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Abstract

The globilisation phenomena is causing an increasing interaction

between different markets and sectors. This has led to the evolution

of derivative instruments from ”single asset” instruments to complex

derivatives that have underlying assets from different markets, sectors

and sub-sectors. These are the so-called hybrid products that have

multi-assets as underlying instruments. This article focuses on inter-

est rate hybrid products. In this article an analysis of the application

of stochastic interest rate models and stochastic volatility models in

pricing and hedging interest rate hybrid products will be explored.
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“ There is only one good, knowledge, and one evil, ignorance.”
Socrates

I dedicate this thesis to my grandmother. Thank you for being my pillar
of strength.
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1 Introduction

Globilisation has created an increasing interaction between different mar-
kets, sectors and sub-sectors. It is typical that a single investor might have
simultaneous open position in different markets or asset classes. This has
prompted the financial engineering of complex financial products called hy-
brid products. A hybrid product is a financial instrument whose payout is
linked to underlyings belonging to different, but usually correlated, markets.
The focus of this paper is on interest rate hybrid products. In this article an
analysis of the application of stochastic interest rate models and stochastic
volatility models in pricing and hedging interest rate hybrid products will be
explored.

In this paper we keep in mind that a complicated model is harder to
implement in practice. We will thus analyse the impact of using stochastic
interest rates and stochastic volatility on an interest rate hybrid product.
These models will be dealt with in a manner to keep the problem tractable.
Stochastic interest rates will be introduced first and thereafter stochastic
volatility will be included. We will thus compare how the models perform
based on how well they hedge the hybrid.

The rest of this paper will be arranged as follows. Section 2 will give a
brief introduction of the interest rate products. Section 3 will look at the
impact of stochastic interest rates in pricing hybrid products. The specific
hybrid product to be analysed in this article will be introduced and other
classes that can be combined with interest rates in creating hybrid products
will be discussed. Section 4 will look at the inclusion of stochastic volatility
models in the hybrid setting. Section 5 compares how the models perform
based on how well they hedge the hybrid and will give concluding remarks.
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2 A Primer on Interest Rate Products

In pricing derivatives, modelling is usually done under a risk neutral measure
or a martingale measure Q. Under Q, the standard numeraire is the money
account. The dynamics of the money account are governed by the evolution
of the interest rate. Thus in valuing any contingent claim, interest rates play
a vital role. We take for instance the price of a call option on a stock:

Pricecall(t) = e−r(T−t)EQ[(ST −K)+|Ft] (1)

where r represents the interest rate.
If the derivative has the interest rate as the underlying eg. options on

bonds, swaptions and captions, the modelling of the interest rate becomes
increasingly important. As interest rate derivative prices are sensitive to the
pricing of interest rate dependant assets, it would thus not make much sense
to use a model to price the derivatives which hardly prices the underlying
assets accurately. The simplest interest rate product is a zero coupon bond
which pays its full face value at maturity T . The price of a zero coupon bond
at time t, P (t, T ), is given by

P (t, T ) = e−R(t,T )(T−t) (2)

where R(t, T ) is the continuously compounded spot rate.

2.1 Term Structure of Interest Rates

We try to model an arbitrage-free family of zero coupon bonds. We assume
that under the objective probability measure P, the short rate process follows
the SDE

drt = µ(t, rt)dt + σ(t, rt)dW̃ (3)

We assume the existence of an arbitrage free market and a market for T-
bonds for every choice of T. Furthermore, we assume that the price of a
T-bond has the form

P (t, T ) = F (t, rt, T ) (4)

where F is a smooth function of three variables with simple boundary con-
dition

F (T, r, T ) = 1 ∀ r (5)
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In an arbitrage free bond market, F must satisfy the term structure equation:

Ft + (µ− σλ)Fr +
1

2
σ2Frr − rF = 0 (6)

F (T, r, T ) = 1. (7)

λ is exogenous and represents the market price of risk whereas Fr denotes
the partial derivative of F with respect to variable r. The Feynman-Kač
representation of F from (6) and (7) implies that the T-bond prices are
given by

F (t, r, T ) = EQ[
e−

∫ T
t rs ds

]
(8)

where Q denotes that the expectation is taken under the martingale measure
with the short rate following the SDE

drs = (µ− λσ)ds + σdW (9)

As there are many interest rate products, they are combined to form the
yield curve usually expressed in terms of zero coupon bond prices. Struc-
tured interest products are usually replicated with simpler instruments. If
the combination of the simpler instruments mimics the payoff of the struc-
tured product then under standard arbitrage arguments, the price of the
structured product must be equal to the value of the combination of the
simpler instruments. Other complex structures can not be replicated with
simpler instruments thus numerical procedures are used for their valuations.

We will look at an example of an interest rate product called a cap. A
cap is a portfolio of call options used to protect the holder from a rise in the
interest rate. Each of the individual options constituting a cap is known as a
caplet. At the exercise dates, if the reference rate rises above the strike price,
the holder receives the difference between the strike price and the reference
rate on the succesive coupon date.

As a cap is a portfolio of caplets, its value is equal to the value of the
caplets. If the ith caplet runs from Ti−1 to Ti, exercise decision is made on
date Ti−1 and the payment is received on date Ti. Assuming that the refer-
ence rate is the LIBOR, K represents the strike price and δi represents the
day count fraction of the ith period. The value of the ith caplet as seen on
its exercise date is

ci(Ti−1) = P (Ti−1, Ti)δi

(
LIBORi −K

)+
(10)

which is equivalent to a European call option on the LIBOR struck at K.
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2.2 Combining Asset Classes

Interest rate hybrid products have claims which are contingent upon move-
ments in the interest rate and other asset classes. Although interest rate
hybrids can be constructed with more than two asset classes, we restrict our
analysis to only two asset classes. The hybrid we will consider will thus de-
pend on interest rates and another asset class from either equity, inflation,
foreign currency exchange or credit.

In this article we will look at a particular hybrid product which has a
coupon payment similar to that of a caplet. We look at the hybrid best-of
products, which at time Ti pays coupons of the form

max{irate, a · (VTi
/VTi−1

− 1)} (11)

where a represents the participation rate, irate represents the interest rate
for the coupon period eg. 3 month LIBOR, determined at time Ti−1 and Vt

represents the price of another asset class other than interest rates at time
t. We are interested in analysing the properties of this hybrid product under
different assumptions. We assume that the hybrid will pay coupons quarterly
ie δi = 0.25. We will use the equity class for V , 100% participation rate and
the 3 month LIBOR rate for irate for the rest of this article. As the interest
component is known at Ti−1 we can simplify the coupon payment at Ti as

max
{
δiLIBORi, STi

/STi−1
− 1

}
(12)
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3 Stochastic Interest Rates

3.1 Deterministic vs Stochastic Rates of Interest

Modeling interest rates as closely as possible to reality is important espe-
cially in the pricing of long-dated derivatives. For short-dated derivatives,
a deterministic interest rate model can be applied. We will look at a figure
showing the evolution of the 3 month Libor rate in US dollars for the period
Sept 2004 - Jan2011.
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Figure 1: Evolution of the 3 Month Libor Rate in US Dollars

The stochastic nature of interest rates is apparent from Figure 1. The
mean reverting characteristic is not clear from the plot because of the un-
stable period between 2007 and 2009 when the global economy experienced
a recession. A recession is fortuitous and presents a higher level of volatility
than usual in the market.

Our model in this section has the stock following a geometric brownian
motion and the short rate modelled by the Hull-White model. The dynamics
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for the stock and the short-rate are:

dSt = µtStdt + σs
t StdW s

t (13)

drt = (θt − κtrt)dt + σr
t dW r

t (14)

where 〈dW r
t , dW s

t 〉 = ρdt

3.2 Affine Term Structure

According to [4], if the term structure {p(t, T ); 0 ≤ t ≤ T, T > 0} has the
form

p(t, T ) = V (t, rt, T ) (15)

where V has the form

V (t, rt, T ) = eA(t,T )−B(t,T )rt (16)

and where A and B are deterministic functions, then the model is said to
possess the affine term structure. We consider the Hull-White with constant
volatility parameters, κt = κ and σr

t = σr. According to [4], if the drift and
volatility parameters for the short rate are time independent, a necessary
condition for the existence of an affine term structure is that the drift and
the volatility are affine in r. This implies that the Hull-White model with
constant volatility parameters has an affine term structure with bond prices
given by

p(t, T ) = eA(t,T )−B(t,T )rt ; (17)

where

B(t, T ) =
1

κ

{
1− e−κ(T−t)

}
(18)

A(t, T ) =

∫ T

t

{
1

2
σrB2(t, T )− θsB(s, T )

}
(19)

The yield curve is inverted by choosing θ such that the model matches initial
bond prices. Choosing θ is equivalent to specifying a martingale measure
as we have different martingale measures for different choices of the market
price of risk, λ. The theoretical bond prices using the martingale measure Q
are given by

p(t, T ) =
p∗(0, T )

p∗(0, t)
exp

{
B(t, T )f ∗(0, t)− σ2

r

4κ
B2(t, T )(1− e−2κt)−B(t, T )rt

}

(20)
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where variables with a superscript * are observed from the market.

3.3 Pricing a Cap

We use the affine term structure to price a cap. The value of a cap is equal
to the value of the caplets. The ith LIBOR is given by

Li =
1

δi

(
1

P (Ti−1, Ti)
− 1

)
(21)

The value of the ith caplet as seen on its exercise date is therefore:

ci(Ti−1) = P (Ti−1, Ti)δi(Li −K)+ (22)

ci(Ti−1) = (1− P (Ti−1, P (Ti))(1 + Kδi))
+ (23)

and using (20)

⇒ ci(Ti−1) =

(
1− (1 + Kδi)

p∗(0, Ti)

p∗(0, Ti−1)
exp

{
B(Ti−1, Ti)f

∗(0, Ti−1)

− σ2
r

4κ
B2(Ti−1, Ti)(1− e−2κTi−1)−B(Ti−1, Ti)rTi−1

})+

(24)

where δi is the day count fraction corresponding to the ith LIBOR period.

3.4 Calibration

Calibration is the process of determining the parameters that are used in
the term structure model. In the Hull-White model, the parameters to be
determined are κ and σr

t . The procedure is to choose the parameters such
that the implementation of the term structure model replicates, as much
as possible, liquid interest rate dependant instruments like floors, caps and
swaptions. Usually the prices or volatilities of the options that are used to
hedge the option in question are used for the calibration.

3.5 Analysing the Rate-Stock Correlation

Figure 2 does not show any relationship between the monthly 3M LIBOR
rate and the monthly stock return between Sept 2004 - Jan 2011. However,
low interest rates (close to zero) on the graph are consistent with the recovery
of the global economy from the recession. We test the correlation between
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Figure 2: Plot showing 3M Libor Rate and Google Stock Returns

the interest rate and the stock return. The p-values for testing the null
hypothesis that there is no correlation between the stock return and the 3M
LIBOR rate against the alternative that there is a non-zero correlation are
shown below.

method correlation coefficient p value
Pearson -0.0274 0.8130

Spearman -0.0295 0.7992
Kendall -0.0195 0.8054

The p-values are too large, they are À 0.05 and thus for all the methods,
we fail to reject the null hypothesis.
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3.6 Pricing the Hybrid

3.6.1 Analytical Solution

Our hybrid has call options embedded in it and thus we will price it as a
portfolio of forward starting call options. The ith coupon payment made at
time Ti, with exercise decision made at Ti−1 valued at time t0 is:

Πt0 = EQ
[
e−

∫ Ti
t0

rsdsmax

{
δiLi,

STi

STi−1

− 1

}∣∣∣∣Ft0

]
(25)

Πt0 = EQ
[
e−

∫ Ti−1
t0

rsdsEQ
[
e
− ∫ Ti

Ti−1
rsds

max

{
δiLi,

STi

STi−1

− 1

}∣∣∣∣FTi−1

]∣∣∣∣Ft0

]

(26)

We first deal with the inner expectation which using (21) simplifies to

EQ
[
e
− ∫ Ti

Ti−1
rsds

(
δiLi + max

{
0,

STi

STi−1

− 1

P (Ti−1, Ti)

})∣∣∣∣FTi−1

]
(27)

using that STi
= STi−1

e
∫ Ti

Ti−1
rsds− 1

2
σ2(Ti−Ti−1)+σ(WTi

−WTi−1
)
(27) becomes

EQ
[
P (Ti−1, Ti)max

{
0, e

∫ Ti
Ti−1

rsds− 1
2
σ2(Ti−Ti−1)+σ(WTi

−WTi−1
) − 1

P (Ti−1, Ti)

}∣∣∣∣FTi−1

]

+ 1− P (Ti−1, Ti) (28)

=EQ
[
max

{
0, e−

1
2
σ2(Ti−Ti−1)+σ(WTi

−WTi−1
) − 1

}∣∣∣∣FTi−1

]
+ 1− P (Ti−1, Ti)

(29)

=Call(S = 1, K = 1, σ, r = 0, τ = Ti − Ti−1) + 1− P (Ti−1, Ti) (30)

Call(S = 1, K = 1, σ, r = 0, τ = Ti − Ti−1) is a call option valued in a world
with zero interest rate. The volatility of the underlying is the unknown input
and thus it will determine the price of the option. The call option is struck
at the money thus using the Black Scholes formula we get the value of this
option as:

Call(S = 1, K = 1, σ, r = 0, τ = Ti − Ti−1) = N(d+)−N(d−) (31)

where:
N(·) is the cumulative standard normal distribution function;
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d+ =
(
log(S/K) + 0.5σ2τ

)
/(σ

√
τ)

d− = d+ − σ
√

τ

Inserting the inner expectation back to (26) yields:

Πt0 =EQ
[
e−

∫ Ti−1
t0

rsds

{
N(d+)−N(d−) + 1− P (Ti−1, Ti)

}∣∣∣∣Ft0

]

Πt0 =P (t0, Ti−1)

{
N(d+)−N(d−) + 1

}
− P (t0, Ti) (32)

We notice that P (t0, Ti−1) and P (t0, Ti) are observed from the market and
thus the pricing of the hybrid is invariant under stochastic interest rates.
The volatility of the underlying will thus determine the price of the hybrid.

3.7 Hedging

In this section, we let N(d+)−N(d−) + 1 = c. The interest rate is the only
source of risk and thus to make our portfolio delta neutral, we have to hedge
against interest rate movements. We use a T ∗ bond to hedge the interest
rate risk where T ∗ > Ti. We thus seek to determine how many T ∗ bonds we
require to hedge the interest rate delta. Let x be the number of T ∗ bonds
required.

∂

∂r

{
cP (t0, Ti−1)− P (t0, Ti)

}
=

∂

∂r

{
xP (t0, T

∗)
}

(33)

We know that P (t, T ) = exp(−r(T − t)) thus we get that

x =
∂

∂r

{
cP (t0, Ti−1)− P (t0, Ti)

}/
∂

∂r

{
P (t0, T

∗)
}

(34)

= −
{(

Ti − t0)P (t0, Ti)− c(Ti−1 − t0)P (t0, Ti−1)

}/{
(T ∗ − t0)P (t0, T

∗)
}

(35)
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4 Stochastic Volatility

In the Black-Scholes model, risk is quantified by a constant volatility param-
eter. Real market data for options suggests that volatility is not constant
but dependant on the strike price. The volatility that is calculated from ac-
tual option prices is called the implied volatility. When the implied volatility
is plotted against the strike price, a volatility smile results. In European
option pricing, the volatility smile phenomena can be explained assuming
that the volatility of the underlying follows a stochastic process such as that
detailed in Heston(1993)[2]. In a stochastic volatility model, the volatility
changes randomly, following the dynamics of a stochastic differential equa-
tion or some discrete random process. We will thus add stochastic volatility
to our framework, assuming that the asset class other than that of the in-
terest rate has volatility which follows a stochastic process. In our case, the
other asset class is the equity class.
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Figure 3: Volatility Smile as Observed from Google Call Options

In this section, we follow the Shöbel Zhu Hull White (SZHW) model. We
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present a slight change of notation to the dynamics of the stock and interest
rate processes and assume that the volatility process follows an Ornstein-
Uhlenbeck process. The dynamics for the stock process, volatility process
and interest rate process are as follows:

dSt = µtStdt + vtStdW s
t (36)

dvt = κ[ω − vt]dt + σvdW v
t (37)

drt = (ζ − ηtrt)dt + σrdW r
t (38)

〈dW v
t , dW s

t 〉 = ρsvdt

〈dW r
t , dW s

t 〉 = ρrsdt

〈dW v
t , dW r

t 〉 = ρrvdt

(39)

4.1 Change of Numeraire

We change the numeraire to a T-bond and thus change our measure from Q
to a T-forward measure, QT . By changing the numeraire, we hope to lose
one variable and be left with two variables to deal with. We introduce the
forward price

Ft =
St

P (t, T )
(40)

Recalling the Hull-White affine term structure framework given in (20), the
dynamics for the discount process under Q are given by

dP = rtPdt− σrB(t, T )PdW r
t (41)

Applying Itô’s lemma to (40) yields

dF = (σ2
rB

2
r (t, T ) + ρrsvtσrB(t, T ))Fdt + vtFdW s

t + σrB(t, T )FdW r
t (42)

Ft is a martingale under QT and thus we have the following transformations
from the Q measure to the QT measure:

dW r
t 7→ dW T

r (t)− σrB(t, T )dt

dW s
t 7→ dW T

s (t)− ρrsσrB(t, T )dt

dW v
t 7→ dW T

v (t)− ρrvσrB(t, T )dt

15



Thus under QT , vt and Ft can be written as

dv(t) = κ[ω − ρrvσrσvB(t, T )

κ
− vt]dt + σvdW T

v (t) (43)

dF (t) = vtFdW T
s (t) + σrB(t, T )FdW T

r (t) (44)

We can simplify (44) by using a log transformation and switching from
dW T

r (t) and dW T
s (t) to dW T

F (t). We let y(t) = log(F (t)) and use Itô’s lemma
to get:

dv(t) = κ[θ − vt]dt + σvdW T
v (t) (45)

dy(t) = −1

2
ϕ2

F (t)dt + ϕF (t)dW T
F (t) (46)

with

ϕ2
F (t) = v2 + 2ρrsvtσrB(t, T ) + σ2

rB
2(t, T )

θ = ω − ρrvσrσvB(t, T )

κ
(47)

4.2 Pricing

According to the Meta Theorem in [4], a market is incomplete if the number
of random sources in the model is greater than the number of traded assets.
This implies that the model with stochastic volatility presents an incomplete
market as there are at least two driving Weiner processes and only one traded
asset. We now seek for a characteristic function for the forward log-asset
price. We apply the Feynman-Kač theorem which transforms the problem
into solving a PDE.

According to the the Feynman-Kač theorem, the characteristic function
given by

f(t, y, v) = EQT [
exp(iuy(T ))|Ft

]
(48)

is the solution to the PDE

0 = ft − 1

2
ϕ2

F (t)fy + κ(θ − v)fv +
1

2
ϕ2

F (t)fyy (49)

+ (vσvρsv + ρrvσvσrB(t, T ))fyv +
1

2
σ2

vfvv

f(T, y, v) = exp(iuy(T )) (50)

The solution to this problem is presented in [15]. We present the solution
here and for proof, the reader is refered to the [15].
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The characteristic function of a T-forward log-asset price of the SZHW
model is given by the following closed form solution:

f(t, y, v) = exp

[
A(u, t, T )+B(u, t, T )y(t)+C(u, t, T )v(t)+

1

2
D(u, t, T )v2(t)

]
,

(51)
where:

A(u, t, T ) =− 1

2
u(i + u)V (t, T )

+

∫ T

t

[
κω + ρrv(iu− 1)σvσrBr(s, T )C(s) +

1

2
σ2

v(C
2(s) + D(s))

]
ds

(52)

B(u, t, T ) =iu, (53)

C(u, t, T ) =− u(i + u)

(
(γ3 − γ4e

−2γ(T−t))− (γ5e
−a(T−t) − γ6e

−(2γ+a)(T−t))− γ7e
−γ(T−t)

)

γ1 + γ2e−2γ(T−t)
,

(54)

D(u, t, T ) =− u(i + u)
1− e−2γ(T−t)

γ1 + γ2e−2γ(T−t)
, (55)

with:

γ =
√

(κ− ρsvσviu)2 + σ2
vu(i + u), γ1 =γ + (κ− ρsvσviu), (56)

γ2 =γ − (κ− ρsvσviu), γ3 =
ρsrσrγ1 + κηω + ρrvσrσv(iu− 1)

ηγ
,

γ4 =
ρsrσrγ2 − κηω − ρrvσrσv(iu− 1)

ηγ
, γ5 =

ρsrσrγ1 + ρrvσrσv(iu− 1)

η(γ − η)
,

γ6 =
ρsrσrγ2 − ρrvσrσv(iu− 1)

η(γ + η)
, γ7 =(γ3 − γ4)− (γ5 − γ6)

and:

V (t, T ) =
σ2

r

η2

(
(T − t) +

2

η
e−η(T−t) − 1

2η
e−2η(T−t) − 3

2η

)
(57)

The variance process, v2
t , can be derived using Itô’s formula as

dv2
t = 2κ[

σ2
v

2κ
+ ωvt − v2

t ]dt + 2σvvtdW v
t (58)
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which can be written as the familiar square root process [used by Cox, In-
gersoll, and Ross(1985)]

dv∗t = κ∗[θ∗ − v∗t ]dt + σ∗v
√

v∗t dW v
t (59)

with

v2
t = v∗t , κ∗ = 2κ

θ∗ =
σ2

v

2κ
+ ωvt, σ∗v = 2σv (60)

where κ∗ is called the “speed of mean reversion”,
√

θ∗ the “long vol”, σ∗v the
“vol of vol” and the initial value v∗0 the “short vol”.According to [12] the
vol of vol and the correlation can be thought as the parameters responsible
for the skew whereas the other parameters control the term structure of the
model. We can see from (59) that the Heston model is as special case of our
model.

When pricing our hybrid, we have to price it as a forward starting option.
We follow the method proposed by [8]. The value of the hybrid at time t0 is
given by:

Πt0 = P (t, Ti)E
QT

[
max

{
δLi,

STi

STi−1

− 1

}∣∣∣∣Ft0

]
(61)

= P (t0, Ti−1)E
QT

[
P (Ti−1, Ti)E

QT

[
max

{
δLi,

ST

STi−1

− 1

}∣∣∣∣FTi−1

∣∣∣∣
]
Ft0

]

(62)

= P (t0, Ti−1)E
QT

[
P (Ti−1, Ti)E

QT

[
δLi +

{
STi

STi−1

− 1

P (Ti−1, Ti)

}+∣∣∣∣FTi−1

]∣∣∣∣Ft0

]

(63)

= P (t0, Ti−1)E
QT

[
P (Ti−1, Ti)δLi + P (Ti−1, Ti)E

QT

{
STi

STi−1

− 1

P (Ti−1, Ti)

}+∣∣∣∣FTi−1

]∣∣∣∣Ft0

]

(64)

= P (t0, Ti−1)E
QT

[
P (Ti−1, Ti)δLi

∣∣∣∣Ft0

]
(65)

+ P (t0, Ti)E
QT

[
EQT

[{
STi

STi−1

− 1

P (Ti−1, Ti)

}+∣∣∣∣FTi

]∣∣∣∣Ft0

]
(66)
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We let the second part of the equation equal to Γ which is given by:

Γt,Ti−1,Ti
= P (t0, Ti)E

QT

[
EQT

[{
STi

STi−1

− 1

P (Ti−1, Ti)

}+∣∣∣∣FTi−1

]∣∣∣∣Ft0

]
(67)

= P (t0, Ti)E
QT

[(
STi

STi−1

− 1

P (Ti−1, Ti)

)+∣∣∣∣Ft0

]
(68)

= P (t0, Ti)E
QT

[
1

P (Ti−1, Ti)

(
STi

STi−1

P (Ti−1, Ti)− 1

)+∣∣∣∣Ft0

]
(69)

= P (t0, Ti−1)E
QT

[
P (Ti−1, Ti)

P (Ti−1, Ti)

(
STi

STi−1

P (Ti−1, Ti)− 1

)+∣∣∣∣Ft0

]
(70)

= P (t0, Ti−1)E
QT

[(
STi

STi−1

P (Ti−1, Ti)− 1

)+∣∣∣∣Ft0

]
(71)

(72)

We focus on the expectation as we recognise that it looks like a call option

on the undelying
STi

STi−1
P (Ti−1, Ti) struck at 1. Our task is thus to price this

call option and then we will come back to Γ.
In pricing the call option, we consider the function z(Ti−1, Ti) which is

given by

z(Ti−1, Ti) = log

(
STi

STi−1

P (Ti−1, Ti)

)
(73)

We have already defined y as

y(Ti−1) = log(STi−1
)− log(P (Ti−1, Ti)) (74)

thus we can simplify z(Ti−1, Ti) to:

z(Ti−1, Ti) = y(Ti)− y(Ti−1) (75)

We thus need to find the forward characteristic function for z(Ti−1, Ti) which
is given by:

φTi−1,Ti
(u) = EQT

[
exp

{
iu

(
y(Ti)− y(Ti−1)

)}∣∣∣∣Ft

]
(76)

We know the T-forward characteristic function of log-asset price y(T ). We
assume that y(T ) is a Markov chain and using the Markov chain property,
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y(Ti−1) and y(Ti) are independent given that ∃ t∗ where Ti−1 < t∗ < Ti s.t
y(t∗) exists. We assume that such a t∗ exists. A characteristic function for
the difference of two independent random variables x and y is given by:

φx−y(u) = φx(u)φy(−u) (77)

Thus the forward characteristic function for z(Ti−1, Ti) is given by:

φTi−1,Ti
(u) = EQT

[
exp

{
iuy(Ti)

}∣∣∣∣Ft

]
EQT

[
exp

{
− iuy(Ti−1)

}∣∣∣∣Ft

]
(78)

= f(Ti, y, v, u)f(Ti−1, y, v,−u) (79)

Once we have the forward characteristic function, we use Fourier Fast
Tranform(FFT) method proposed by [6]. We use a value of 1.25 for α for
the modified call option given by:

cT (k) = exp(αk)P (t0, Ti)E
QT

[(
eZ(Ti−1,Ti) − ek

)+]
(80)

where
k = log(K).

The transform of the call as given by [8] is:

ψ(t0, Ti−1, Ti) = P (t0, T )
φTi−1,Ti

(u− (α + 1)i)

(α + iu)(α + 1 + iu)
(81)

We can thus calculate the price of the forward starting call using the
inverse FFT. Let Cfwd(t0, Ti−1, Ti) denote the price of this forward starting
option. Returning to Γ, we get that:

Γt0,Ti−1,Ti
= P (t0, Ti−1)C

fwd(t0, Ti−1, Ti) (82)

In Section 3, we showed that

P (t, Ti−1)E
QT

[
P (Ti−1, Ti)δLi

∣∣∣∣Ft

]
= P (t0, Ti−1)− P (t0, Ti) (83)

thus the price of the hybrid is given by:

Πt = P (t0, Ti−1)

{
1 + Cfwd(t0, Ti−1, Ti)

}
− P (t0, Ti) (84)

We note that the prices of the bonds P (t0, Ti−1) and P (t0, Ti) are observed
from the market.

20



0.5
1

1.5
2

2.5
3

0.8

0.9

1

1.1

1.2

1.3
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Maturity

Volatility Surface for our model with starting time = .25

strike

Im
pl

ie
d 

V
ol

at
ili

ty

Figure 4: Volatility Surface for our Model with Ti−1 = .25yr, S0 = 1, V0 =
.2, κ = 2, η = 2, ω = .08, σr = .02, ρsv = .5, ρsr = .5, ρrv = .5, r0 = .02
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Figure 5: Skew Volatility for our Model with: Ti−1 = .25yr, S0 = 1, V0 =
.2, κ = 2, η = 2, ω = .08, σr = .02, ρsv = .5, ρsr = .5, ρrv = .5, r0 = .02
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Figure 6: Volatility Surface for our Model with Ti−1 = .25yr, S0 = 1, V0 =
.2, κ = 2, η = 2, ω = .16, σr = .02, ρsv = .5, ρsr = .5, ρrv = .5, r0 = .02
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Figure 7: Volatility Surface for our Model with Ti−1 = 1yr, S0 = 1, V0 =
.2, κ = 2, η = 2, ω = .08, σr = .02, ρsv = .5, ρsr = .5, ρrv = .5, r0 = .02

4.3 Hedging

A model with stochastic volatility presents an incomplete market. In an
incomplete market, a unique martingale measure does not exist and thus a
derivative cannot be hedged perfectly by only the underlying asset and the
money account. Hedging a derivative in an incomplete market model thus
requires the addition of a benchmark derivative. We will call this benchmark
derivative C. We create a risk neutral portfolio by:

1. Making the portfolio vega neutral by adding a position in C.

2. Making the portfolio rho neutral by adding a position in a bond.

3. Making the portfolio delta neutral by adding a stock position.
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5 Hedging Accuracy Tests

In testing the performance of our models, we will evaluate how well the mod-
els hedges perform. We highlighted in the stochastic interest rates section
that the volatility of the underlying is the only input into the model and
thus determines the pricing of the hybrid. For the models to be comparable,
we will use the implied volatility from the stochastic volatility and stochastic
interest rate model as the input to get the stochastic interest rate price. In
comparing the prices from the two different models, let Πt0(SISV ) denote
the price from the stochastic volatility and stochastic interest rate model and
let Πt0(SI) denote the price from the stochastic interest rate model.

Πt(SISV ) =P (t0, Ti−1)

{
1 + Cfwd(t0, Ti−1, Ti)

}
− P (t0, Ti) (85)

Πt0(SI) =P (t0, Ti−1)

{
N(d+)−N(d−) + 1

}
− P (t0, Ti) (86)

The two prices are similar and will be the same if and only if

N(d+)−N(d−) = Cfwd(t0, Ti−1, Ti) (87)

We compare how the hedges perform for a three month period where
rebalancing is done weekly. We use Ti−1 = .25 and Ti = .5. We first compare
the two models seperately and then we compare the relative errors of the
models. The data set used for the hedging tests is shown in the appendix.

In comparing the models, we get more information by comparing the
standard errors of the error term. The summation of the squared relative
errors give us the variance of the error term. Dividing the standard deviation
of the errors by the square root of the number of data points used gives us
the standard error. The table below shows the standard errors of the two
models.

Model Standard Error
SI 72.56%

SISV 47.74%

We note that the standard error is greater for the stochastic interest rate
model. This implies that it is better to use the SISV holding all else constant.

25



0 0.05 0.1 0.15 0.2 0.25
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−3

Time

V
al

ue
 p

er
 e

ac
h 

un
it 

of
 th

e 
hy

br
id

 

 

∆ Hedge

∆ Hybrid Price
Hedge Error

Figure 8: Stochastic interest rate model hedge error. The hybrid price is
calculated as in Section 3.6 and the hedge as in Section 3.7

The drawbacks of using SISV is that vega is not easy to hedge. There is also
more calibration required in SISV than in SI. The SI model presents a simple
and straightforward way of getting an estimate of the hybrid’s price. The
skew volatility that we would have expected is that shown for the google
share in Section 4 but our model has a different skew volatility which is like
the inverted skew volatility that we would have expected.
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Figure 9: Stochastic interest rate and stochastic volatility model hedge error.
The hybrid price is calculated as in Section 4.2 and the hedge as in Section
4.3
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Figure 10: Relative hedge error for our models
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Figure 11: Square relative hedge error for our models
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5.1 Conclusion

In this article we have discussed pricing methods for an interest rate hybrid
product. We have priced the hybrid in two ways; using stochastic interest
rates alone and also using stochastic interest rates and stochastic volatility.
We have found that the pricing of the hybrid is invariant under stochastic
interest rates. We have compared how the models used perform based on how
well they hedge the hybrid. We have found that the stochastic interest rate
model gives us a simple and straightforward solution but gives us a greater
error than the model with stochastic interest rates and stochastic volatility.
We have mentioned that although the stochastic interest rate and stochastic
volatility model is attractive, it is harder to calibrate as well as hedge. Our
analysis has a shortcoming in that we have priced a forward starting hybrid
and have only looked at the time before the hybrid has started. Further
research can thus be done to look at the pricing of the hybrid after it has
started.
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6 Data

Time Current Stock Price Current Instantaneous Volatility Current Short Rate
0 1 0.2 0.02

0.02 1.115049126 0.200230098 0.016723563
0.04 1.06749221 0.2001447 0.012858947
0.06 0.599980722 0.19926816 0.010565438
0.08 0.492904166 0.198912533 0.010518325
0.1 0.506514443 0.198967457 0.008289288
0.12 0.59134628 0.199300691 0.011536484
0.14 0.877871633 0.200266364 0.01209704
0.16 0.886192738 0.200285347 0.014551937
0.18 0.923664935 0.200370036 0.008017769
0.2 0.990715299 0.200515488 0.008483938
0.22 1.224401187 0.20098845 0.010868651
0.24 0.667152074 0.200073718 0.014616501
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