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Abstract

Data captured from new generation flow cytometers are charac-

terised by increasing volume and complexity. For example a single

specimen may give rise to a data set of about 1 million rows. How-

ever, analysis of these data is usually performed using user-interactive

software which makes it time consuming and highly affected by op-

erator experience. The main tasks involved in flow cytometry data

analysis include visualization of scatter plots and extraction and sum-

marization of cell sub-populations. In an attempt to solve the prob-

lems associated with the user-interactive methods, various software

developments have recently emerged. In this project statistical meth-

ods are implemented in R and Bioconductor to automate the analysis

of flow cytometry data collected from a HIV research study. The re-

sults are compared with those obtained by an expert analysing the

same data using the traditional methods. The R functions developed

are applied to an analysis of specimens taken from a HIV-infected in-

fant at birth and at 3 months of age and changes in cell populations

are described. The R code developed would be useful for laboratory

scientists for automating some of the steps in the analysis of flow cy-

tometry data, thereby offering significant savings in time and more

reproducible results.
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1 Introduction

1.1 Biological background

The cells of the immune system protect the body against diseases in various ways: macrophages

and neutrophils engulf the bacteria or viruses, B cells generate antibodies that bind to in-

fectious agents and natural killer cells can kill cells infected with certain viruses. B cells

and natural killer cells are members of a category of white blood cells called lymphocytes,

which also contains T-cells. Some T-cells (cytotoxic lymphocytes) destroy foreign invaders

while others, the helper T-cells, assist other immune cells. T-cells produce a protein called a

receptor on their surface and these receptors are important in recognizing foreign antigens.

T-cells can be identified among other lymphocyte types by the presence of these special

receptors. The helper T-cells produce a surface protein called CD4 while the cytotoxic

T-cells produce a surface protein called CD8[14].

CD4 has become well known because of its role in HIV infection. HIV attaches itself to

CD4, through which it invades the cell leading to a progressive reduction in the number of

T cells expressing CD4. For this reason ”CD4 count” is a commonly used laboratory test

useful in monitoring the immunologic status of patients with HIV infection.

Cells expressing CD4 or CD8 have numerous other markers on their surface and the types of

these markers depend on the role of the cell in the immune system. Besides identifying the

cell types, markers can be used to identify the state that a cell is in at a given time. These

states include proliferation, differentiation, memory and senescence. Proliferation refers to

cellular reproduction. Differentiation is the process by which newly formed cells become

different from each other and get assigned distinct functions. Senescence is the phenomenon

by which cells age, lose the ability to divide further and die. Some T-cells that have taken

part in the immune response during an earlier infection have the ability to react quickly

when they see the same infection again. These are called ’memory T-cells’[16]. There are

more than 250 identified types of markers[15] but in this project interest is focused on CD3,

CD4, CD8, CD27, CD28, CD45RA, CD56, CD57, CD71 and CCR7. This choice of markers

is due to the properties that we wish to describe (see table 1).
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Marker Property defined

CD3 T cell specific antigen

CD4 Major T cell subset

CD8 Major T cell subset

CD56 NK cell lineage

CD71 proliferation

CD28 Differentiation

CD27 Differentiation

CCR7 Lymphoid homing

CD45RA Memory

CD57 Senescence

Table 1: Markers and their corresponding phenotype description.

1.2 Flow cytometry

Flow cytometry is an effective way of observing the physical properties of cells by staining

the various cell surface markers. It has become an important technique in clinical research

especially for studies of the immune system of patients. A specimen is placed in the flow

cytometer and the cells are passed through a beam of light where their morphological prop-

erties are measured using the principle of light scattering and fluorescence. Cells are first

stained with antibodies and visualised by the excitement of fluorescent antibody labels.

The antibodies are chosen to bind to the cell surface markers of interest so that the fluo-

rescent intensity of the corresponding label gives a measure of the amount of the surface

markers present. Other properties measured for each cell in the specimen include the size

and granularity (i.e. internal complexity). All these characteristics are determined using an

optical-to-electronic coupling system that records how the cell or particle scatters incident

laser light and emits fluorescence[1].

After the data has been generated by the flow cyometer it is saved as Flow Cytometry Stan-

dard (.FCS) files. Data captured from new generation flow cytometers are characterised

by increasing volume and complexity. For instance, a single workstation can process up

to 1000 samples per day each containing hundreds of thousands of cells[2]. For each cell,

simultaneous measurements are made for the labelled markers and for the size and granu-
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larity. Thus a 7-colour cytometer produces data on nine parameters.

1.3 Objectives

This project was motivated by a HIV research study conducted in Kenya. In the study

the immune cells of HIV-infected and HIV-exposed infants were investigated using flow

cytometry assays run on specimens collected from these infants at different time points

during their first year of life.

The traditional analysis of such data focuses on the visualization of scatter plots, and the

gating and summarizing of sub-populations of cells. Using current standard methods, these

operations are performed manually and thus the results can be highly affected by personnel

experience. In addition, the analysis is very time consuming and even a skilled operator

could spend 20-30 minutes identifying, gating and saving the cell sub-populations in a single

sample.

The main objective of this project is to develop tools to help laboratory personnel in the

capture of good quality, reproducible summaries from flow cytometry data and to enhance

the analysis of cell populations in these data. The specific aims are to:

• Extract sub-populations of cells by automated gating

• Perform a quality assessment of the gating technique applied

• Generate meaningful graphical summaries of the multi-dimensional data

2 Materials and methods

Peripheral blood mononuclear cells (PBMC) were isolated from the blood of HIV-infected

and HIV-exposed uninfected infants. HIV-exposed uninfected infants refer to those who

are not infected but are at risk of getting infected by their mothers through breast milk.

Specimens were collected at birth, 1, 3, 6, 9, and 12 months of age. In this project we will

develop and illustrate our software tools using the specimens that were collected on a single

infant at birth and at three months.
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2.1 Markers and fluorochromes

Analysis of flow cytometry data is aimed at identifying and quantifying subpopulations of

lymphocytes based on their physical properties and cell surface markers. The physical prop-

erties are indicated by the Forward-scattered light (FSC) and the side-scattered light (SSC).

In particular, FSC is proportional to cell-surface area (size) while SSC is proportional to

cell granularity (internal complexity). T-cells are characterised by CD3, with helper T-cells

also expressing CD4 and cytotoxic T-cells expressing CD8. Specific cellular properties and

function of CD4 and CD8 lymphocytes were of interest in this project and these are recog-

nised by specific markers. For example, cells that are differentiating will express CD27 and

CD28 while memory cells will express CD45RA (see tab. 1).

The higher the fluorescence intensity measurement from a given fluorochrome (label), the

higher the expression of the corresponding marker on the cell. The 7-colour cytometer used

here to generate the data had a capacity of allowing at most seven simultaneous markers.

Since we need to measure CD3, CD4 and CD8 in order to identify the lymphocytes of inter-

est, this leaves only four labels for identifying subpopulations of these lymphocytes. Thus

the antibody markers were organized in two panels where each panel measured a specific

combination of seven markers that enabled cell properties of interest to be measured (see

table 2).
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Panel A Panel C

Fluorochrome antibody Panel A defines Fluorochrome antibody Panel C defines

Pacific Blue CD3 T cell specific Pacific Blue CD3 T cell specific

antigen antigen

APC-Cy7 CD4 Major T cell APC-Cy7 CD4 Major T cell

subset subset

PE-Cy7 CD8 Major T cell PE-Cy7 CD8 Major T cell

subset subset

PE-Cy5 CD56 NK cell lineage PE-Cy5 CD56 NK cell lineage

FITC CD28 Differentiation FITC CD57 Senescence

PE CD27 Differentiation PE CCR7 Lymphoid homing

APC CD45RA Memory APC CD71 proliferation

subset subset

Table 2: Antibody panels used in the analysis of infant T cells.
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2.1.1 Isotype controls

Ideally, the antibodies used for staining the cells target the receptors on the cell surface.

However, these antibodies might bind through non-specific protein interactions with cellu-

lar molecules (proteins, lipids and carbohydrates) thus producing fluorescence above that

resulting from specific binding[13]. Moreover, fluorescence might be due to cell autofluores-

cence, thus there is need to distinguish specifically bound fluorescent molecules and resolve

them above other nonspecific background signals[5]. For this reason, 2 panels of antibodies

were designed as ”isotype controls”. These were antibodies directed at mouse antigens and

had no specificity for the cells in question. Thus they were not expected to bind to human

antigens and served as negative controls. Using the same fluorescent markers as described

in table 2 these antibodies were introduced into a specimen from a normal healthy control,

and the 99th percentiles of the various markers used to define a threshold. The labels for

each of the phenotype defining antibodies was matched to an isotype control antibody (see

table 3) and thus the isotype antibodies were organised in two panels corresponding to the

experimental antibodies.

Fluorochrome Experimental

antibody

Corresponding

isotype antibody

Panel A

FITC CD28 IGG1

PE CD27 IGG1

APC CD71 IG1

Panel C

FITC CD57 IGM

PE CCR7 IGG2

APC CD45RA IG2

Table 3: Experimental antibodies matched to isotype antibodies for determination of thresh-

olds. The fluorochromes are used to label the corresponding markers.
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2.2 Data files and data structure

The data files used in this project are stored in a single folder. A total of six files are used

for analysis: two panels for the cord blood specimen, two panels for the month 3 specimen

and two isotype control panels (see table 4).

Specimen/tube ID (.fcs files) Patient source

Patient specimens

cord PANEL A CTL-B1-081.fcs Infant cord blood at birth

cord PANEL C CTL-B1-081.fcs Infant cord blood at birth

m3 PANEL A CTL-B1-081.fcs Infant blood at 3 months

m3 PANEL C CTL-B1-081.fcs Infant blood at 3 months

Isotype controls

ISO I Healthy donor- panel A

ISO II Healthy donor- panel C

Table 4: Flow cytometry files used to store the data.

Each file contains data in the form of a matrix, with each row representing a single cell

so that the number of rows is the total number of cells in the tube. The nine columns record

the forward scatter, side scatter and the seven fluorescence intensity measurements for the

markers in the panel. For example in the cord blood specimen for panel A, approximately

1 million cells were collected and stained with 7 antibodies. As a result a raw data matrix

with approximately 1 million rows and 9 columns was generated. The first five rows of the

data are shown in table 4.

FSC SSC CD28- CD27- CD56- CD8- CD3- CD45RA- CD4-

FITC PE PE-Cy5 PE-Cy7 PB APC APC-Cy7

row 1 111 31 4.2950 5.9112 3.6365 3.8296 4.2854 5.7408 5.9915

row 2 115 32 3.0037 6.0592 3.6365 3.8991 3.7025 5.7797 5.5880

row 3 116 30 3.0037 6.0185 4.5028 2.8716 7.9724 5.8319 5.5629

row 4 114 30 3.5317 6.5851 3.6039 3.1561 3.0928 6.0320 5.6005

row 5 109 31 3.3461 5.7279 4.4026 3.8991 3.8124 6.4241 5.3182

Table 5: Extract of data showing intensity measures recorded for each cell.
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2.3 Gating

Analysis of flow cytometry data involves displaying the data on a sequence of plots and

estimating the percentages of various subpopulations identified from the plot. The usual

method used for this analysis is progressive reduction of the raw data into subsets using

bivariate scatter plots. In the example in figure 1(a), cells are first displayed according to

two parameters, FSC and SSC, allowing a sub-population to be selected (gated) according

to the size and granularity of the cells. The cells in the gate in figure 1(a) have large size

and low granularity and thus correspond to lymphocytes. This subset of cells is extracted

and displayed according to two additional parameters, CD3 and CD8, in figure 1(b) where

the CD8+ T-cells are identified as those with high CD3 and CD8. The CD4 and CD8 cells

are progressively plotted in two dimensional scatter plots until the investigator is able to

describe the properties of interest[1]. Figure 1(c) and figure 1(d) shows clusters of CD27

and CD28 positive cells, corresponding to differentiating cells.

There are some problems associated with this approach. Firstly, the precision of gating

is dependent upon the skill of the investigator and the resolution of the computer display.

Secondly, it is difficult to reproduce the same results on a different occasion. Some automatic

gating algorithms aimed at making gating less biased have been developed but most software

tools still require user interaction.
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Figure 1: Using gating to demonstrate lymphocyte phenotype.(a) Select lymphocytes based

on size and granularity. (b) Select T-cell subsets based on expression of CD3 and CD8.(c)

and (d) Subsequent investigation of the phenotype of T-cell subsets.

2.4 Cluster analysis

The goal of cluster analysis is to classify a collection of objects into subsets, such that those

within the same cluster are more similar to one another than they are to those assigned to

different clusters. A clustering method groups the objects according to the definition of a

similarity measure, e.g. Euclidean distance in the case of K-means clustering[3]. Various

methods such as K-means and mixture models are used to cluster data sets.
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2.4.1 K-means cluster analysis

K-means clustering is a method for finding clusters in a set of unlabeled data by minimiza-

tion of the sum of the squared distances between the points in a cluster and the cluster

mean[3]. Given a set of observations (x1, x2, . . . , xn), one chooses the desired number of

clusters, say k and the K-means procedure iteratively moves the cluster centers to mini-

mize the total within cluster variance and to maximize the between cluster variance[6]. In

other words the n observations are moved in and out of the groups (clusters) until the best

partition into k clusters is achieved. This involves minimizing the objective function;

argmin
x

k∑
i=1

∑
xj∈si

(xj − µi)2 (k ≤ n)

where Si denotes cluster i and µi is the mean of the points in Si. The iterative proce-

dure begins by randomly selecting the initial centroids, that are then refined by repeatedly

assigning points to their closest centroids. The centroids are then recomputed based on

these assignments[6]. Immune cells fall into two main categories with regard to some of the

markers measured i.e. FSC, CD3, CD4 and CD8. Thus k-means cluster analysis based on

these measures should enable us to extract these categories (groups) from our data.

The K-means clustering algorithm used in our analysis is from Hartigan and Wong[9].

2.4.2 Bivariate normal gates

Data plotted according to two markers might exhibit an elliptical cloud with a few cells

isolated from this cloud. Usually it is of interest to extract the cells that are within the

cloud and discard the isolated ones, which are regarded as outliers. The distribution of the

cells according to such markers can be assumed to be normal and thus a robust normal fit

can be used to select cells within an appropriate number of standard deviations[4].

2.4.3 Mixture models

Mixture models are commonly applied in medical research to identify groups in datasets[11].

The Gaussian mixture model is a widely used model-based clustering technique that has

been found to give good results in different areas such as biology[7]. This method is based

on the assumption that each cluster has a multivariate normal distribution. However, in
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many cases data are not quite normally distributed and there may be outliers. In such

cases the normal mixture models might not give a good description of the data. The pres-

ence of outliers may lead to exaggeration of the number of clusters. To overcome these

problems, robust methods based on adding components to the normal distribution or using

the t-distribution can been used as an alternative[8, 10]. A robust method that has been

used to handle these two issues is the one based on the multivariate t distributions with the

following power transformation[8, 7]. A simpler model

L(ϕ|y1, . . . , yn) =
n∏
i=1

G∑
g=1

wgφp(yi
(λg)|µg,Σg, vg). |J(yi;λg)|

where wg is the probability that observation yi belongs to the component g and
∑G

g=1wg =

1, φp(.|µg,Σg, vg) is the multivariate t distribution with mean µg (p-dimensional), covari-

ance matrix vg(vg − 2)−1Σg and vg degrees of freedom. The transformation of yi is y
(λg)
1

and λg is the Box-Cox parameter. Lastly, the Jacobian generated by this transformation

is: |J(yi;λg)|. To estimate the parameters: θ = (wg, µg,Σg, vg, λg). Maximul likelihood

method is used to fit the mixture model and the parameters are estimated using the Expec-

tation Maximization (EM) algorithm. To determine the optimal number of components to

have in the model various models with different number of components are fit and model

selection is performed using the Bayesian Information Criterion[8, 11]. The likelihood equa-

tion might have multiple roots due to local maxima, and for this reason the EM algorithm

needs to be initialized by randomly dividing the data into a number of groups. The number

of groups correspond to the number of components g. An effective way of performing this is

to make a number, say 10, of parallel random partitions and then run a few EM iterations.

The initial partition is choosen as the one generating the highest likelihood value[8, 7, 11].

2.5 Hypothesized change in cell populations

Between birth (cord blood) and month 3 the following changes in the distribution of CD27,

CD28 and CD45RA sub-populations were expected:

• Decrease in percentage of CD45RA (in both CD4 and CD8)

• Increase in percentage of CD8 T cells (CD8 proliferation and CD4 death)
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• Decrease in CD27+CD28+ (naive cells) concurrent with increase in CD27-CD28+

(intermediate cells) and CD27-CD28- (late cells) in CD4 subset

• Increase in CD27+CD28- (intermediate cells) and CD27-CD28- (late cells) in CD8

subset

In general, changes in the distribution of these markers is expected to be of a larger mag-

nitude in the CD8 cells than in the CD4 cells.

2.6 Cell sub-populations studied

Cell populations were identified successively where each one was extracted as a subset of

the preceding population, based on one or two of the variables: FSC, SSC, CD3, CD4

and CD8. For our automated extraction we followed slightly different steps than those in

figure ??(a), (b) for the identification of T-cells (see figure 2). The FSC values were first

examined in order to identify cells with high FSC, the ”FSC+” subset, and this involved the

use of cluster analysis. These cells were extracted and examined for the ”CD3 PB” marker

values, again using cluster analysis to extract the ”CD3+” subset. The ”CD3+” subset was

assessed simultaneously for the levels of CD3 and the side scatter (SSC) and a bivariate

normal distribution was fitted to identify the T-cells. Having extracted the T-cells, the next

step was to categorize them as either ”CD4+” or ”CD8+” based on the CD4 and the CD8

markers respectively.

In the final stages of analysis the CD4 and CD8 positive cells were assessed for expression

of various markers (CD27,CD28,CD45RA,CD57, CD71 and CCR7) to determine their phe-

notype. This required the use of the isotype controls as described in section 2.1.1. The

isotype controls were processed by gating on FSC, SSC and then on CD4 and CD8. 99th

percentiles of the intensity of isotype antibody markers were calculated and applied as cut

offs on the specimens to define cells that were positive for a single marker, or to split a

scatter plot into four quadrants based on the thresholds of two markers.
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Figure 2: Stages in the extraction of cell populations and subpopulations.

2.7 Computation

Analysis was done in R version 2.10.1, using R commands and the flowCore[12], prada[2]

and FlowClust[7] packages from Bioconductor. Custom functions were written using these

commands in order to implement the specific steps required for our analysis. FCS files

were imported into R using the function read.FCS{flowCore} and expression data was read

from the FCS files using the function exprs{flowCore}. For cluster analysis the function

kmeans{stats} was used. The fitNorm2 and plotNorm2 functions in prada were used to fit

and plot the bivariate normal distributions. In the fitNorm2 function the minimum covari-

ance determinant estimator of location and scatter was implemented to estimate the mean

and covariance matrix. The FlowClust package in which the t-mixture model and the EM

algorithm are implemented was used to perform model based cluster analysis.
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3 Results

3.1 Cell sub-populations extracted

3.1.1 Cell sub-populations extracted using k-means

Different cell populations (such as lymphocytes, red blood cells and debris) can be dis-

tinguished by their size as indicated by their forward scatter (FSC). Lymphocytes were

identified as those cells whose FSC values were above the lower threshold of the upper

cluster while values below this threshold were assumed to be red blood cells and debris (see

figure 3(a)).

T lymphocytes express CD3 unlike B cells and natural killer cells and were thus identified

by the level of the CD3 marker. Thus the lymphocytes obtained at the previous stage were

analyzed for their values of the ”CD3 PB” marker and again two clusters were identified.

The upper cluster, consisting of the ”CD3+” cells was extracted and passed to the next

stage of analysis (see figure 3(b)).

On assessing the CD3+ subset simultaneously for the levels of the ”CD3 PB” and the side

scatter(SSC) intensity, the bivariate distribution of these two markers showed a dense cloud

of cells with some other cells isolated on the right hand side (see figure 3(c)). These isolated

cells were assumed to be monocytes which are known to exhibit high SSC values, attributed

to their granular structure that scatters light to a considerable extent compared to other

cells. A bivariate normal distribution was fitted to the data by estimation of its center

and covariance matrix and data points within a scale factor of three standard deviations

from the mean of the distribution were selected (see figure 3(d)). Thus monocytes that had

a low probability density in this distribution were discarded. The T-cells extracted were

further categorized as either CD4+ or CD8+ cells, by applying cluster analysis to CD4 and

CD8 levels and extracting the upper clusters to yield the CD4+ and CD8+ subsets (see

figure 4).

Assessment of the CD4+ and CD8+ T-cell subsets for the expression of the markers of

interest (CD27, CD28, CD45RA, CD57, CD71 and CCR7) yielded proportions of positive

and negative sub-populations (see figure 6 to 9).
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3.1.2 Cell sub-populations extracted using mixture model

The mixture model was used to estimate the proportions of CD3+, CD4+ and CD8+ pop-

ulations for the month 3 panel A sample. The first step is to extract lymphocytes based on

the expression of FSC and SSC as displayed in figure 10 (a). Four clusters are identified in

this mixture as shown in figure 10 (b). Cluster 2 corresponds to the lymphocyte population

which is passed on to the next stage and analysed according to CD3 and CD56 expression

to extract the T-cells as shown in figure 10 (c). Three clusters are identified and the cluster

with the high CD3 and low CD56 expression corresponds to the T-cell population. Finally,

the T-cells are analysed according to CD4 and CD8 to obtain the T-cell subsets as shown

in figure 10 (d). At this stage it is assumed that there are two clusters that are the CD4

and the CD8 T-cells. The Bayesian Information Criterion is used to determine the optimal

number of clusters in the models involved in the various stages of extraction of subpopula-

tions. A plot of BIC against the number of clusters is shown in figure 11.

The estimated proportions of the various sub-populations for the month 3 panel A specimen

are displayed in table 6. These proportions match those found by the k-means approach.

Population Manual K-Means Mixture Model

CD3+ 53,304(24.33) 66,328(30.27) 61,484(28.06)

CD4+ 25,069(47) 33,761(56.50) 32,629(53.07)

CD8+ 21,247(39.9) 25,290(41.86) 22,869(37.19)

Table 6: Comparison of sizes (proportions in parenthesis) of cell populations defined man-

ually versus and those estimated using K-Means and mixture model clustering approaches.

Comparison is done for the month 3 Panel A sample.

3.2 Proportions of Subpopulations at different time points

There were remarkable changes in the proportions of the various sub-populations identified

at birth and at 3 months. A summary of these changes is displayed in table 7 and table 8.

There was a decrease in CD4 cells while the CD8 cells increased. This is expected since a

decrease in CD4 cells is concurrent to an increase in CD8 cells. These CD4 and CD8 cells

were extracted and analysed further according to their expression of the CD45RA, CD57,

CD71, ccr7, CD27 and CD28 markers. There is a decrease in CD45RA+ cells in both CD4

and CD8 populations with a larger change among the CD8 cells (see figure 6). Expression of
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CD27 and CD28 decreased between the two time points in both CD4 and CD8 populations

with a larger change among the CD8 cells (see figure 7). As seen in the figure the clusters

shifts to the left and towards the bottom of the graph. An increase in CD57+CCR7- cells

in the CD4 and CD8 populations (higher for the CD8 cells compared to the CD4 cells) is

notable. At birth there are quite a few cells at the upper quadrants but this is seen to

increase at month 3 especially at the upper left quadrant (see figure 8). A mild change is

seen in the expression of CD71 for both t-cell subsets (see figure 9).

These changes in general indicate important changes in the immunological status between

birth and at three months. CD8 proliferation (increase) and CD4 death are consistent with

the changes caused by HIV and CMV infection.

Panel A

Birth 3 months

Population N % of gate N % of gate Change in prop.

total cells 1000000 219097

FSC+ 311921 31.2 131497 60.0 28.2

CD3+ 92583 29.7 68382 52.0 22.3

CD4+ 62135 79.2 35227 56.5 -22.7

CD45ra+ 49787 80.22 25251 74.81 -5.41

CD27+CD28+ 57943 93.37 30007 88.9 -4.47

CD27-CD28+ 274 0.44 493 1.46 1.02

CD27+CD28- 3821 6.16 2447 7.25 1.09

CD27-CD28- 22 0.04 805 2.39 2.35

CD8+ 14599 18.6 25755 41.3 22.7

CD45ra+ 13840 94.98 13858 54.81 -40.17

CD27+CD28+ 11197 76.84 6837 27.04 -49.8

CD27-CD28+ 126 0.86 430 1.7 0.84

CD27+CD28- 3178 21.81 12268 48.52 26.71

CD27-CD28- 70 0.48 5751 22.74 22.26

Table 7: Data summary of cell populations and sub-populations for panel A.
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Panel C

Birth 3 months

Population N % of gate N % of gate Change in prop.

total cells 899205 212387 0

FSC+ 307840 34.2 135447 63.8 29.6

CD3+ 99223 32.2 70104 51.8 19.6

CD4+ 68204 80.5 37105 57.6 -22.9

CD71+ 1224 1.81 505 1.42 -0.39

CD57+CCR7+ 304 0.45 281 0.79 0.34

CD57-CCR7+ 38111 56.3 14453 40.66 -15.64

CD57+CCR7- 216 0.32 1784 5.02 4.7

CD57-CCR7- 29057 42.93 19026 53.53 10.6

CD8+ 12316 14.5 25515 39.6 25.1

CD71+ 314 2.57 259 1.03 -1.54

CD57+CCR7+ 87 0.71 134 0.53 -0.18

CD57-CCR7+ 3764 30.71 1369 5.46 -25.25

CD57+CCR7- 175 1.43 9603 38.28 36.85

CD57-CCR7- 8172 67.01 13976 55.71 -11.3

Table 8: Data summary of cell populations and sub-populations for panel C.

3.3 Descriptive analysis of cell populations

Various stages involved in the progressive subsetting of the cell populations and and the

changes remarkable in the cell populations are displayed in the plots below. Detailed ex-

planations of the graphs are done in section 3.1 and section 3.2.

3.3.1 Extraction of T-cell subsets

The initial stages of the automated subsetting from the raw cells up to the T-cell subsets

is displayed in figure 3 and 4. The process is explained in detail in section 3.1.1.
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Figure 3: Graphical representation of the initial stages of the automated subsetting process.

Subsetting starts from the raw cells until the T-cell population has been extracted. Horizontal

broken lines in (a) and (b) indicate the thresholds d to separating the clusters identified

by K-means cluster analysis. The ellipse in (d) is obtained by fitting a bivariate normal

distribution.
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Figure 4: Extraction of T-cell subsets. The upper cluster in each plot is defined as the CD4+

and CD8+ cells respectively.

3.3.2 Determination of thresholds from isotype controls

As explained in section 2.1.1 and 2.6, two panels of antibodies were designed as isotype

controls to served as negative controls. The plots on the left at figure 5 below shows

derermination of thresholds from the IGG1-PE and the IG1-APC isotype controls. 99th

percentiles of the expression of CD27 and CD45RA markers are computed and applied on

the t-cell subsets to determine CD4+CD27+ and CD8+CD45RA+ populations respectively.

This is further shown in figure 6 and figure 7.
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Figure 5: Determination of thresholds from isotype controls to use in extracting the final cell

subpopulations. The two thresholds displayed here represent the 99th percentile of CD27 and

CD45 calculated on the isotype controls and they mark the level above which fluorescence

intensity can be considered specific. The controls were processed by gating on FSC, SSC and

then CD4+ and CD8+.

3.3.3 Description of CD4 and CD8 subsets

With the computed thresholds assessment of the CD4+ and CD8+ T-cell subsets was done

for the expression of the markers of interest:CD27, CD28, CD45RA, CD57, CD71 and

CCR7, yielding proportions of positive and negative sub-populations. These proportions

are displayed in figure 6 to 9 and the changes in the populations between birth and month
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3 is explained in detail in section 3.2.
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Figure 6: CD45RA expression for the CD4+ and CD8+ subpopulations at birth (left hand

side) and at month 3 (right hand side). The dashed vertical lines are the cut offs calculated

as the 99th percentiles of the intensity of isotype antibody markers which are applied on the

specimens to define CD 45RA+ cells.

25



Figure 7: CD27 and CD28 expression for the CD4+ and CD8+ subpopulations at birth and

at 3 months. The dashed vertical lines are the cut offs calculated as the 99th percentiles

of the intensity of isotype antibody markers which are applied on the specimens to define

CD27+ and CD28+ cells. The clusters shifts to the left and towards the bottom of the graph.
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Figure 8: CD57 and ccr7 expression for the CD4+ and CD8+ subpopulations at birth and

at 3 months. The dashed vertical lines are the cut offs calculated as the 99th percentiles

of the intensity of isotype antibody markers which are applied on the specimens to define

CD57+ and ccr7+ cells. An increase at the upper left quadrant is remarkable.
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Figure 9: CD71 expression for the CD4+ and CD8+ subpopulations at birth and at 3

months. The dashed vertical lines are the cut offs calculated as the 99th percentiles of the

intensity of isotype antibody markers which are applied on the specimens to define CD71+

cells. A slight change between the two time points can be seen.

3.3.4 Extraction of sub-populations using the mixture model

The mixture model was used to estimate the proportions of CD3+, CD4+ and CD8+

populations for the month 3 panel A sample. This is explained in detail in section 3.1.2.
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Figure 10: Extraction of sub-populations using the mixture model approach. Subsetting starts

from the raw cells whose distribution according to FSC and SSC is shown in (a). Plot (b)

shows the clusters representing the lymphocytes (cluster 2) and the other components. The

lymphocyte subpopulations: T-cells, B-cells and natural killer cells, can be seen as the 3

clusters in (c). (d) is the plot of one of the clusters from (c), in particular the T-cell

sub-population.

3.4 Assessing the precision of estimates (Bootstrap)

Bootstrap analysis of proportions and thresholds obtained by k-means cluster analysis is

perfomed to get a sense of how much variability there is in the findings. Sampling from the

empirical distribution is done with replacement to generate 200 bootstrap replicates with

sample size equal to that of the original sample. The result is displayed in Table 9. The

estimated standard errors and bias are low indicating a high precision of estimates.
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Statistic Original value Bias Std. error

Proportion of FSC+ 0.59 -0.000165930 0.000454

Threshold for FSC+ 3.16 0.001869281 0.001996

Proportion of CD3+ 0.51 -1.068932e-05 0.000772

Threshold for CD3+ 1.48 -4.385876e-04 0.001438

Proportion of CD4+ 0.56 0.0002504172 0.001519

Threshold for CD4+ 1.19 -0.0002024251 0.004060

Proportion of CD8+ 0.42 -5.575494e-05 0.001477

Threshold for CD8+ 1.70 1.450713e-03 0.002599

Table 9: Bootstrap analysis of proportions and thresholds calculated for the month 3 panel

A sample.
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3.5 Comparison of the manual and the automated procedures

Manual Automated

N(% of parent gate) N(% of parent gate) Diff. in prop

Cord Blood

Cells acquired 1,000,000 1,000,000

CD3+ 63,438(6.34) 92,599(9.26) 2.92

CD4+ 48,888(77.7) 62,129(79.2) 1.5

CD45RA+ 38,483(78.7) 49,822(80.24) 1.54

CD27+CD28+ 47,677(97.5) 57,975(93.37) -4.13

CD27-CD28+ 99(0.2) 271(0.44) 0.24

CD27+CD28- 1,107(2.26) 3,823(6.16) 3.9

CD27-CD28- 5(0.01) 22(0.04) 0.03

CD8+ 10,036(15.8) 14,597(18.6) 2.8

CD45RA+ 9,457(94.2) 13,850(94.99) 0.79

CD27+CD28+ 8,069(80.4) 11,206(76.86) -3.54

CD27-CD28+ 0(0) 126(0.86) 0.86

CD27+CD28- 1,953(19.5) 3,179(21.8) 2.3

CD27-CD28- 14(0.14) 69(0.47) 0.33

Table 10: Comparison of proportions of cell populations defined manually versus automat-

ically. Sub-gates are indicated by indentations below parent gates. Comparison is done for

the cord blood Panel A sample.
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Manual Automated

(N)% of parent gate % of parent gate Diff. in prop

Month 3

Cells acquired 219,097 219,097

CD3+ 53,304(24.33) 66,328(30.27) 5.94

CD4+ 25,069(47) 33,761(56.5) 9.5

CD45RA+ 19,573(78.1) 25,268(74.82) -3.28

CD27+CD28+ 24,251(96.7) 30,024(88.9) -7.8

CD27-CD28+ 274(1.09) 494(1.46) 0.37

CD27+CD28- 215(0.86) 2,449(7.25) 6.39

CD27-CD28- 329(1.31) 805(2.38) 1.07

CD8+ 21,247(39.9) 25,290(41.86) 1.96

CD45RA+ 10,528(49.6) 13,868(54.82) 5.22

CD27+CD28+ 5,331(25.1) 6,846(27.06) 1.96

CD27-CD28+ 223(1.05) 431(1.7) 0.65

CD27+CD28- 10,806(50.9) 12,269(48.5) -2.4

CD27-CD28- 4,887(23) 5,752(22.74) -0.26

Table 11: Comparison of proportions of cell populations defined manually versus automat-

ically. Sub-gates are indicated by indentations below parent gates. Comparison is done for

the month 3 Panel A sample.

In general the proportions resulting from the manual and the automated procedures concurr

with differences less than 6%. However the proportions obtained for CD4+ CD27+CD28-

CD27+CD28+ have larger differences as 9.5, 6.4 and -7.8 respectively.
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3.6 Conclusion

The automated gating method developed in this thesis has proved to be capable of per-

forming gating efficiently and producing meaningful graphical summaries. The functions

developed to perform these tasks (see section B in the appendix) can be combined into an R

package that would aid laboratory scientists in producing quick results from flow cytometry

data. In addition automation will yield reproducible results that reduce dependence on

personnel experience. This could be particularly helpful in cases where large data sets are

to be analysed and in which manual gating would be tedious to employ. The automated

method can be extended to handle more that two dimensions at the same time when it is

neccesary to fully appreciate the high dimensionality in the data. This would be an advan-

tage over the manual method in that the human eye would not easily visualize data in three

dimensions.

The results obtained using this automated method agree closely with those obtained by an

expert analysing the same data set. The expert has good experience in analysing such spec-

imens manualy and has sound understanding of the underlying biology of the experiment.

We believe that the functions developed could easily be generalised to investigations of cells

in settings other than in the HIV context for which it was developed.

A further study that that applies the tools developed in this project and uses more spec-

imens from the HIV study would be neccesary to investigate the population proportions

that had relatively larger differences obtained using the manual and automated method.

At the same time the performance of the two k-means and the mixture model approaches

could be compared. The R implementation of the k-means algorithm, kmeans, is quite fast.

Running the the algorithm on the large data sets on an ordinary pc takes about 4 seconds.

However the k-means approach did not perform well in identifying subsets in more than

one dimension for this data set and for this reason it was applied on one variable at a time.

The mixture model on the other hand performed well in analysis with two variables and

this could be an advantage in that it appreciates the more than one dimensionality of the

data.
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A supplementary figures

A. 11: Determination of the optimal number of clusters using the Bayesian Information

Criterion. The flattening of the BIC curve indicates that the optimal number of clusters has

been reached. Plot (a) indicates that there are four clusters in the raw cells, (b) corresponds

to the lymphocyte population and (c) corresponds to the T-cell population.
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B Functions created in R

A. 12: Flow chart of functions created to gate and produce graphical summaries.

gateHist

Input: data to subset, marker to gate on, threshold from isotype control (in case of the

phenotype description stage)

Options: gate using K-means or based on threshold calculated from isotype control, log or

linear scale, extract upper or lower cluster

Output: Histogram with a threshold, subset extracted

bivPlot

Input: data to subset, markers to gate on, thresholds from isotype control (in case of the

phenotype description stage)
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Options: display thresholds on the plot, log or linear scale, fit ellipse (bivariate normal

distribution)

Output: scatter plot, fitted ellipse, subset extracted

cutOff

Input: isotype control data set, isotype control marker

Output: threshold calculated from isotype control
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