner and somewhat highly
educated. Hence, the results of this study may not be generalizable to control women, to
survivors with other types of cancer, or to other gynecological survivors living on other cities
in Sweden.

Finally, in this study, only gastrointestinal section of the Gynecological cancer survivors’
survey questionnaire was examined for clusters and factor analysis. Urinary, diet and other
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chronic diseases are also common in Gynecologic Cancer survivors. They may affect the
perceived level of symptom clustering on survivors’ gastrointestinal function and can also
alter our identified clusters or can create more additional clusters. Therefore, future research
can be done for "clustering" with the combination of urinary and diet related symptoms.
Research can also be performed by "Factor analysis" within each cluster i.e., how many
underlying symptoms that have been measured with each cluster.

4.3 Conclusion

The aim of this study is to validate a study-specific questionnaire with a hypothesized clinical
clustering. For the symptom cluster, we used hierarchical clustering and factor analysis, two
most appealing statistical tools in oncology research. Among all gastrointestinal symptoms,
"loose stools" is the most common symptom and has an high irritating scores on the scale
reported by the cancer survivors. In our various searching results, the dichotomized data
to cluster using phi distance and Ward’s minimum variance method gives the most similar
clusters in comparison to the hypothetical clustering for which we obtained highest value 0.73
of adjusted Rand index. From our exploratory and clinical clusterings, we have found that
the four symptom clusters "Leakage of solid stools", "Hard stools", "Anal pain" and "Leakage
of loose stools and urgency" are separated same way in both clusterings. The empirical
results also show that there are two clusters merged to a single cluster and two separated as
comparing to the clinical clustering. Alternatively, our exploratory factor analysis suggests to
retain 7 factors and the rotated factors are labeled as: Loose stools and defecation urgency,
Abdominal pain, Leakage of mucus, Hard stools, Flatulence, Severe leakage, and Bleeding.
This study could provide a scientific basis and new directions for better symptom management
strategies and intervention.
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Table A.1: Patients characteristics
Characteristic X̄ SD
Age(years at questionnaire) 64 10.5

Characteristic n %
Education
Elementary school or equivalent 146 28
High school, vocational or equivalent 201 39
University or College 169 33
Occupation
Disability/Sick pensioner 46 9
Employed 185 36
Jobseekers 10 2
Long-term sick, more than 1 month 9 2
Non-working, home workers 11 2
Old pensioner 249 48
Short-term sick leave, less than 1 month 2 0
Student 4 1
Living arrangement
Living alone with partners "living apart" 32 6
Living alone without partner 126 24
Married or cohabiting 295 57
Widow 63 12
Born in Sweden or abroad
Abroad 87 17
Sweden 429 83
Residential area
Big town (Stockholm, Göteborg or Malmö) 312 60
Country (single neighboring houses) 45 9
Small place,Small town or metropolitan 159 31
Gluten intolerance
No 508 98
Yes 8 2
Diabetes
No 476 92
Yes 40 8
Diagnosis
Cancer of the fallopian tube-C57.0 12 2
Cervical cancer-C53.9 118 23
Endometrial cancer-C54.9 303 59
Ovarian cancer-C56.9 42 8
Uterine sarcoma-C49.5 25 5
Vaginal cancer-C52.9 12 2
Vulvar cancer-C51.9 4 1
Types of cancer treatment
RT 2 0
RT+Br 23 4
RT+Br+Ch 19 4
RT+Ch 7 1
RT+Op 38 7
RT+Op+Br 289 56
RT+Op+Br+Ch 84 16
RT+Op+Ch 54 10

N= 516 (after omitting 89 missing data)
Note. Because of rounding, percentages may not total 100
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Table A.2: List of variables from gastrointestinal area of the survey questionnaire
VarList QuesNo Variable

1 N38 Loose stools
2 N44 Hard stools
3 N48 Had to push out feces
4 N49 Ability to push out feces
5 N52 Incomplete bowel emptying
6 N53 Returned to bathroom within an hour
7 N60 Abdominal bloating / feeling of bloating
8 N62 Rectal bleeding
9 N65 Mucus in stool
10 N67 Anal itching
11 N70 Anal pain
12 N73 Defecation urgency
13 N74 Stomach ache with bowel movements
14 N75 Ability to hold feces
15 N76 Defecation urgency with fecal leakage
16 N77 Immediate need of toilet
17 N81 Leakage of stool without forewarning despite previous defecation
18 N82 Leakage of all stool into clothing without forewarning
19 N84 Involuntary flatulence
20 N85 Loud flatulence
21 N88 Foul-smelling flatulence
22 N91 Leakage of mucus when awake
23 N92 Leakage of blood when awake
24 N93 Leakage of loose stools when awake
25 N94 Leakage of solid stools when awake
26 N95 Leakage of mucus when asleep
27 N96 Leakage of blood when asleep
28 N97 Leakage of loose stools when asleep
29 N98 Leakage of solid stools when asleep
30 N99 Soiled clothing due to leakage of mucus
31 N102 Soiled clothing due to leakage of blood
32 N114 Smells of feces
33 N137 Abdominal pain
34 N138 Abdominal pain intensity
35 N139 Abdominal pain with vomiting
36 N140 Abdominal pain with defecation
37 N141 Abdominal pain with bloating
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Table A.3: Percentage of self-repoted symptoms’ occurrence and their original mean scores
Symptom n Occurance (% ) Median Scale Range Original Mean Score SD
N38 419 81.20 3 1-6 3.08 1.68
N73 389 75.39 2 1-6 2.73 1.60
N53 365 70.74 2 1-6 2.51 1.55
N75 364 70.54 3 1-5 2.81 1.40
N84 355 68.80 2 1-6 2.40 1.53
N60 346 67.05 2 1-6 2.43 1.49
N77 340 65.89 2 1-6 2.27 1.45
N88 328 63.57 2 1-6 2.31 1.51
N85 307 59.50 2 1-6 2.16 1.44
N138 275 53.29 2 1-7 2.54 1.79
N74 274 53.10 2 1-4 1.85 0.98
N137 273 52.91 2 1-6 1.93 1.25
N52 258 50.00 1.5 1-6 1.93 1.31
N76 257 49.81 1 1-6 1.74 0.98
N48 219 42.44 1 1-4 1.53 0.71
N44 214 41.47 1 1-6 1.62 0.95
N141 214 41.47 1 1-4 1.69 0.96
N140 178 34.50 1 1-4 1.60 0.95
N67 171 33.14 1 1-6 1.52 0.94
N93 165 31.98 1 1-6 1.51 0.98
N49 164 31.78 1 1-4 1.41 0.67
N81 161 31.20 1 1-6 1.46 0.86
N65 138 26.74 1 1-6 1.48 0.98
N70 111 21.51 1 1-6 1.30 0.69
N62 91 17.64 1 1-6 1.26 0.70
N114 91 17.64 1 1-6 1.24 0.62
N91 75 14.53 1 1-6 1.23 0.69
N99 75 14.53 1 1-6 1.19 0.57
N82 57 11.05 1 1-5 1.16 0.52
N97 56 10.85 1 1-6 1.13 0.45
N139 50 9.69 1 1-4 1.15 0.49
N94 39 7.56 1 1-6 1.11 0.48
N92 35 6.78 1 1-6 1.11 0.49
N102 27 5.23 1 1-6 1.07 0.33
N95 26 5.04 1 1-5 1.07 0.35
N98 13 2.52 1 1-6 1.03 0.22
N96 5 0.97 1 1-6 1.01 0.10
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Table A.4: Optimal number of clusters and adjusted rand index for using different distance
methods on various data types with linkage criterion.
No. Data Used Scale Distance Method Algorithm Optimal

no of
Clus-
ters

Adjusted
Rand
Index
(Max.)

1

Raw data

Ordinal

Pearson correlation Single 14 0.45
Raw data Pearson correlation Complete 11 0.55
Raw data Pearson correlation Average 12 0.60
Raw data Pearson correlation Ward 10 0.55

2

Dichotomize Data

Binary

Jaccard’s Single 19 0.32
Dichotomize Data Jaccard’s Complete 17 0.46
Dichotomize Data Jaccard’s Average 16 0.39
Dichotomize Data Jaccard’s Ward 14 0.41

3

Dichotomize Data

Binary

Phi correlation Single 20 0.36
Dichotomize Data Phi correlation Complete 11 0.60
Dichotomize Data Phi correlation Average 11 0.66
Dichotomize Data Phi correlation Ward 9 0.73

4

Standardize Data

Numerical

Euclidean Single 22 0.21
Standardize Data Euclidean Complete 9 0.28
Standardize Data Euclidean Average 21 0.22
Standardize Data Euclidean Ward 3 0.35

5

Standardize Data

Numerical

Pearson correlation Single 14 0.45
Standardize Data Pearson correlation Complete 11 0.55
Standardize Data Pearson correlation Average 12 0.60
Standardize Data Pearson correlation Ward 10 0.55

6

Raw data

Ordinal

Gower Single 17 0.24
Raw data Gower Complete 16 0.28
Raw data Gower Average 18 0.26
Raw data Gower Ward 9 0.30

7

Normalized Rank

Numerical

Euclidean Single 16 0.33
Normalized Rank Euclidean Complete 5 0.33
Normalized Rank Euclidean Average 14 0.38
Normalized Rank Euclidean Ward 6 0.37

8

Rank Data

Ordinal

Kendall Tau Single 15 0.43
Rank Data Kendall Tau Complete 11 0.55
Rank Data Kendall Tau Average 11 0.61
Rank Data Kendall Tau Ward 9 0.64

9

Rank Data

Ordinal

Spearman Footrule Single 13 0.33
Rank Data Spearman Footrule Complete 8 0.37
Rank Data Spearman Footrule Average 8 0.37
Rank Data Spearman Footrule Ward 6 0.35

10

Rank Data

Ordinal

Pearson correlation Single 16 0.42
Rank Data Pearson correlation Complete 11 0.63
Rank Data Pearson correlation Average 12 0.43
Rank Data Pearson correlation Ward 9 0.64

11

Rank Data

Ordinal

Goodman and Kruskal’s
gamma

Single 15 0.38

Rank Data Goodman and Kruskal’s
gamma

Complete 8 0.69

Rank Data Goodman and Kruskal’s
gamma

Average 8 0.64

Rank Data Goodman and Kruskal’s
gamma

Ward 11 0.57
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Table A.5: Initial loadings/correlations of the symptoms on 7 retained factors.
List QuesNo Symptoms Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7
1 N38 Loose stools 0.48455* -0.42115* -0.24945 -0.10599 0.07954 -0.03291 -0.21274
2 N44 Hard stools 0.34003* 0.60353* -0.00292 0.31866* -0.18778 0.06634 -0.2569
3 N48 Had to push out feces 0.32619* 0.66184* -0.12218 0.35053* -0.17631 0.08805 -0.2257
4 N49 Ability to push out fe-

ces
0.37479* 0.61586* -0.00872 0.30707* -0.15166 0.05326 -0.16827

5 N52 Incomplete bowel emp-
tying

0.46364* 0.3497* -0.04125 0.17244 -0.05393 -0.02801 -0.22154

6 N53 Returned to bathroom
within an hour

0.56317* -0.21761 -0.20726 0.07139 0.13426 -0.1136 -0.16538

7 N60 Abdominal bloating 0.54965* 0.19513 -0.17797 -0.00329 0.14326 -0.15071 0.14277
8 N62 Rectal bleeding 0.39965* 0.23379 0.28460 -0.07855 0.43871* 0.2629 -0.16991
9 N65 Anal leakage of mucus 0.4839* 0.16825 0.22929 -0.1898 -0.02791 -0.5019* -0.22357
10 N67 Anal itching 0.42624* 0.02023 -0.06096 0.03609 0.17728 0.09424 -0.14385
11 N70 Anal pain 0.45153* 0.21507 -0.12394 -0.15087 0.17937 0.13201 0.00103
12 N73 Defecation urgency 0.63102* -0.33569* -0.22635 0.07229 0.09695 -0.05146 -0.22717
13 N74 Stomach ache with

bowel movements
0.48435* -0.096 -0.28507 -0.05227 -0.0047 0.03284 0.07202

14 N75 Ability to hold feces 0.50229* -0.27614 -0.11468 0.06812 0.05208 0.1553 -0.22042
15 N76 Defecation urgency

with fecal leakage
0.59425* -0.39487* 0.03313 0.08293 -0.15288 0.0362 -0.29937*

16 N77 Immediate need of toi-
let

0.50963* -0.46658* -0.15778 0.06861 0.15961 0.01372 -0.0027

17 N81 Leakage of stool with-
out forewarning despite
previous defecation

0.60233* -0.28759 0.21513 0.07173 -0.2508 0.16914 -0.16438

18 N82 Leakage of all stool into
clothing without fore-
warning

0.45258* -0.24117 0.15283 0.09707 -0.07289 0.32418* 0.02512

19 N84 Involuntary flatulence 0.55742* -0.06669 -0.00894 0.50624* 0.18997 -0.30172* 0.2624
20 N85 Loud flatulence 0.50173* -0.0403 -0.07483 0.47224* 0.26775 -0.25677 0.34887*
21 N88 Foul-smelling flatu-

lence
0.51194* -0.03469 0.03472 0.46976* 0.20674 -0.26354 0.26791

22 N91 Leakage of mucus when
awake

0.52005* 0.11403 0.42892* -0.32194* -0.08448 -0.44829* -0.00811

23 N92 Leakage of blood when
awake

0.44196* 0.11459 0.48086* -0.14547 0.53248* 0.27731 -0.01518

24 N93 Leakage of loose stools
when awake

0.62361* -0.30276* 0.20523 -0.00423 -0.22985 0.08153 -0.23661

25 N94 Leakage of solid stools
when awake

0.29926* -0.06986 0.24088 0.23836 -0.31194* 0.28023 0.31069*

26 N95 Leakage of mucus when
asleep

0.47678* 0.03765 0.30673* -0.32941* -0.20126 -0.2004 0.22925

27 N96 Leakage of blood when
asleep

0.15506 0.03823 0.17256 -0.12484 0.38319* 0.10637 0.13374

28 N97 Leakage of loose stools
when asleep

0.55289* -0.12899 0.14547 -0.06909 -0.35131* 0.08711 0.15981

29 N98 Leakage of solid stools
when asleep

0.26812 -0.01742 0.19618 0.13289 -0.25398 0.32305* 0.37624*

30 N99 Soiled clothing due to
leakage of mucus

0.53917* 0.08013 0.36245* -0.29571* -0.1649 -0.44661* -0.01736

31 N102 Soiled clothing due to
leakage of blood

0.37991* 0.16942 0.49874* -0.12338 0.32417* 0.31447* 0.03095

32 N114 Smells of feces 0.58136* -0.08685 0.0792 0.13231 -0.24352 0.09934 0.14309
33 N137 Abdominal pain 0.56353* 0.11756 -0.32145* -0.20137 -0.05572 0.05577 0.19787
34 N138 Abdominal pain inten-

sity
0.51921* 0.24113 -0.39718* -0.3432* 0.04277 0.0656 0.17829

35 N139 Abdominal pain with
vomiting

0.32992* 0.13617 -0.04725 -0.24773 -0.24167 0.18027 0.18176

36 N140 Abdominal pain with
defecation

0.54494* 0.10868 -0.43064* -0.35703* -0.04621 0.1261 0.04956

37 N141 Abdominal pain with
bloating

0.54211* 0.27839 -0.46826* -0.32273* 0.0368 0.04788 0.14513
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Table A.6: Rotated (Varimax) loadings of the symptoms on 7 retained factors.
List QuesNo Symptoms Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7
1 N38 Loose stools 0.6665* 0.247 0.0697 -0.1351 0.0748 -0.0659 -0.0082
2 N44 Hard stools 0.0014 0.0881 0.0664 0.8139* 0.0521 0.089 0.0422
3 N48 Had to push out feces -0.0344 0.1677 -0.021 0.8554* 0.0835 0.0606 0.0018
4 N49 Ability to push out fe-

ces
-0.0332 0.1427 0.0777 0.7809* 0.1165 0.1111 0.071

5 N52 Incomplete bowel emp-
tying

0.1905 0.1744 0.154 0.554* 0.1251 0.0208 0.0896

6 N53 Returned to bathroom
within an hour

0.5684* 0.2317 0.1034 0.068 0.2686 -0.0682 0.0447

7 N60 Abdominal bloating 0.1376 0.4437* 0.1898 0.1895 0.3619* 0.0007 0.1297
8 N62 Rectal bleeding 0.154 0.0912 0.0722 0.2309 0.0082 -0.0161 0.7079*
9 N65 Anal leakage of mucus 0.1921 0.0915 0.7164* 0.2243 0.1149 -0.1552 0.0873
10 N67 Anal itching 0.3298* 0.1893 0.0173 0.1782 0.116 -0.0088 0.2406
11 N70 Anal pain 0.147 0.4305* 0.0589 0.1866 0.0615 0.0087 0.298*
12 N73 Defecation urgency 0.7187* 0.2298 0.0789 0.0423 0.2287 -0.0198 0.031
13 N74 Stomach ache with

bowel movements
0.3392* 0.422* 0.0269 0.0227 0.1695 0.104 -0.013

14 N75 Ability to hold feces 0.6071* 0.1438 -0.0287 0.0671 0.0708 0.0969 0.1134
15 N76 Defecation urgency

with fecal leakage
0.7381* 0.0146 0.1862 0.0769 0.0429 0.2095 -0.0025

16 N77 Immediate need of toi-
let

0.6071* 0.176 -0.0106 -0.1917 0.2882 0.0878 0.0748

17 N81 Leakage of stool with-
out forewarning despite
previous defecation

0.5909* -0.0064 0.223 0.1185 -0.0108 0.4405* 0.0915

18 N82 Leakage of all stool into
clothing without fore-
warning

0.4067* 0.0422 -0.0169 0.0173 0.0456 0.4404* 0.2074

19 N84 Involuntary flatulence 0.2472 0.0475 0.1232 0.1455 0.8038* 0.1389 0.0496
20 N85 Loud flatulence 0.1662 0.1192 0.0364 0.0869 0.8193* 0.1112 0.0838
21 N88 Foul-smelling flatu-

lence
0.1926 0.0322 0.1168 0.1359 0.7545* 0.142 0.0976

22 N91 Leakage of mucus when
awake

0.0948 0.1048 0.8419* 0.0565 0.0913 0.0696 0.1846

23 N92 Leakage of blood when
awake

0.1353 0.0406 0.1583 0.0374 0.0709 0.0992 0.8719*

24 N93 Leakage of loose stools
when awake

0.6359* 0.0109 0.3096* 0.1006 -0.0363 0.3455* 0.0838

25 N94 Leakage of solid stools
when awake

0.0617 -0.0268 0.0005 0.0816 0.133 0.6722* 0.0296

26 N95 Leakage of mucus when
asleep

0.0325 0.2414 0.6207* -0.0658 0.05 0.3165* 0.1139

27 N96 Leakage of blood when
asleep

-0.0287 0.0942 0.0282 -0.1205 0.1125 -0.0104 0.4573*

28 N97 Leakage of loose stools
when asleep

0.2874 0.2128 0.3045* 0.037 0.04 0.5302* -0.0095

29 N98 Leakage of solid stools
when asleep

-0.0206 0.0775 -0.0289 0.0298 0.0948 0.644* 0.0833

30 N99 Soiled clothing due to
leakage of mucus

0.143 0.1288 0.8214* 0.0722 0.0865 0.1005 0.0918

31 N102 Soiled clothing due to
leakage of blood

0.0439 0.0194 0.164 0.0962 -0.0087 0.2356 0.7402*

32 N114 Smells of feces 0.3188* 0.1787 0.1737 0.1485 0.1979 0.4834* 0.0185
33 N137 Abdominal pain 0.1837 0.6496* 0.1102 0.0927 0.1299 0.1635 0.0258
34 N138 Abdominal pain inten-

sity
0.0938 0.7746* 0.0984 0.0985 0.0538 0.0273 0.0968

35 N139 Abdominal pain with
vomiting

0.0106 0.4062* 0.1426 0.0698 -0.124 0.3291* 0.0302

36 N140 Abdominal pain with
defecation

0.2635 0.744* 0.0727 0.0847 -0.0556 0.0521 0.0299

37 N141 Abdominal pain with
bloating

0.1128 0.8168* 0.0823 0.1564 0.0674 -0.0128 0.061
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Figure B.1: Marginal distributions of variables for survivor data.



77

Figure B.2: Marginal distributions for binary variables of the transformed 37 gastrointestinal
questions.


