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Abstract

This thesis consists of two manuscripts: “Exploring voltage-dependent
ion channels in silico by hysteretic conductance” by Tom Anders-
son, and “Statistical sensitivity analysis and remodeling of whole-cell
conductances in nociceptors” by Tom Andersson, Joanna Tyrcha and
Olivia Eriksson.

The general approach to modeling neuronal excitability is to for-
malize and simulate systems of ordinary differential equations that de-
scribe voltage-dependent and ionic specific conductances of cell mem-
branes. The systems are deterministic in nature, but rely on a large
number of uncertain parameter estimations. The uncertainty is usually
ignored and left out of account when analyzing neuronal excitability by
means of conductance models. Here we present two sensitivity studies
of voltage-dependent conductance models demonstrating the value of
both systematic and random parameter variations in formalizing and
evaluating model components of membrane excitability.

In the first study, we put a specific sensitivity measure to use, i.e.
hysteretic conductance (conductance loops), to explore the state space
and kinetics of voltage-dependent ion channels. In the second study,
we evaluate response effects of parameter variations in a conductance
model of nociceptors, revealing critical regulatory parameters by sta-
tistical analysis. The studies show that designed sensitivity measures
and statistical methods can reveal new conductance mechanisms and
regulatory pathways in existing neuronal conductance models.

Key words: whole-cell model, ion channel, Hodgkin-Huxley, Markov
model, sensitivity analysis, nociceptor
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2 Introduction

The two basic elements of neuronal conductance models is the capacitance
function of the cell membrane and the conductance function of transmem-
brane proteins [5][8], i.e. proteins interspersed in the cell membrane regu-
lating ion transport across the membrane, e.g. ion pumps and ion channels.
The membrane consists of a lipid bilayer, enclosing the cell interior and
blocking passive diffusion of ions. It allows charge to be stored on each
side of the cell membrane, thereby functioning as a capacitor. Transmem-
brane proteins regulate ionic transport and contribute to ion specific gradi-
ents across the membrane, thereby generating ion specific currents and the
membrane potential.

We describe the capacitor function by the following equation:

C V̇m = −
N∑

k=1

Ik + Iinj (2.1)

where C is the capacitance (Farad F), V̇m is the time derivative of the mem-
brane potential (Vm per second), and Ik is an ionic current (Ampere A).
The sum of all ionic currents

∑N
k=1 Ik (k ∈ {Na+, K+, Ca2+, Cl−} make

up the whole-cell current, consisting of ion pumps sustaining the membrane
resting potential, i.e. ionic transport driven by chemical energy, and ion
channels regulating ionic currents driven by ionic gradients. Iinj is the ex-
ternal current in an electrophysiological experiment, with reversed sign due
to its nature, i.e. an outward electron flow making a positive current, in
contrast to an outward ionic flow making a negative current.

Applied to cell membranes, C and I are relative to the surface area and
units are often standardized in modeling studies (F and A per unit area). C
is usually considered a constant, whereas the ionic currents Ik are the main
object of analysis.

Ik = Gk(Vm,M)(Vm − Eion) (2.2)

The ionic current Ik depends on the ion specific conductance of the
cell membrane Gk(Vm, M), where M represents any modulator of the ionic
specific conductance. It also depends on the driving potential, i.e. the

2



membrane potential minus the reversal potential of the ionic current. The
reversal potential is usually considered a constant. By allowing for mul-
tivariate and non-linear conductance functions Gk(M, Vm), the equations
form a system of equations that may generate diverse responses, i.e. resting
states and patterns of voltage oscillation.

The voltage-dependent and ionic-specific conductances are critical mem-
brane components in the active regulation of membrane excitability and
action potentials (neuronal spikes) [1]. Thus, the challenge in neuronal
modeling of membrane excitability is how to identify and define conduc-
tance components and functions Gk(M,Vm). Generally speaking, there are
two approaches: (1) whole cell records and (2) single channel records [3].
The former is a macroscopic aggregation of microscopic currents through
thousands of ion channels, smoothing out the details of specific and single
ion channel activity. In contrast, single channel records reveal the gating
process of a single protein, i.e. discrete changes in conductance over time.
However, the distinction between macroscopic and microscopic conductances
is not clear-cut. There are experimental methods mixing the levels, e.g. gene
expression of specific ion channels in different quantities in a single cell, al-
lowing for mesoscopic studies of specific ion channels.

Macroscopic and microscopic models of ionic conductance tend to be
different. In macroscopic studies, the focus is on the whole-cell membrane
potential, for which reason models of specific ionic conductances are kept
simple. The main challenge is instead to account for the variety of conduc-
tances regulating membrane excitability. The original study of the giant
squid axon by Hodgkin and Huxley is an example of this [4]. Voltage-
dependent and ionic specific conductance are then assumed to consist of
voltage-sensitive “gating particles” that move across the membrane in re-
sponse to voltage change, thereby changing ionic specific conductances:

Gk(M,Vm) = Gmaxpopen (2.3)

popen =
N∏

k=1

pk (2.4)

ṗk = α(M, Vm)− (α(M, Vm) + β(M, Vm))pk (2.5)

=
pk(∞)− pk

τ
(2.6)

where Gmax is the maximum conductance of an ionic conductance, popen is
the active proportion of conductance at a certain moment in time, defined
as the product of the open probability pk of N independent gating particles.
The “rate constants” α and β (τ = 1

α+β ) represent the rates of change
between active (open) and inactive (closed) states of a single gating particle:
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[C]
α−⇀↽−
β

[O]. Although called “constants”, in reality, they correspond to

multivariate rate functions [6], α(Vm,M) and β(Vm,M), thereby increasing
the complexity of conductance models.

In microscopic single ion channel studies [12], it is clear that the macro-
scopic modeling approach is a simplification. The state space and kinetics
of ion channels are more diverse and plastic than what is assumed in macro-
scopic models. The Hodgkin-Huxley assumption of independent gating par-
ticles is often not met. To account for microscopic conductance properties,
we must assume a larger set of ion channel states and pathways. Markov
models are then often used to formalize the state space and the transition
rules that regulate popen. Some scholars claim that also this approach is
insufficient, that we need to use fractal models to fully account for ion chan-
nel structure and dynamics [9]. However, here we limit the discussion to
traditional Hodgkin-Huxley and Markov models. They are still the main
approaches to neuronal conductance modeling, and there is still much to be
learned from them [10].

Irrespectively of the level of analysis, the general approach to conduc-
tance modeling is to formalize a system of equations in agreement with
experimental research, thereafter simulate the model and compare its per-
formance to recorded data. Seldom do studies address the question of the
role of experimental protocols and parameter variation for model perfor-
mance [7][11]. In mathematics and statistics, this line of inquiry is called
“sensitivity analysis” [13], i.e. analysis of the relative importance of model
parameters to model performance. Here we also stress the need for develop-
ing relevant response measures and evaluating parameter distributions when
carrying out sensitivity analysis. For this reason, we describe the work un-
derlying this thesis in broader terms, “sensitivity studies”, i.e. studies of
model performance in response to parameter variations, the purpose being
to identify and evaluate critical and modulatory parameters in regulating
model performance [2].

In the first article, we explore “hysteretic conductance”, i.e. conduc-
tance loops in response to periodic voltage stimulation, as a response mea-
sure of ion channel kinetics, i.e. independent and cooperative gating, as well
as mode-shifts, i.e. interactions between voltage-dependent and indepen-
dent gating mechanisms. We show that it can reveal kinetic properties that
may otherwise remain invisible with traditional experimental and simulation
protocols. In the second article, we carry out a more complete sensitivity
analysis of a neuronal conductance model, including the design of relevant
response measures, as well as statistical analysis of parameter variation and
mathematical modeling of response effects. Together, the two articles show
the value and use of sensitivity studies for the purpose of developing and
evaluating neuronal conductance models.
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Abstract

Kinetic models of voltage-dependent ion channels are normally inferred
from time records of macroscopic current relaxation or microscopic
single channel data. A complementary explorative approach is out-
lined. Hysteretic conductance refers to conductance delays in response
to voltage changes, delays at either macroscopic or microscopic levels of
observation. It enables complementary assessments of model assump-
tions and gating schemes of voltage-dependent channels, e.g. inde-
pendent versus cooperative gating, and multiple gating modes. Under
the Hodgkin-Huxley condition of independent gating, and under ideal
measurement conditions, hysteretic conductance makes it also possible
to estimate voltage-dependent rate functions. The argument is mainly
theoretical, inspired by experimental observations, and illustrated by
simulations of Markov kinetic models.

Key words: voltage-gated ion channels, hysteretic conductance,
kinetic Markov models
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1 Introduction

Ion channels are nanoscopic, transmembrane, pore-forming proteins that
maintain and regulate ionic currents through the cell membrane. They are
the key dynamic elements in maintaining membrane excitability and gener-
ating neural signals (action potentials) [6][17]. In large numbers, thousands
on a microscopic scale, they either sustain a membrane potential around
−60mV/−80mV (zero outside, negative inside), or generate action poten-
tials about 80-100mV in amplitude. This dynamic function depends on the
capacity of voltage-dependent ion channels to change the permeability of
ions in response to voltage change across the cell membrane. At the level of
a single channel, the gating process involves conformational changes of the
protein, resulting in alternations between open and closed states. Due to
energy fluctuations, the transitions are random in nature.

With increasing precision, electrochemical and pharmacological studies,
in combination with bioengineering and computational science, can record
ionic conductances in whole cells or at the level of single channels. There is
an ongoing proliferation of measurement techniques and methods of analysis
[7][15][24][26][35][37][38][43][44]. For modeling purposes, however, we can
classify a major part of the data into two categories, (1) whole cell records
of relaxation and (2) single channel records of dwell time. The former is a
macroscopic aggregation of microscopic currents through thousands of ion
channels, smoothing out the details of single channel activity. It was used by
Hodgkin and Huxley (HH) in their classic study of action potentials in the
squid giant axon [18]. In contrast, single channel records reveal the gating
process itself, i.e. discrete changes in conductance over time.

Generally speaking, experimental studies do not provide clear-cut ev-
idence of ion channel structures and dynamics. This is in part due to
the large variability and high plasticity of ion channels, in part to differ-
ent methods and conditions of measurement. It makes ion channel models
tentative by nature. They are developed with reference to particular ex-
perimental protocols and conditions. It explains why even basic modeling
features are still in dispute, e.g. cooperativity [32][41], and why we still
develop methods of measurement. The classical experimental method is
to sample voltage and current relationships at discrete steady-state volt-
ages. A recent line of research makes use of dynamic rather than steady-
stage voltage to discriminate between voltage-dependent ion channel models
[19][23][24][25][26][35][38][39][40][47]. These studies show that ion channels
and models can differ substantially under nonequilibrium conditions, even
when they share conductance properties in response to steady-state poten-
tials. Since ion channels in vivo are never in a state of equilibrium, this raises
the question how to make better use of dynamic conductance for modeling
purposes.

The purpose of here is to explore the value of hysteretic conductance to
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evaluate models of voltage-dependent ion channels. In scientific publications
on ion channels, it refers to specific observations of conduction delays in
response to voltage change. At the macroscopic level, the hysteretic effect
is the conductance loop that arises in response to periodic voltage that
matches ion channel kinetics [1][12][42][49][54]. At the microscopic level,
ion channel hysteresis refers to an enduring conduction delay that arises
in response to voltage change despite steady-state conditions following the
change [4][12][45]. In the former case, we face a methodological opportunity,
using conductance loops to evaluate ion channel models. In the latter case,
we face a theoretical problem in need of explanation. In this article, we use
the former to elucidate the latter. The reports on ion channel hysteresis
are more or less anecdotal. As far as we know, there has been no explicit
discussion of the potential use of hysteretic conductance as support in ion
channel modeling.

With “modeling”, we here mean formalizing, simulating and evaluating
the basic property of voltage-dependent ion channels, i.e. voltage-dependent
conductance. The question is how conductance loops and delays can sup-
port modeling. A couple of mathematical studies of ion channel hysteresis
[14][49] provide a theoretical basis for undertaking such an approach, but
to go beyond the most simple of conductance models, the two-state model,
we must rely on more informal kinetic modeling and computer simulations.
Conductance is then formally equated with the probability being in an open
state. We make use of a very simple voltage protocol, i.e. the triangu-
lar wave-function, and variations of Markov models, to generate hysteretic
effects that allow us to systematically map effects to model components.

A Markov model consists of a set of discrete open and closed states,
together with a set of rules for state transitions. Ion channel modeling is
then a question of (1) defining the state space of ion channels, (2) estimating
voltage-dependent rate functions, and (3) testing models against simulation
or prediction. The approach is not undisputed [28][29][34][42][50], but it
has proven fruitful, being able to summarize data on macroscopic and mi-
croscopic levels of observation. We apply the Q-matrix method to simulate
conductance models in Matlab [8][9]. We make use of highly idealized mod-
els, not restricting the analysis to the kinetics of any particular channel. It
makes the argument easy to follow. Of course, we cannot fully account for
dynamic conductance by this approach, but it is a start. In real experi-
ments, the translation between ideal and real measures pose methodological
challenges that we do not address here.

2 Hysteretic conductance in a two-state model

We start by summarizing the basic formalism of a Markov model of a two-
state ion channel, the simplest kind of channel with one open and one closed
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state. We rely on transition state theory to define the rate parameters [27].

[C]
κ1−⇀↽−
κ2

[O] (2.1)

Here [O] denotes the open state, and [C] the closed state. κ1 and κ2 are
the voltage-dependent transition rates between the states, two parameters
in the master equation for the probability of an open state:

Po(t + dt) = Po(t)(1− κ2dt) + (1− Po(t))κ1dt (2.2)

which at equilibrium, steady-state,

Po(t + dt)− Po(t)
dt

= 0 (2.3)

gives the stationary open distribution:

P∞ =
κ1

κ1 + κ2
(2.4)

The voltage-dependent rate parameters κ1 and κ2 are defined in accor-
dance with transition state theory. We assume that negative potentials favor
the closed state, positive potentials the open state, also assuming a linear
energy function across the cell membrane:

κ1(V ) = κ1/2e
+zδqe

(V−V1/2)

kT (2.5)

κ2(V ) = κ1/2e
−z(1−δ)qe

(V−V1/2)

kT , (2.6)

where κ1/2 is the transition rate at the voltage midpoint V1/2, when the
probabilities of open and closed states are equal (0.5). z denotes the gat-
ing charge, δ the voltage sensitivity of forward and backward transitions
respectively, qe the elementary charge, k the Boltzmann’s constant, and T
the absolute temperature (K). When δ is 0.5, the two transition rates are
symmetrical around V1/2.

This is the simplest way of formalizing transition rate functions. By
assuming non-linear energy landscapes across the cell membrane, we get
more flexible rate functions, but also at the cost of an increasing number of
parameters [46]. We rest with the simple case.

Combining (2.4), (2.5), and (2.6), we get the Boltzmann version of the
stationary open probability distribution:

P∞ =
1

1 + e−zqe
(V−V1/2)

kT

(2.7)

The transient probability distribution is derived by integration of equa-
tion (2.2), subject to initial conditions Po(0) = P0 and Po(∞) = P∞:
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Po(t) = P∞ − (P∞ − P0)e−(κ1+κ2)t. (2.8)

Formula (2.8) expresses the relaxation of the open probability when step-
ping from one constant voltage to another, i.e. the evolution of open prob-
ability after a discrete voltage change, before reaching equilibrium P∞ at
the new voltage. The formula denotes the main component of ion channel
models used in the estimation of rate functions κ1 and κ2 from macroscopic
data.

2.1 Static and dynamic conditions of conductance

In classical electrophysiological experiments — a voltage-clamp study —
voltage is changed from one holding potential to another, thereby chang-
ing the equilibrium conditions of ion channel conductance, i.e. the open
probability. The result is a conductance that relaxes towards its new equi-
librium. In the case of a two state channel, the curve follows the formula
(2.8). This generates a relaxation curve that can be used to estimate rate
constants. In single channel studies, a different time series is used for the
same purpose. Due to energy fluctuations, single channel conductance goes
ON and OFF at random in a discrete manner. By analyzing records of ON
(open) and OFF (closed) dwell-time, at different but fixed potentials, we can
estimate rate constants as a function of voltage. However, in practice, no
method is perfect. Dwell-time series are informative, but more sensitive to
perturbation and noise. Relaxation records are less noisy, but more ambigu-
ous. Data can often be fitted to a number of models. Therefore, we should
look for complementary ways to analyze voltage-dependent dynamics of ion
channels.

The equilibrium condition is a critical assumption in the analysis of
both macroscopic and microscopic conductance. However, it is not always
clear if and when the equilibrium condition is fulfilled [21][33][42][53]. When
it is not, we get conductance depending on both past and present volt-
age stimulation. With continuous change of voltage, ion channel conduc-
tance will never reach equilibrium. The data record is then harder to an-
alyze, since there are in fact no constants. Still, some studies demonstrate
that important information can be harnessed from nonequilibrium condi-
tions. Recently, dynamic voltage stimulation has been used to generate
nonequilibrium conductance effects for the purpose of model discrimination
[19][23][24][25][26][35][38][39][40][47]. This line of research has demonstrated
that dynamic voltage protocols can reveal more conductance properties of
ion channels than static ones.

To use nonequilibrium conditions for modeling purposes, it may be bene-
ficial to begin with the simplest protocols. This is also the case in a handful
of studies that explicitly deal with ion channel hysteresis. They rely on
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triangular periodic voltage [12][11][49]. The periodic voltage generates con-
ductance loops that allow for systematic measures and comparisons of con-
ductance effects in response to parameter variations. It enables us to iden-
tify critical parameters in regulating the voltage sensitivity of ion channels,
to map conductance effects onto model parameters. There are a few other
studies that also deal with ion channel hysteresis explicitly [1][4][14][45]. The
focus is here on theoretical rather than methodological issues. Using discrete
voltage protocols, a particular channel, the Non-Selective Voltage-Dependent
Cation channel (NSVDC), demonstrates large unexplained conductance de-
lays. We come back to this later on.
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Figure 1: Three types of conductance generated by simulation of a two state
channel with parameters k1/2 = 1, z = 2, δ = 0.5, V1/2 = 0. Upper left:
macroscopic relaxation when stepping from −75mV to +75mV. Upper right:
single channel dwell time in open (1) and closed (0) states. Lower left: trian-
gular wave used to simulate hysteretic conductance. Lower right: hysteretic
conductance at the third period of the periodic triangular voltage, starting
at 0, with speed 300mV/second. In all our model simulations, a single wave
consists of 2000 discrete voltage steps, with constant relaxation time for all
steps. The time period of the wave is the sum of the relaxation time for all
wave steps. The hysteretic effect is defined by the normalized loop area (0 <
loop area < 1)

In figure (1), we illustrate the three types of conductance data that we
deal with in this article: (1) the relaxation record, (2) dwell-time series,
and (3) hysteretic conductance (conductance loops). The plots show con-
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ductance in the two-state model. The parameters z, δ, V1/2, and κ1/2 have
been set to 2, 0.5, 0, and 1. At a particular voltage, depending on the
direction of voltage change, the hysteretic conductance is higher or lower
than its value at equilibrium. This is even more clear in figure (2), where
hysteretic conduction is a function of the ramp speed of voltage change. At
very slow speed, the channel has time to reach equilibrium, and we get no
hysteretic effect. At very high speed, the ion channel has no time to adapt
to voltage changes, for which reason the conductance converges to its value
at the midpoint of the voltage range.
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Figure 2: Hysteretic conductance in a two-state channel, with periodic volt-
age between −100 and +100 mV, starting at −100mV, with parameters k1/2

= 1, z = 2, δ = 0.5 and V1/2 = 0. At slow speed, 1 mV/s, there is enough
time to reach equilibrium of open probability at each step of voltage change.
At fast speed, 10V/s, the change in open probability is lagging behind the
voltage change and converges to a loop around open probability 0.5.

2.2 Analytical theory of hysteresis in a two-state channel

Pustovoit et al [49] have formalized an analytical theory of hysteresis for
the two-state model of ion channels. They define hysteresis as the loop
area of conductance generated by triangular voltage change with period T
and unit amplitude (c.f. figure (2)). They derive formulas for the explicit
calculation of the periodic asymptotic open probability, as well as formulas
for the calculation of the loop area. In the following, we summarize the
theory. The derivation here is a highly condensed version of the original.
We refer to the original article for details.

Voltage V is assumed to be deterministic and periodic:
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VT (t + T ) = VT (t) (2.9)
VT (t) = ∆V ϕT (t) (2.10)
V (t) = H(t)VT (t) (2.11)

where VT (t) a periodic function with period T and amplitude ∆V , ϕT (T +
t) = ϕT (t) a periodic function with period T and unit amplitude, and H(t)
the Heaviside function.

Since the rate functions are voltage dependent, periodic voltage implies
time-dependent rate functions: κ1(t) and κ2(t). The modified master equa-
tion for a two-state channel follows.

Po(t + dt) = Po(t)(1− κ1(t)dt) + (1− Po(t))κ2(t)dt (2.12)

Po(t) = Po(t0)e
− ∫ t

t0
(κ1(t1)+κ2(t1))dt1 +

∫ t

t0

κ2(t1)e
− ∫ t

t1
(κ1(t1)+κ2(t1))dt2dt1

(2.13)
To derive a formula for the asymptotic periodic probability P∞(t), equa-

tion (2.13) is conditioned on the period n. Po(nT ) is then substituted for
Po(t0) in (2.13):

Po(t|n) = Po(nT )e−
∫ t

nT (κ1(t1)+κ2(t1))dt1 +
∫ t

nT
κ2(t1)e

− ∫ t
t1

(κ1(t2)+κ2(t2))dt2dt1

(2.14)
To derive the limit of Po(nT ) in (2.14), n → ∞, equation (2.13) is

rewritten as a recursion formula:

Po((n + 1)T ) = γPo(nT ) + a0 (2.15)

where γ and a0 refer to

γ = e−
∫ T
0 (κ1(t)+κ2(t))dt (2.16)

and

a0 =
∫ T

0
κ2(t1)e

− ∫ T
t1

(κ1(t2)+κ2(t2))dt2dt1 (2.17)

Po(0) is the equilibrium open probability in the absence of voltage,
V(0)=0.

Po(0) = κ1(0)/(κ1(0) + κ2(0)) (2.18)

With this initial condition, the limit of P(nT) is calculated and substi-
tuted for P(nT) in equation (2.13),

lim
n→∞Po(nT ) =

a0

1− γ
(2.19)
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which gives us a formula for the asymptotic probability:

Po,∞(t) = lim
n→∞P (t|n) =

a(t)
1− γ

(2.20)

where a(t) is given by

a(t) =
∫ t+T

t
κ2(t1)e

− ∫ t+T
t1

(κ1(t2)+κ2(t2))dt2dt1 (2.21)

Equation (2.20) allows us to calculate the periodic, asymptotic open
probability of a two-state channel with period T. Pustovoit et al [49] also
derive an equation for calculating the magnitude of hysteresis (A(t)), the so
called “loop area”:

A(T ) =
∫ T/2

0
P∞(t)|V̇T (t)|dt−

∫ 0

−T/2
P∞(t)|V̇T (t)|dt (2.22)

Hysteresis is here formalized by the integral of the difference in conductance
during hyperpolarization (first term) and depolarization (second term). It is
a sum over the periodic voltage range translated into its time domain.

Pustovoit et al [49] demonstrates that the hysteresis goes to zero when
the period goes to zero or to infinity. Several factors interact to set the
magnitude in between: the amplitude, the period, and the rate functions.
Hysteresis increases with amplitude, end even if explicit derivation is lacking,
optimal interaction takes place when the period and the rate constants are
of the same order of magnitude.

The analytical model of hysteresis in ion channels demonstrates that
periodic voltage generates periodic conductance. The probability of being in
the open state will then depend on the present voltage input and its direction
of change. To discuss its value for electrophysiological and empirical models
of ion channel conductance, we will translate it into more traditional kinetic
terms.

3 Kinetic factors in conductance loops

For the rate functions κ1 and κ2 (2.5-2.6), z defines the voltage-sensitivity of
the ion channel. In real channels, the voltage-sensitivity is determined by a
corresponding set of charged residues that react to changes in voltage poten-
tial, promoting conformational changes of the protein that generate discrete
change of conductance (ON/OFF) [52]. The parameter z summarizes the
responsiveness to voltage change. Since an increase in charge is equal to an
increase in amplitude, hysteretic conductance effects increase with z.

The parameter z is the main kinetic factor in generating conductance
loops. In contrast, the voltage midpoint V1/2 sets the center of the hysteretic
conductance. At V1/2, the conductance function is steepest, whereas the
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relaxation time is at its maximum, favoring hysteresis. If the center of
periodic voltage Vc deviates from V1/2, reduction of hysteretic effects follows.
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Figure 3: Hysteretic conductance is the stationary (stable) conductance loop
area with respect to period and amplitude of periodic voltage stimulation,
i.e. the triangular wave function. A single triangular wave consists of 2000
discrete voltage steps, with constant relaxation time for all steps. The time
period (log10 seconds in figure) is the log10 sum of the relaxation time for
all steps in the wave. Upper left: standard parameter values, z = 2, δ = 0.5,
V1/2 = 0, and κ1/2 = 1. Upper right: charge reduction, z = 1. Lower left:
charge asymmetry, δ = 0.75. Lower right: wave displacement with respect
to the voltage midpoint of activation V1/2, Vc = −25mV. When parameter
values deviate from optimal conditions (maximal z, δ = 0.5 and Vc = V1/2),
hysteresis is reduced.

δ and κ1/2 relate to z and V1/2 respectively. δ defines the symmetry of
the voltage-sensor. Hysteresis is maximal when the gating charge is sym-
metrically distributed, δ = 0.5, making ion channel conductance equally
responsive to hyperpolarization and depolarization around V1/2. Asymmet-
rical rate functions, i.e. δ 6= 0.5, result in asymmetrical time constants
below and above V1/2, implying different optimal voltage periods for max-
imal hysteresis, and lowering the hysteresis compared to symmetrical rate
functions. Finally, κ1/2, together with V1/2, limits the range of effective volt-
age frequencies. In figure 3, we render the results of four simulations of the
two-state channel illustrating the effects of parameter values on hysteresis,
i.e. conductance loop areas. When the parameter values deviate from ideal
conditions, i.e. lower z, Vc 6= V1/2, and δ 6= 0.5, hysteresis is reduced.
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Figure 4: ”Conductance fingerprints”. The graphs show the maximal con-
ductance loops in response to periodic voltage of amplitudes 5, 15, 25, 35,
45, 55, 65, and 75 mV (from inner to outer curves). The time period for
maximal conductance varies depending on amplitude (cf. figure 3). Each
loop corresponds to a singular triangular wave. Upper left: standard pa-
rameter values. Upper right: charge reduction, z = 1. Lower left: charge
asymmetry, δ = 0.75. Lower right: midpoint displacement, V1/2 = −25mV.

The loop area is a rough measure of the responsiveness of the model to
voltage change. It can also be informative to look at the geometry of the
conductance loops at particular amplitudes and periods. Figure 4 renders
the conductance loops of maximal hysteresis at amplitudes 5, 15, 25, 35, 45,
55, 65, and 75 mV (from inner to outer curves), the periods varying about 1-
5 ms depending on the amplitude. These sets of loops resemble fingerprints,
demonstrating rather striking changes in hysteretic conductance depending
on changes in parameter values. For δ and V1/2, deviations from ideal values
attenuate hysteresis, but in ways depending on the parameter in question.

A reduction in z results in a general reduction of conductance loops and
hysteresis, whereas the asymmetrical conditions generate asymmetrical con-
ductance loops, each pattern depending the parameter and its value. Thus,
conductance loops may indicate and/or confirm distinct features of voltage-
dependent rate functions, especially when combined with data records on
relaxation and dwell-time.
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3.1 Hysteretic conductance in multi-state channels

In this section, we extend the discussion to models with more than two
states, with the aim of assessing the potential use of hysteretic conductance
in exploring the state space and voltage-dependent kinetics. We make min-
imal extensions to keep the simulations simple and the arguments easy to
follow. The discussion is restricted to two idealized Markov models repre-
senting two important types of state space: independent versus cooperative
gating (3.1 and 3.2) [2][16][27][56]. Our aim is to test whether hysteretic
conductance can serve to reveal critical features of these Markov models.

In the original study of action potentials by Hodgkin and Huxley, ionic
conductances are assumed to be regulated by a number of conductance “par-
ticles”. Each particle takes two values, active (ON) or not (OFF), with a
probability depending on the voltage potential. The numbers and types
of particles vary depending on the conductance in question, e.g. four ac-
tivation particles for the potassium conductance GK , three for the sodium
conductance GNa. When all particles are in their active state, the channel
conductance changes from 0 to 1. In some cases, we must also deal with
inactivation particles that block the conductance after depolarization, e.g.
the sodium conductance GNa. Here we restrict the discussion to models
with activation alone, the potassium conductance.

We let two premises govern the kinetics of HH gating particles. First,
each gating particle responds to voltage changes independently of each other.
Secondly, the same rate functions govern all activation particles. These
premises allow us to model the independent activation pathway by the
Markov scheme (3.1), with linear addition of activation and deactivation
rates when going between closed and open states, i.e. a fourfold increase for
four closed particles, threefold increase for three closed particles, etc.

[C1]
4κ3−−⇀↽−−
κ4

[C2]
3κ3−−⇀↽−−
2κ4

[C3]
2κ3−−⇀↽−−
3κ4

[C4]
κ3−−⇀↽−−
4κ4

[O] (3.1)

An alterative hypothesis to independent gating is that ion channels con-
sist of protein subunits that respond in a cooperative manner to voltage
change, i.e. the activation of a single subunit increases the activation rates of
the remaining subunits. In contrast to the HH scheme, where the condition
of independence imposes strict rules for relations between rate constants,
Markov schemes for cooperativity can take many and different forms. How-
ever, to keep the comparative analysis clear, we choose the most stereotyped
case, a simple reversal of the rate modifiers for independent gating, which
gives us the cooperative scheme (3.2). Each successive activation and deac-
tivation step, from [Ci] to [Ci+1], or from [O]/[Ci] to [C4]/[Ci−1], increases
the transition rate.

[C1]
κ5−−⇀↽−−
4κ6

[C2]
2κ5−−⇀↽−−
3κ6

[C3]
3κ5−−⇀↽−−
2κ6

[C4]
4κ5−−⇀↽−−
κ6

[O] (3.2)
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To evaluate the effects of the two transition schemes on hysteretic con-
ductance, we use default parameter values for z, δ, and κ1/2 (z = 2, δ = 0.5
and κ1/2 = 1), and normalized values for midpoints of activation V1/2. In
multistate models, V1/2 depends on both the number of states and the type
of state transitions. For the independent model, we can rephrase the Boltz-
mann formula and derive the midpoint explicitly:

V1/2 = − kT

ze0
log

(
−1 +

(
1
2

)− 1
4

)
, (3.3)

which gives V1/2 = 21.4 mV. For the cooperative model, we use numerical
approximation, which gives V1/2 = 2.2 mV.

Figure 5 renders maximal conductance loops of independent and coop-
erative versions of the CCCCO model at different amplitudes of periodic
triangular voltage. Compared to the two-state model (figure 3), both ver-
sions display asymmetrical effects, with larger lags at hyperpolarized poten-
tials, which agrees with a larger delay in activation due to multiple closed
states. The asymmetry is most apparent at larger amplitudes, and more
clearly expressed for cooperative subunits. By themselves, the conductance
loops do not appear to provide any clear-cut information on gating schemes,
independent versus cooperative models. To put them to better use, we need
to relate them to conductance curves at equilibrium.
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Figure 5: Maximal conductance loops for independent and cooperative CC-
CCO for periodic voltage of different amplitudes: 5, 15, 25, 35, 45, 55,
65, and 75 mV (from inner to outer curves). The time period for maxi-
mal conductance varies depending on amplitude (cf. figure 6). Compared
to the two-state model, more closed states result in larger hysteretic loops.
Cooperativity reinforces the effect.

Compared to the independent model, the cooperative model has a steeper
conductance curve at equilibrium (cf. dashed line compared to full line in
top left plot of figure 6). This is a well-known property of cooperativity in
enzymatic reactions and biochemical systems [56]. Cooperativity involves
steeper sigmoidal functions, forming sharper activation thresholds. However,
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steepness does not necessarily imply cooperativity. For voltage-dependent
channels, the gating charge “z” is the more effective contributor to steepness
or sharpness. It is illustrated by the dotted line in the top left plot of figure
6. The line represents an independent four-state model where z is set to
4.18, which corresponds to the slope of the curve of the cooperative model
(derivation below). Thus, the voltage sensitivity of conductance at equilib-
rium is effected by both gating scheme and gating charge, which renders
these curves ambiguous regarding their nature.

In figure 6, we render the three surface plots of multistate hysteretic con-
ductance with respect to period and amplitude for three models: (1) inde-
pendent (top right) (2) cooperative (lower left) and (3) adjusted independent
(lower right). In the latter model, the gating charge has been adjusted to
match the slope of activation of the cooperative model. The charge adjust-
ment is derived from the Boltzmann formula. For the independent model
with n gating particles, we match the conductance at equilibrium to the
conductance of the cooperative model at voltage shift ∆V from midpoint
V1/2. The formula is the following:

zadj =
kT

∆V e0

(
log

(
−1 +

(
1
2

)− 1
n

)
− log

(
−1 + (po)

− 1
n

))
. (3.4)

Setting ∆V to +10 mV, and po to 0.8641 according to numerical results
for the cooperative model, we get zadj = 4.18 for the adjusted model. The
surface plots show two features. With matching gating charge, the hys-
teretic effect for the independent model increases with the amplitude of the
periodic voltage, but remains low at low amplitudes. Furthermore, there
is an interaction effect for the adjusted model, a displacement of the hys-
teretic effect at larger amplitudes towards higher frequencies. Thus, given
conductance curves at equilibrium, hysteretic conductance provides indica-
tions of independent and cooperative gating schemes. When gating charge
is known, the support of hysteretic conductance for modeling purposes gets
even stronger.

To check if these observations hold more generally, we extend the com-
parisons to 3-, 4- and 6-state models. The basic principles of the gating
schemes (3.1) and (3.2) remain the same, except for the number of states
and the rate factors that go with this. For example, rate factors are 1
and 2 for a 3-state model; and 1, 2, 3, 4 and 5 for a 6-state model. We
reuse default parameter values. Figure 7 shows plots of conductance curves
of all the models at equilibrium. To define adjusted models, we increase
the gating charge of the independent models. Using ∆V = 10 mV is an
arbitrary choice. Matching conductance slopes at smaller voltage shifts gen-
erates larger differences between independent and cooperative models. For
comparison, we keep ∆V = 10 mV.
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Figure 6: Hysteretic conductance of independent and cooperative four-state
models (CCCCO). Top left: stationary conductance of independent model
(full line) and cooperative model (dashed line) with default parameter val-
ues: z = 2, δ = 0.5 and κ1/2 = 1, and with voltage midpoints of activation
V1/2 adjusted to zero (0.0214 and 0.0022 respectively). The dotted line rep-
resents the conductance of a charge adjusted independent four-state model,
z = 4.18, matching the conductance of the cooperative gating scheme at equi-
librium. The three surface plots show the hysteretic conductance generated
for the three models, i.e. the conductance loop area with respect to the period
(seconds in log10) of the triangular wave and its amplitude (mV).

To summarize the simulation results we make use of maximal hysteretic
conductance, i.e. the maximal loop area at a given amplitude of periodic
voltage. The period that generates maximal hysteretic effect depends on
amplitude, varying between 1-5 ms. In figure 8, we render three scatter
plots for independent, cooperative and adjusted models respectively. The
pattern observed for the 4-state models is confirmed. Independent models
demonstrate slow gradual increase of hysteretic conductance with amplitude.
Increased gating charge does not alter this pattern. It actually reinforces it,
reducing hysteretic conductance at smaller amplitudes and increasing it at
larger amplitudes. In contrast, the increase in hysteretic effect of cooperative
models is most marked at intermediate amplitudes.
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Figure 7: Conductance curves of independent and cooperative models at
equilibrium. Left plot: Small circles represent the conductance curve of
the two-state model (CO). Full lines represent conductance curves of in-
dependent 3-/4-/5-/6-state models. Right plot: lines represent conductance
curves of cooperative 3-/4-/5-/6-state models. To adjust conductance cur-
vatures of independent models to curvatures of cooperative models, gat-
ing charge is increased according to the formula (composite Boltzmann):

zadj = kT
∆V e0

(
log

(
−1 +

(
1
2

)− 1
n

)
− log

(
−1 + (po)

− 1
n

))
, where ∆V is a cho-

sen voltage shift (+10 mV) from the midpoint of activation V1/2, and po is
the conductance at the corresponding voltage shift in the cooperative model.

3.2 Assessing rate functions

Under the HH condition of independent gating, records on conductance loops
may be used to directly estimate rate functions. We rewrite the master
equation of the two state channel (2.2):

˙[O]1 = κ1(V)[C]1 − κ2(V)[O]1 (3.5)

˙[O]2 = κ1(V)[C]2 − κ2(V)[O]2 (3.6)

⇔

κ1(V) =
˙[O]1 + κ2[O]1

[C]1
=

˙[O]1 + κ2[O]1
(1-[O]1)

(3.7)

κ2(V) =
˙[O]1[C]2 − ˙[O]2[C]1

[O]2[C]1 − [O]1[C]2
=

˙[O]1(1-[O]2)− ˙[O]2(1-[O]1)
[O]2(1-[O]1)− [O]1(1-[O]2)

(3.8)

where the dot marks the time derivative of open probability, and indices 1
and 2 mark the two data points on the conductance loop at a particular
voltage potential during hyperpolarization and depolarization respectively.
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Figure 8: Maximum hysteresis of independent, cooperative and adjusted in-
dependent models. Maximum hysteresis is the maximum loop area with re-
spect to the amplitude of the triangular wave: 5, 15, 25, 35, 45, 55, 65, and
75 mV. The period differs depending on the amplitude: 1-5 mV. For compar-
ison, the three plots also represent the maximum hysteresis of the two state
model (the lower filled circles in each plot). The open circles represent max-
imum hysteresis of 3-/4-/5-/6-state models. The size of the model relates
linearly on the level of the circle. Successive models in size are represented by
successive circles in vertical direction. For the charge adjusted models, there
is an interaction effect. Larger models result in larger hysteresis at larger
amplitudes, but lower hysteresis at lower amplitudes. The scatter plots show
that the differences between independent and cooperative gating schemes re-
main after adjusting for gating charge. For independent models, there is a
gradual increase in hysteretic conductance with amplitude, whereas coopera-
tive models favor rapid increase at lower amplitudes. Adjustment of gating
charge reinforces these differences.

For a simple two-state voltage-dependent channel, a record of hysteretic
conductance at a single amplitude and period will be sufficient to estimate
rate functions. At each potential, we have two data points, the open prob-
ability and its derivative, which provide us with an explicit solution of the
rate equations without resorting to numerical solutions. A necessary con-
dition for this estimation is that the conductance never reaches a state of
equilibrium, in which case the rate equations become indeterminate. An-
other condition is the quality of the experimental data, i.e. high precision
in measurements, low noise levels. Here we simply assume that these con-
ditions can be met in some way, e.g. by averaging over several experiments
or frequencies.

In a two state-channel, the open probability dictates the probability of
being in the closed state. This makes estimation easy. For multi-state ion
channels with more free parameters, data points are in general insufficient to
solve the rate equations. However, assuming HH modeling conditions, inde-
pendent gating particles and identical rate functions, we may still estimate
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the rate functions explicitly, which may at least serve to test the assumption
of independent and identical gating particles.

For a multi-state HH model with n gating particles, the open probability
is given by the product of the open probabilities of the particles. Assuming
identical parameter values for each gating particle, we may calculate the
open probability of the multistate model [O]n by replacing [O] and ˙[O] in
the two-state formula by the corresponding multistate variables.

[O]n = [O]n (3.9)
˙[O]n = n[O]n−1 ˙[O] (3.10)

4 Mode shifts and conductance delays

In a series of studies of the hyperpolarization-activated channel (HCN),
alternative Markov models were compared on the basis of the triangular
wave protocol, as well as traditional relaxation protocols [12][11]. One also
checked conductance loops of the potassium (K) channel. For both HCN
and K channels, the hysteretic effect was less pronounced for the ion chan-
nel than for the model. The loop area was smaller and more stable over a
broad range of frequencies. The models predicted larger effects. The dis-
crepancy agrees with studies of nonequilibrium conductance. As mentioned
earlier, there are studies using dynamic voltage protocols for the purpose
of model discrimination. Even if not explicitly stated, the published data
indicates lower sensitivity to frequency variation in real channels compared
to models [26][38]. In other words, models based on relaxation protocols
overestimate ion channel sensitivity to frequency variation. Thus, voltage-
dependent Markov models appear to lack some property that makes it diffi-
cult to fit them to dynamic data. Here we explore a line of inquiry suggested
by the HCN studies, that can be explored with conductance loops.

4.1 Mode-shifts in HCN

Hyperpolarization-activated cyclic nucleotide-gated cation channels (HCN)
support the Ih current, the “pacemaker current”, also referred to as If in
the heart and Iq in the brain. As its name reveals, it activates at hyperpo-
larization and closes at depolarization. It is modulated by cAMP, as CNG
channels, shifting the midpoint of activation towards depolarized potentials.
It appears to have multiple closed and open states. Furthermore, the chan-
nel is permeable to both K+ and Na+ (≈ 4:1), to some extent also Ca+2

[36]. The voltage midpoint is about −70/−90 mV. The single channel con-
ductance is low, 1-10 pS, which is the main obstacle for patch-clamp studies
of single channel activity. The kinetics varies depending on channel subtype
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[3][55]. Several, but non-conclusive Markov models have been proposed to
account for the kinetics [10].

Two isoforms of HCN channels demonstrate hysteresis, spHCN and HCN1.
The hysteretic effect involves shifts in the voltage dependency of both gating
currents and the macroscopic conductance depending on holding potential.
The midpoints of activation are shifted about +(40-60) mV when measured
from hyperpolarized holding potentials compared depolarized potentials. It
goes together with other changes of kinetics. To account for all observations,
a distinct mechanism is proposed for regulating the voltage-sensitivity of the
HCN channel, mode-shift. It is assumed to involve two modes with different
midpoints of activation. Mode I has a voltage midpoint of activation at
−105 mV; and mode II at −45 mV. With an average midpoint of activation
at −75 mV, the mode shift is ± 30 mV. The effect is a voltage-independent
resistance to conductance change, i.e. transitions between open and closed
states.

To formalize mode shift, the authors make use of a circular four-state
model. To avoid details on HCN kinetics, we present a generalized model.

[C2]
κ1f−−⇀↽−−

κ2
f

[O2]

λ
f »ºλf λf »º λ

f

[C1]
κ1
f−−⇀↽−−

κ2f
[O1]

(4.1)

To keep comparisons with previous models and simulations clear, we let
the circular model open and close at depolarization and hyperpolarization
respectively. Thus, we make use of κ2 and κ1. The mode shift is made
explicit by λ, the voltage-independent mode transition rate, and an allosteric
factor f, modulating the mode transition rate depending on the conductance
state. The allosteric factor also secures the condition of micro-reversibility
for circular models at equilibrium. One implication of the structure is a
stationary distribution of open probability equal to the one of the two-state
channel. This is clear from the following derivation.
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P([O]) =
[O1] + [O2]

[O1] + [O2] + [C1] + [C2]
(4.2)

P([O]) =
[O1]
[C1] + [O2]

[O1]
[O1]
[C1]

[O1]
[C1] + [O2]

[O1]
[O1]
[C1] + [C1]

[C1] + [C2]
[C1]

(4.3)

P([O]) =
κ1

κ2f2 + κ1
κ2

κ1
κ2f2 + κ1

κ2
+ 1 + 1

f2

(4.4)

P([O]) =
1

1 + κ2
κ1

(4.5)

=
κ1

κ1 + κ2

Thus, the open probability at equilibrium is equal to a two-state chan-
nel, where the open probability only depends on κ1 and κ2. The equality
is due to highly idealized conditions: (1) symmetric transition rates, (2)
the symmetric allosteric factor λ, (3) and symmetric mode transition rates.
Although unrealistic, it allows us to simulate and compare the hysteretic
effect of mode shifting as a distinct gating scheme, like independent and
cooperative gating schemes.

Figure 9 shows the simulation results for the four-state channel, with
f =2.175, corresponding to a mode-shift ≈ 40 mV (≈ ±20 mV from the
midpoint of activation). The two surface plots render results for mode tran-
sition rates 1 Hz and 0.1 Hz respectively. The remaining parameters have
default values: V 1

2
= 0, κ 1

2
= 1, z = 2, and δ = 0.5. Compared to the two

state channel, the mode-shift reduces maximal hysteresis and broadens the
range of effective frequencies, in particular for the model with lower mode
transition rate. Even if not explicitly stated, this is what was observed in
the HCN study. The result is also in line with the studies indicating that the
effect of frequency variation on ion channels is more limited than expected
from classical models.

With mode-shifting, the hysteretic effect, delayed conductance, is a struc-
tural property of ion channels. It is an intrinsic voltage-independent switch
of kinetics delaying voltage-dependent transitions. It goes beyond nonequi-
librium conditions of dynamic voltage. Recent research on the voltage-sensor
of ion channels (S4) indicates that the mode-shifting is a general property
of voltage-dependent channels [54]. The basic mechanism is the same, but
the conductance effects vary depending on overall ion channel kinetics. In
the final sections, we propose that mode shifting may also explain more
exceptional cases of single channel hysteresis.
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Figure 9: Hysteresis in the circular four-state model, with allosteric factor
f=2.175, corresponding to a mode-shift ±20 mV: Compared to the two-state
model, mode-shifting attenuates the maximum and broadens the effective
range of frequencies in response to which hysteretic conductance is generated.
This is most prominent for mode shifting with lower mode transition rate
than voltage-dependent rates. Left: λ = 1. Right: λ = 0.1.

4.2 Hysteresis in NSVDC

The Non-Selective Voltage-Dependent Cation (NSVDC) channel is a channel
found in the human red blood cell (RBC) membrane [4][5][22]. The channel
is permeable to both mono- and divalent cations and contributes to depolar-
ization, like the HCN channel. In both macroscopic and microscopic studies,
the channel demonstrates a pronounced delay of conductance after discrete
voltage change. When stepping from a hyperpolarized potential (0 mV) to a
depolarized one, the open probability is markedly lower than when stepping
to the same potential from an even more depolarized potential (activation
midpoint shift about 25 mV). This holds after long periods of measurement
(hours). The authors conclude that the enduring effect was long and stable
enough to exclude non-equilibrium effects on conductance [22].

In response to the experimental findings, Gudowska-Nowak et al [14]
proposed a stochastic theory of hysteresis in single channels. It predicts
hysteresis as a general property of ion channels, for which reason it deserves
attention. Let us briefly summarize it.

V (T ) = 〈V 〉+ ξ(t) (4.6)

Voltage V (t) is assumed to be random and time-dependent due to voltage
fluctuations ξ(t) defined by a Gaussian stochastic process (Wiener process).
This transforms the gating function of a two state channel — the master
equation (2.2) — into a stochastic differential equation, making the open
probability into a random variable itself. The open probability will not only
depend on the applied voltage potential, but also on the slow time evolution
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of the open probability distribution.

〈ξ(t)ξ(t + s)〉 = σ2e(−s/ε) (4.7)

where ε is the autocorrelation time.
The model presupposes that the rate of voltage fluctuation, ξ, is much

slower than the equilibration time of the channel, τ . The open probability
p∞(V) is then both random and quasi-stationary, with a probability density
ps(po) that under quasi-stationary conditions is derived from the density of
ξ:

ps(ξ) =
1√
2πσ

e−
ξ2

2σ2 (4.8)

By substituting rate functions (2.5) and (2.6) for rate constants in for-
mula (2.4), we derive a stationary open probability function of voltage.

p∞(V ) =
1

1 + e−c(V−V1/2)
(4.9)

where c is a constant.
By using formula (4.6) and substituting ξ + 〈V 〉 for V , p∞ is made a

function of ξ. Standard probabilistic calculus is applied to derive the density
Ps(p∞):

Ps(p∞) = ps(f−1(p∞))| d

dp∞
f−1(p∞)| (4.10)

=
1√

2πσc

1
p∞(1− p∞)

e−
(V1/2+1

c log(
p∞

1−p∞ )−〈V 〉)2

2σ2 (4.11)

Figure 10 illustrates the density of open probability for different param-
eter values, σ2 and voltage potentials ∆V = V1/2 − 〈V 〉. For σ2 > 1, the
density (4.10) is bimodal. The density has maximums at p0 = 0 and 1,
minimum in between. Gudowska-Nowak et al [14] concludes that hysteresis
is induced by continuous change of voltage potential ∆V .

The stochastic theory predicts hysteresis when the voltage fluctuation
is above a critical value, σ2 = 1. However, this is based on a rather ques-
tionable assumption. The parameter values c = 1 and ∆V = 1 is within
physiological conditions, |∆V | ≈ 50 mV, but assuming voltage fluctuations
of the same order of magnitude is extraordinary. Furthermore, the cited
findings point rather to voltage-independent hysteresis, delayed conductance
over enduring conditions. Finally, the theory predicts a bimodal density of
open probability for all voltage-dependent channels. However, reports are
scarce. Let us therefore propose an alternative mechanism to explain the
findings.

23



0  0.2 0.4 0.6 0.8 1  p
0 

5 

10

15

20

f(p)

σ2=10

σ2=0.1

σ2=1

Figure 10: The density of stationary open probability Ps(p∞) due to voltage
fluctuation with variance σ2, at voltage potential ∆V = V1/2−〈V 〉 = 1, and
c = 1. Graphs illustrate effects of σ2 = 0.1, 1, and 10. σ2 > 1 results in a
bimodal distribution that may produce hysteresis.

4.3 Auto-regulation of voltage sensitivity

With mode transitions slower than voltage-dependent kinetics, we expect
hysteretic effects of the kind observed for the NSVDC channel, voltage-
independent conductance delays. To illustrate, figure 11 shows a dwell-time
series from a single channel simulation of the four state channel, either start-
ing in mode 1 (top) or mode 2 (bottom). It corresponds to priming a channel
with either hyperpolarized or depolarized potentials, then stepping to one
and the same potential, 0 mV. Both traces show shifts between modes, but
also hysteretic effects, i.e. mode preference depending on initial condition.

In the HCN channel, mode transition rate is of the same order of mag-
nitude as voltage-dependent gating. This makes it hard to separate modes
in a dwell time record. With more pronounced differences in mode and
voltage-dependent kinetics, single channel mode shifting is easier to identify
and quantify. In real ion channels, however, we have no reason to expect
only two modes. A Markov model with two modes works fairly well for the
HCN channel, as long as it addresses coarse macroscopic data. In the case of
the NSVDC channel, the dwell-time data suggests multiple modes, perhaps
even graded ones.

The circular model easily accommodates multiple modes. The scheme
(4.12) represents a circular model with five modes, with a central mode that
represents the midpoint of activation at equilibrium, flanked by modes with
increasing, symmetric shifts of activation. We adjust parameters according
to the number of modes, but maintain the general structural properties of
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Figure 11: Single channel hysteresis. The figure shows the results of a single
channel simulation of the four-state circular model at 0 mV, with f=2.175
and λ = 0.1, starting in the closed state of mode 1 (top) and the open state
of mode 2 (bottom) respectively.

the four-state model.
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The scheme serves to illustrate a more general argument, that we expect
increasing conductance delays with an increasing number of mode shifts.
In figure 12, we show the simulation result of a circular model with eleven
modes, with the same modeling principles as above. The allosteric factor
is designed to produce the same maximum mode shift as in the four-state
channel: f =1.1685 ⇒ ∆V ≈ ±20 mV at terminal end modes (k=5). As
in the four-state case, the modes are traversed in a specific direction. In
a closed state, the ion channel favors the mode with the highest midpoint
of activation, resiting a transition to open state. The reverse holds for an
open state, a preference for the mode with the lowest midpoint of activa-
tion, resiting a transition to closed state. The effect is an auto-regulation
of conductance, i.e. voltage-independent modulation of voltage-dependent
kinetics.

With an increasing number of modes, and with mode kinetics matching
voltage-dependent kinetics, the mode shifting becomes less distinct, while
the hysteretic effects get more pronounced. We are now closing in on the
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Figure 12: Multiple mode hysteresis. The figure shows the results of a sim-
ulation of the 2x11-state model with 11 modes at 0 mV, with f=1.1685 and
λ = 1, starting in the most probable closed state in low gating mode during
hyperpolarization (top) and the most probable open state in high gating mode
during depolarization (bottom).

behavior of the NSVDC channel. With multiple modes and slower mode
transition rates, the hysteretic effect can appear more or less continuous,
more or less enduring. Single modes may become difficult to discern, blurring
into each other, while the history-dependent voltage-dependent kinetics gets
more and more pronounced. However, to generate truly continuous auto-
regulated conductance, we may need to go beyond discrete Markov models.
To model continuous auto-regulation, we must consider mechanisms like
auto-catalysis and enzymatic mechanisms. For example, we can imagine
active (open) ion channels generating a modulator [M] modifying the rate
functions. The concentration of ion species is a natural candidate for a
continuous modulator, but any chemical, electrical, and thermal effect of
gating is a candidate. Such models need to be defined and evaluated in
relation to particular ion channels.

5 Conclusions

Reports of ion channel hysteresis are rare, both at the macroscopic and
the microscopic levels of observation. It does not mean that it is a rare
property, or that it is without significance to ion channel function. It may
as well be a result of research priorities. Traditional experimental protocols,
generating relaxation records and dwell-time series, are standard methods
that are often hard to reconcile with each other. On the one hand, relaxation
records represent whole-cell conductances that are easier to model, whereas

26



dwell-time records reveal single ionic conductances. One the other hand,
macroscopic records may be more true to ion channel activity in a more or
less intact cell, whereas microscopic records of an isolated channel are more
sensitive to experimental conditions, noise and perturbations.

Our argument here is hysteretic conductance provides alternative mea-
sures of voltage sensitivity, e.g. conductance loops. Even if much remains to
be elaborated and formalized, we have shown that hysteretic conductance
can serve to explore and evaluate the state space of voltage-dependent ion
channels, e.g. independent versus cooperative gating. Hysteretic conduc-
tance is here a complement to traditional methods. Together with infor-
mation on gating charge and conductance curves at equilibrium, indepen-
dent and cooperative gating makes different predictions of hysteretic conduc-
tance. In principle, hysteretic conductance also allows us to test assumptions
of independent gating schemes. More generally, it is a source of information
on the voltage sensitivity of ion channels, providing indications of mode
shifting, interactions between voltage-dependent and voltage-independent
processes.

In living cells, there is constant interplay of electrodynamic and bio-
chemical processes. Various molecular interactions modulate the voltage-
dependency of ion channels. Mode-shifting is a specific case of “modal
gating”, a concept that also covers processes like inactivation and hyper-
activation, sensitization and desensitization [13][17][20][31][48][51]. All are
molecular processes that affect the voltage sensitivity of ion channels. Here
we have only scratched the surface of the topic. In the future, we need to sys-
tematically compare various mechanisms that are involved in the regulation
of the voltage-sensitivity of ion channels.

Another question that we leave unanswered is whether hysteretic con-
ductance fulfils any real function in neural signaling. We have only discussed
its value for modeling purposes. A couple of studies do indicate that hys-
teresis in HCN channels may in fact serve the regulation of oscillatory neural
activity [1][12]. This is something that deserves more and careful attention
in future research.
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Abstract

In whole-cell studies of neuronal excitability, modeling of neuronal con-
ductance usually involves a large number of parameters that are often
assumed to be constant, e.g. maximal conductance, midpoints and
slopes of activation and inactivation. In neurons, the parameters do
not correspond to static physiological correlates, but are subject to
variation on different scales and levels. Here we show that statistical
sensitivity analysis of parameter variations, and remodeling of systems
of ordinary differential equations, can reveal clues to new mechanisms
of neuronal firing, signal transduction pathways, other than the tra-
ditional mechanisms of stimulus and response. We take a closer look
at a conduction model of nociceptors, i.e. primary sensory neurons
involved in sensing noxious stimuli. The analysis involves four parts:
(I) defining response measures, (II) optimal parameter sampling, (III)
statistical sensitivity analysis, and (IV) ODE remodeling, i.e. translat-
ing statistical findings into mechanistic conductance components. The
analysis ends up in experimental predictions: dual firing mechanisms,
i.e. inactivation shifts of the TTX-resistent sodium current NaTTX-R

and activation shifts of the delayed rectifier potassium current KDR.

Key words: statistical sensitivity analysis, whole-cell conductance,
nociceptor, systems biology, Hodgkin-Huxley, ODE system, dual
coding, gain function
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1 Introduction

The purpose of mathematical and computational modeling in systems biol-
ogy is to explore the many and diverse signaling pathways that exist in living
cells. Modeling and simulation allow for systematic manipulation of large
numbers of components, often larger than the number of variables that can
be controlled in a single experimental study. This enables us to explore cellu-
lar mechanisms that are hard or even impossible to measure experimentally,
but it comes with a price. The more elaborate model, the more parameters
enter into its making and the harder it gets to evaluate it, “the curse of
dimensionality”. Consequently, there is an increasing need for methods of
model evaluation and sensitivity analysis. Here we present a statistical ap-
proach to sensitivity analysis of parameter variation in conductance models
of neurons.

In conductance models of neurons, parameters are based on experimental
research, but then often assumed constant. Still, the physiological correlates
to the model parameters are subject to ubiquitous variation on different
cellular levels and different spatiotemporal scales. When dealing with con-
ductance models of neurons, we may discern at least three different kinds of
parameter variation: (1) phenotypic variation between neurons (morphol-
ogy), (2) electro- and biochemical regulation within neurons (expression and
modulation of receptors and ion channels) and (3) random variation (ionic
and molecular fluctuations). Variation of conductance model parameters ex-
ists at all three levels. In this article, our focus is on variation due to electro-
and biochemical regulation within neurons, more specifically on variation of
model parameters that may regulate the excitability of nociceptors.

Nociceptors refer to primary sensory neurons, i.e. dorsal root ganglion
(DRG) C-type neurons, with high-thresholds,specifically involved in sensing
harmful stimuli. The conductance properties of nociceptors are plastic and
subject to regulation and modulation of diverse kinds (Amir et al 1999; De-
vor 1999; Matsutomi et al 2006; Okuse 2007; Rush et al 2007; Schmelz and
Schmidt 2009; Smith and Lewin 2009; Belmonte and Viana 2009). They
are polymodal, i.e. responding to both mechanical, thermal, and chemical
stimuli. Recent findings also indicate that they also code for different stim-
uli, i.e. different response frequencies depending on the type of stimulus
(Cavanaugh et al 2009; Olausson 1998). This raises a fundamental question
regarding the coding properties of neurons. How do they separate and code
for different stimuli when their output signal is regulated by one and the
same compartment, a single axon? It is one thing that single neurons react
to different stimuli. It is quite another thing that they code for different
stimuli in their output (Koch 1999; Rieke et al 1999). This motivates a
closer look at the conductance properties of nociceptors.

A characteristic feature of nociceptors is the presence of several types
of sodium ion channels giving rise to multiple sodium conductances. So far
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four sodium channels have been identified. Two of them drive the most
well-known macroscopic currents: TTX-sensitive and TTX-resistant cur-
rents. These have been included in a published model that is the point
of departure for our study, here called “the Herzog model” (Herzog et al
2001). The model relies on the classic Hodgkin-Huxley approach for mod-
eling whole-cell conductance in single neurons (Hodgkin and Huxley 1952).
The core assumption is that the cell membrane functions as a capacitor, in
parallel with active (variable) and passive (fixed) resistors regulating differ-
ent ionic currents, together making up a single circuit. It corresponds to
the experimental condition of whole-cell measurement, i.e. measurements of
whole-cell currents consisting of thousands of smaller microscopic currents
through single ion channels. This modeling framework still guides experi-
mental research on single neurons.

The aim here is to statistically analyze the excitability of the Herzog
model to map the effects of parameter variations systematically. We increase
the validity of the model by adding some well-known conductance compo-
nents in nociceptors: a transient potassium current (Everill et al 1998) and
a slow and a fast hyperpolarization-activated current (HCN, “queer cur-
rents”) (Kouranova et al 2008; Momin et al 2008). With default values, the
extended Herzog model reflects the response pattern of a class III neuron
(Prescott et al 2008). When constant positive stimulus is applied, it fires
once and then remains silent. It fires repeated action potentials in response
to negative stimulation, but does not manifest any monotone response func-
tion of stimulus intensity. By exploring the model excitability in relation to
random parameter variations, we hope to discover alternative mechanisms
of spiking.

Within systems biology, studies of parameter variability are often re-
ferred to as exploring the robustness or fragility of the networks. When a
large range of parameter values supports the same dynamical behavior, the
system is considered robust (Marino et al 2008; Stelling et al 2004). Here
we hypothesize that sensitive parameters can also be sensitive for a reason,
not only being an annoyance, but allowing for regulation and modulation
of system output (Ingalls 2008; Saltelli et al 2000). By identifying critical
and modulatory parameters in experimental models, we generate hypothe-
ses regarding transduction and conduction mechanisms, i.e. mechanisms
involving biochemical and electrochemical regulation of neuronal excitabil-
ity. To our knowledge, this method of exploring potential regulatory and
modulatory parameters by statistical sensitivity analysis has not been done
before, even if there are related approaches (Weaver and Wearne 2008).

The study involves four steps: (1) defining response measures, (2) de-
veloping and testing sampling protocols, (3) statistical sensitivity analysis
of response functions, and (4) remodeling of conductance components. As
systems of ordinary differential equations (ODE), conductance models do
not separate non-firing and firing responses. Therefore the first step is to
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Figure 1: Firing behavior of the Herzog model in response to positive and
negative stimulation applied after 3000 ms run time.

define relevant response measures, i.e. measures of system activity based on
time series of system variables. After this, we identify an optimal sample of
parameter variation, i.e. a sample generating maximal correlation between
input and output, allowing for sampling without pre-defined ranges of pa-
rameter values. This sample is the basis for further statistical sensitivity
analysis of response functions, i.e. effects of random parameter variation on
response measures. We make use of logistic and linear regression analysis
(Davison 2003; Dobson and Barnett 2008) to identify critical and modula-
tory parameters of excitability.

The final step is the remodeling of statistical response functions into re-
alistic conductance mechanisms. The parameter sampling is based on the
unrealistic assumption of normal distribution of parameter values. There-
fore, we need to translate the statistical findings into plausible conductance
mechanisms. This is done by remodeling some of the conductance compo-
nents in the original model, thereby validating the statistical findings. The
conclusion is that our model allows for alternative mechanisms of excitabil-
ity. Different parameters of the delayed K current and the TTX-resistant
Na+ current respectively support different ranges of frequency responses,
in principle allowing for regulation and modulation of system output by
different signal transduction pathways.

2 An extended conductance model of nociceptors

The Herzog model is a single compartment model of a primary sensory
DRG neuron. In its basic form, it includes two sodium (Na+) currents,
TTX-S and TTX-R, one delayed rectifier potassium (K+) current, and one
leakage current. The sodium conductances are regulated by both activation
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Parameter Value Description
C 0.81 µF cm−2 Capacitance
ENa 62.94 mV Reversal potential for Na+-current
EK -92.34 mV Reversal potential for K+-current
EQ -30 mV Reversal potential for Q-current
EL -54.3 mV Reversal potential for leak current
gNaTTX−S

35.1 mS cm−2 Maximum conductance for NaTTX−S

gNaTTX−R
6.9 mS cm−2 Maximum conductance for NaTTX−R

gKdr 2.1 mS cm−2 Maximum conductance for Kdr
gKa 1.05 mS cm−2 Maximum conductance for Ka
gQfast

0.15 mS cm−2 Maximum conductance for Qfast

gQslow
0.15 mS cm−2 Maximum conductance for Qslow

gLeak 0.14 mS cm−2 Constant conductance for leak current
Istim 0 mV Zero defines default resting potential Vi

Vi -59 mV Initial membrane potential (default: 59 mV)

Table 1: Default parameter values in the main voltage equation in the ex-
tended Herzog model

and inactivation, whereas the slow potassium conductance is regulated by
activation alone. To this core model, we have added three currents, one
fast transient K+ current, one fast and one slow hyperpolarization-activated
(Q) currents. The fast K+ current has been added to agree with general
research findings on DRG neurons. The delayed K+ current is dominant,
but a smaller fast transient K+ current is also observed (Everill 1998). The
equations for the K+ current has been taken from a more elaborate model
of a nodose neuron, which actually inspired the Herzog model in the first
place (Schild et al 1997). The two Q currents have been defined in an article
on the expression and distribution of HCN channels, where the authors also
included the currents in the Herzog model to study their effects on single
spike kinetics (Kouranova et al 2008). We reuse formulas and parameter
values also in this case.

The extended Herzog model consists of ten differential equations, one
main voltage equation and nine gating functions. The main equation (2.1)
defines voltage kinetics, i.e. change of membrane potential as a function of
ionic currents. The gating functions (2.2-2.10) specify ion channel kinetics,
i.e. ionic conductance changes as a function of voltage dependence. Table 1
lists default parameter values of the main voltage equation. Table 2 summa-
rizes the nine gating functions. Table 3 specifies default parameter values in
the gating functions (equations 2.2-2.10). The parameters are not explicitly
represented by names, but by their values.
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Variables Description
V Voltage (membrane potential)
m1 Activation of Na TTX−S conductance
m2 Activation of NaTTX−R conductance
n1 Activation of Kdr conductance
n2 Activation of Ka conductance
h1 Inactivation of NaTTX−S conductance
h2 Inactivation of NaTTX−R conductance
h3 Inactivation of Ka conductance
q1 Activation of fast Q conductance
q2 Activation of slow Q conductance

Table 2: Variables (functions) in the extended Herzog model

C
dV

dt
= −(INaTTX−S

+ INaTTX−R
+ IKdr + IKa

+ Iq−fast + Iq−slow + Ileak − Istim) (2.1)

INaTTX−S
= gNaTTX−S

m3
1h1(V − ENa)

INaTTX−R
= gNaTTX−R

m2h2(V −ENa)

Ikdr = gKdrn1(V −EK)

Ika = gKan
3
2h3(V −EK)

Iq−fast = gQ−fastq1(V − EQ)

Iq−slow = gQ−slowq2(V −EQ)

Ileak = gleak(V − EL)

Istim = external current (µA cm−2)

dm1

dt
=

m1(∞)−m1

τm1

(2.2)

m1(∞) =
αm1

αm1 + βm1

τm1 =
1

αm1 + βm1

αm1 =
11.49

1 + e
V +8.58
−8.47

βm1 =
11.49

1 + e
V +67.2

27.8
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Parameter Value Description
Um1 -21.6 mV Voltage midpoint of activation for NaTTX−S

Um2 -40 mV Voltage midpoint of activation for NaTTX−R

Un1 -14.6 mV Voltage midpoint of activation for Kdr
Un2 -28 mV Voltage midpoint of activation for Ka
Uq1 -87.2 mV Voltage midpoint of activation for Qfast

Uq2 -87.2 mV Voltage midpoint of activation for Qslow

Uh1 -72.9 mV Voltage midpoint of inactivation for NaTTX−S

Uh2 -57 mV Voltage midpoint of inactivation for NaTTX−R

Uh3 -58 mV Voltage midpoint of inactivation for Ka
km1 8.5 Slope of activation for NaTTX−S

km2 9.9 Slope of activation for NaTTX−R

kn1 18 Slope of activation for Kdr
kn2 28 Slope of activation for Ka
kq1 9.7 Slope of activation for Qfast

kq2 9.7 Slope of activation for Qslow

kh1 7.9 mV Slope of inactivation for NaTTX−S

kh2 3.1 mV Slope of inactivation for NaTTX−R

kh3 7 mV Slope of inactivation for Ka

Table 3: Gating parameters and their default values in the extended Herzog
model

dm2

dt
=

m2(∞)−m2

τm2

(2.3)

m2(∞) =
αm2

αm2 + βm2

τm2 =
1

αm2 + βm2

αm2 =
1.032

1 + e
V +6.99
−14.87115

βm2 =
5.79

1 + e
V +130.4

22.9
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dn1

dt
=

n1(∞)− n1

τn1

(2.4)

n1(∞) =
1

1 + e
V +14.62
−18.38

τn1 =
1

αn1 + βn1

αn1 =
0.001265(V + 14.273)

1− e
V +14.273
−10

βn1 = 0.125
(V + 55)
−2.5

dn2

dt
=

n2(∞)− n2

τn2

(2.5)

n2(∞) =
1

1 + e
V +28
−28

τn2 = 5e−0.0222(V +65)2 + 2.5

dh1

dt
=

h1(∞)− h1

τh1

(2.6)

h1(∞) =
αh1

αh1 + βh1

τh1 =
1

αh1 + βh1

αh1 = 0.0658e
−(V +120)

20.33

βh1 =
3

1 + e
V−6.8
−12.998

dh2

dt
=

h2(∞)− h2

τh2

(2.7)

h2(∞) =
αh2

αh2 + βh2

τh2 =
2

αh2 + βh2

αh2 =
0.06435

1 + e
V +73.26415)

3.71928

βh2 =
0.13496

1 + e
V +10.27853
−9.09334
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dh3

dt
=

h3(∞)− h3

τh3

(2.8)

h3(∞) =
1

1 + e
V +58

7

τh3 = 100e−0.0352(V +30)2 + 10.5

dq1

dt
=

q1(∞)− q1

τq1

(2.9)

q1(∞) =
1

1 + e
V +87.2

9.7

τq1 =

{
250 + 12e

V +240
50 if V < −70

140 + 50e
V +25
−20 if V ≥ −70

dq2

dt
=

q2(∞)− q1

τq2

(2.10)

q2(∞) =
1

1 + e
V +87.2

9.7

τq2 =

{
2500 + 100e

V +240
50 if V < −70

300 + 542e
V +25
−20 if V ≥ −70

3 Response measures and sampling protocols

The extended Herzog model consists of 32 parameters (table 1 and 3 above).
To record and analyze the effects of parameter variation on model output,
we run computer simulations of the model with all parameters treated as
independent random variables. A simulation results in a time series of data,
i.e. a time sequence of voltage potentials, given a set of random parameters.
The time series constitutes a single observation in a larger sample of time
series for statistical analysis.

We use Matlab’s ODE45 to solve the ODE system, with 2 seconds of
run time and a time step of 1 µs. The first second serves the purpose of
letting the system adjust to the parameter setup, to reduce excessive ef-
fects of initially unstable system conditions. After initial calibration, we
record voltage potentials during a second. The time window of one sec-
ond is a compromise between three competing goals: fast simulation run
time, stable system conditions and agreement with experimental protocols
in electrophysiological research.
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3.1 Defining response measures

The Herzog model is a single electrical circuit. Stimulus Istim is the input.
Voltage V (t) is the output. In itself, it lacks criteria for deciding what is to
be counted as effective neuronal responses (firing). Mathematically, we can
analyze the asymptotic behavior of the ODE system and define different
attractors, such as states of equilibrium and stable oscillation. However,
neuronal firing is something more and less than that. On the one hand, it
is not restricted to oscillations of membrane potentials. Firing may refer
to transient spikes or single spikes. On the other hand, not all neuronal
oscillations constitute firing, e.g. subthreshold oscillations, oscillations of
low amplitude. Firing refers to spikes of critical amplitude, although we
lack criteria for deciding on the critical levels.

To analyze firing dynamics on the basis of time series of voltage poten-
tials, we need response measures that account for both discrete and con-
tinuous properties of system output, i.e. transitions between discrete states
of non-firing and firing, denoted η ∈ ℵ, as well as monotone change in fre-
quency and amplitude of periodic responses, ω and θ ∈ <+. To this end, we
define five response measures based on the time series of voltage output: (1)
maximum autocorrelation coefficient ρ, (2) standard deviation σ, (3) class
η = {1, 2, 3}, (4) dominant frequency ω for class η = {2, 3}, and (5) domi-
nant amplitude θ for class η = {2, 3}. We define each response measure in
turn. We begin with the maximum autocorrelation coefficient, namely

ρn,m = max (ρn,m,τ ) for τ > τmin(ρn,m,τ ) (3.1)

where

ρn,m,τ =

∑N−τ
i=1

(
V (ti)−

∑N
j=1 V (tj)

N

)(
V (ti + τ)−

∑N
j=1 V (tj)

N

)

∑N
i=1

(
V (ti)−

∑N
j=1 V (tj)

N

)2 , (3.2)

where τ is a time lag, (n,m) represents the simulation run (n={1,2,...,5000})
and the sample (m={1,2,3}).

The maximum autocorrelation coefficient is a measure of the quality of
periodic response, 0 < ρ < 1. To exclude autocorrelation coefficients at lag
zero, unity, ρ is here defined as the maximum coefficient at time lags greater
than the time lag of the minimum autocorrelation coefficient.

The autocorrelation coefficient is a relatively straightforward measure of
periodic responses. It is more difficult to define a measure of amplitude that
take the potential diversity of spike forms into account. A basic measure is
σ, the standard deviation of the time series of voltage potentials:
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σn,m =

√√√√ 1
N

N∑

i=1

(
V (ti)−

∑N
j=1 V (tj)

N

)2

(3.3)

The standard deviation cannot account for irregular spike forms, for
example a short versus a long single spike. In such a case, the maximum
may be the same, but σ differs due to the averaging of voltage potentials
over the time series. Despite the shortcomings, the standard deviation is
our basic measure of amplitude.

K-means cluster analysis is a method of data analysis and classification.
To account for discrete transitions between non-firing and firing responses,
we apply k-means cluster analysis to the simulation runs based on the au-
tocorrelation coefficient ρ and the standard deviation σ, using the shortest
Euclidean distance after standardization of variables.

The observations are clustered into three classes η={1,2,3}. We choose
three classes (3-means cluster analysis) to make it easier to discover potential
competing mechanisms generating borderline weak responses: (1) resting
potentials (σ ≈ 0, ρ ≈ 0), (2) weak responses (σ > 0 and ρ > 0) and
(3) proper firing (σ À 0 and ρ À 0). To evaluate the cluster analysis,
we calculate pair-wise rank correlations between η and the other response
measures, choosing a clustering that generates maximum correlation.

For proper firing responses η = 3, we apply two further response mea-
sures: dominant frequency ω and dominant amplitude θ. The dominant
frequency ω, defined as

ωn,m =
1

τρn,m

, (3.4)

is the frequency corresponding to ρn,m, the maximum autocorrelation coef-
ficient. There may be more than one response frequency in time series of
voltage potentials, but to simplify, we leave this out of account.

Maximum voltage minus minimum voltage θ is another measure of spike
amplitude:

θn,m = Max(V (ti))−Min(V (tj)) for all {i, j} ∈ {1, ..., N} (3.5)

In contrast to σ, an average, θ is based on two single values in the
voltage time series. This makes it sensitive to non-stationary simulations,
e.g. steady increases or decreases of voltage potentials. When limited to
known periodic responses η = 3, its sensitivity is an advantage, enabling
estimation of the amplitude of both regular and irregular forms of spiking.

Our response measures (ρ, σ, η, ω and θ) constitute a first attempt to
define measures for statistical sensitivity analysis of neuronal models. They
have limitations. For example, they cannot account for single spikes. Single
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Source of variation
Parameter class Within neurons Across neurons
Stimuli High High
In-/activation midpoints Moderate High
Slope of in-/activation Moderate High
Maximum conductance Moderate High
Reversal potentials Low Moderate
Capacitance Low Moderate

Table 4: Parameter classes correspond neuronal properties subject to tem-
poral and structural variation due to varying electro- and biochemical con-
ditions, structural and morphological differentiation (within or across neu-
rons). The type and magnitude of variation depends on parameter class.
For example, stimuli are of diverse kinds and vary greatly in both space and
time. In contrast, reversal potentials are comparatively stable for a single
cell, even if they do very between cells and tissues. The table is based on
the authors subjective summary of diverse research findings.

spikes are not periodic, implying zero/small autocorrelation coefficients ρ
making them equal to resting states of neurons. Still, it is in agreement with
the most basic measure of neuronal responses, i.e. spike frequency. Since
single spikes occur once over an infinite period, they have zero frequency
and constitute non-responses.

3.2 Sampling of model parameters

The extended Herzog model includes 32 parameters. To study and analyze
response effects of parameter variation, we treat parameters as random vari-
ables with model default values as expected values. We sample parameter
values from normal distributions. To define the variance of the sampling dis-
tributions, we consult experimental findings. However, it is not possible to
make equally informed decisions on every single parameter. Furthermore,
estimates are seldom comparable across experimental studies. Therefore,
the strategy is to apply a common format of variation to six classes of the
model parameters.

In table 4, we list sex parameter classes together with subjective judge-
ments of relative levels of variation. Stimuli demonstrate high temporal and
structural variation, i.e. numerous transient synaptic stimuli and diverse
transduction processes. Other parameters that demonstrate high or moder-
ate variation indicate alternative mechanisms of neuronal stimulation than
direct postsynaptic depolarization. Parameters that demonstrate less vari-
ation, e.g. reversal potentials and capacitance, are less likely to function as
regulators or modulators of neuronal firing.

Since the purpose of this study is to uncover alternative mechanisms of
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Magnitude
Sampling protocol Small Medium Large
Stimuli N(0,1) N(0,2.5) N(0,5)
In-/activation midpoints N(0,2.5) N(0,5) N(0,10)
Slope of in-/activation N(0,2.5*) N(0,5*) N(0,10*)
Maximum conductance N(0,5*) N(0,10*) N(0,15*)
Capacitance N(0,2.5*) N(0,5*) N(0,10*)
Reversal potentials N(0,0.5) N(0,1) N(0,2.5)

Table 5: Sampling protocol for model parameters. Random sampling of
parameter values is made from normal distributions. The distributions in
the table specify distributions of deviations from mean values, the default
values of model parameters (table 1 and 3). “*” marks a standard deviation
that is rendered in % of default value of model parameter. There is one
exception to the sampling protocol: the midpoints of activation for the h-
conductances gQslow

and gQfast
(see main text).

firing dynamics according to an existing model, and in a particular type of
neuron, i.e. nociceptors, the overall sampling of parameter variations must
be conservative. The parameter variations should reflect temporal varia-
tion due to biochemical modulation of conductances within single neurons,
not structural variation across neurons. This means that our focus is on
the variation in voltage midpoints of activation and inactivation, as well as
slopes of activation and inactivation. We also allow for moderate variation
of maximal conductance within single neurons.

Because different units and scales apply to the model parameters, it is
not advisable to apply a single consistent rule of parameter variation, e.g.
1 % of default values. To illustrate why, current is a quantity measured on
a ratio scale. It takes positive as well as negative values. In contrast, the
midpoint of activation is a positional measure. It is the membrane voltage at
which a conductance component is at 50% of its maximal activity, a measure
of electrochemical activity that does not allow for relative measures (%).

Table 5 summarizes our sampling protocol, i.e. the sampling distribu-
tions for the six parameter classes. Due to the uncertainty in the range of pa-
rameter values, we define and test three levels of parameter variation: small,
medium and large parameter variation. Medium variation corresponds to
the level of variation that we judge to be reasonable for generating shifts
in firing dynamics of neuronal conductance models, i.e. transitions between
firing and non-firing. The large and small levels of variation are relative to
the medium level, about 50% and 200% of the medium level.

There is one exception to the sampling protocol: the voltage midpoint
of the Q-conductances: gQslow

and gQfast
. Under default parameter values,

the conductance is more or less inactive in the Herzog model. To have any
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effect on firing dynamics, the activation midpoints must be shifted towards
depolarized potentials. Therefore, we add a Bernoulli-distributed random
indicator function δ ∼ Bernoulli(0.5), specifying a shift of +20 mV or not,
corresponding to reported shifts of Q-conductances (Kouranova et al 2008).
Irrespectively of this shift, the activation midpoints are also subject to nor-
mal variation around their default or shifted values.

The sampling protocol also needs to be elaborated for another non-
specified parameter: the initial voltage potential Vi. In computer simu-
lations, Vi is usually set to the resting membrane potential (−70 mV), or
the reversal potential of the leakage current. In this study, since we vary
the parameter setup at random, we also randomize Vi. Since Vi is a mea-
sure of equilibrium, like voltage midpoints of activation, we give the same
parameter distribution to Vi as to midpoints of in-/activation.

3.3 Optimal sample size and parameter variation

To evaluate which level of parameter variation (small, medium, large) that
provides maximal information on response effects, computer simulations are
run with three samples from the specified distributions above. The samples
are compared with respect to the strength of the linear relationships that
they generate between response measures and parameters. The strength is
measured by the bivariate rank correlations ri,j between response measures
ψ, ψ ∈ {ρ, σ, η}, and by the generalized sample rank correlation |Rψ| (cf.
“generalized sample variance of the standardized variables” in Johnson and
Wichern 2007), i.e. the determinant of the sample rank correlation matrix
(size: 33 x 33) of all 32 parameters and a response variable ψ:

|R| =

∣∣∣∣∣∣∣∣∣




r1,1 r1,2 . . . r1,33

r2,1 r2,2 . . . r2,33
...

...
. . .

...
r33,1 r33,2 . . . r33,33




∣∣∣∣∣∣∣∣∣
(3.6)

where ri,j , i and j ∈ 1,...,33, is the Spearman rank correlation between
variable i and j; variables 1-32 being the set of 32 independent random model
parameters, variable 33 referring to ψ, one of the five response variables.
When ri,j = 0 for i6=j, |Rψ| = 1. Any linear dependence between variables
results in a reduction of |Rψ|. Since random sampling of model parameters
is independent, any significant reduction of |Rψ| is due to dependencies
between some model parameter(s) and the response variable in question.

Maximal reduction of |Rψ|, i.e. min(|Rψ|), defines the optimal sample:
maximal dependency of the response measure on model parameters. This
presupposes that the correlation between parameters is non-existent or low.
With a large number of parameters, and a small number of observations,
random correlations multiply and result in large reductions of |Rψ|. To
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Figure 2: A plot of generalized correlation |Rψ| for 32 independent random
variables (N(0,1)) as a function of sample size. Below 2500 cases, normally
distributed drops and increases in uncertainty.

# cases Small Medium Large
η = 1 4110 3541 3597
η = 2 288 413 754
η = 3 602 1046 649

Table 6: Cross-tabulation of the number of responses with respect to level
of variation and response cluster

decide on sufficient sample size to secure high and stable |Rψ|, we simulated
32 independent random parameters for varying sample sizes. A sample size
of 5000 results in |Rψ| high and stable enough for our purposes (figure 2).

After establishing the sample size, we put three samples to test (small,
medium and large levels of parameter variation). The purpose is to identify
the sample that gives us maximum information on relations between pa-
rameter variation and response measures. Each sample consists of N=5000
cases of 32 independent random parameter values. Computer simulations
generate 3 x 5000 time series of voltage potentials, summarized by ρn,m and
σn,m. 3-means cluster analysis based on ρ and σ results in three response
classes: (η = 1) resting, (η = 2) weak responses and (η = 3) firing. An op-
timal sample is one with large and balanced numbers of responses in η = 1
and η = 3, and as few as possible in η = 2.

The number of responses in η = 3 is highest for medium variation. The
number of positive responses (η ∈ {2, 3} is smaller for the sample with small
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Matrix/Sample Small Medium Large
|Rσ| 0.5085 0.4467 0.6425
|Rρ| 0.4748 0.4412 0.6622
|Rη| 0.4950 0.4563 0.6565

Table 7: Generalized sample correlation |Rψ|

Rank correlation/Variation Small Medium Large
ρ and σ 0.3956 0.6249 0.6146
ρ and η 0.6633 0.7858 0.7681
σ and η 0.6405 0.7777 0.7679

Table 8: Spearman’s rank correlations between pair-wise response measures
for three samples with small, medium and large levels of parameter variation

parameter variation (table 6). The number of weak responses is larger for
the sample with large variation. This indicates that medium variation is
the more optimal sample. |Rψ| confirms this. A sample with 32 random
parameters and 5000 cases makes |R| ≈ 0.90 (figure 2). When including
response variables one at the time, the reduction of |Rψ| is maximal for
medium variation (table 7). Pair-wise rank correlations between response
variables lend further support to this. In table 8, we list the correlations.
The sample with medium parameter variation has the highest pair-wise rank
correlations.

In figure 3, we render the clustering of the medium sample: ρ with
respect to σ. The clustering is the basis for further statistical analysis in the
next section, i.e. regression models of parameters on η (logistic regression),
on ω (linear regression), and on θ (linear regression).

4 Statistical sensitivity analysis

The aim of statistical sensitivity analysis is to identify and compare sources
of variation in firing responses, i.e. specifying relative merits of parameters
for neuronal excitability and firing dynamics. The analysis involves three
parts: (I) logistic regression of model parameters on non-firing and firing
states (η ∈ {1, 2, 3}), and linear regression of model parameters on (II)
dominant frequency ω and (III) dominant amplitude θ respectively.

4.1 Regulators of firing responses

To estimate the influence of model parameters on the probability of a firing
response, we carry out multinomial logistic regression analysis of response
cluster η = {1, 2, 3} on standardized scores of model parameters (mean 0
and standard deviation 1). The response η is then modeled in terms of the
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Figure 3: Mapping of response clusters for the sample with moderate level
of parameter variation on a plot of response measures: ρ with respect to
σ. The numbers of responses in cluster 1, 2 and 3 are 3541, 413 and 1046
respectively.
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probability of outcomes p(η), which are estimated by maximum likelihood
(max(L(π)) (Dobson and Barnett 2008).

p(η) =
(

1
η1, η2, η3

)
πη1

1 πη2
2 πη3

3 (4.1)

= πη1
1 πη2

2 πη3
3 , (4.2)

3∑

i=1

ηi = 1, ηi ∈ {0, 1},

3∑

i=1

πi = 1, πi ∈ [0, 1]

log

(
π{2,3}

π1

)
= α{2,3} + β1,{2,3} ∗ xn,1 + . . . (4.3)

. . . + βk,{2,3} ∗ xn,k

n ∈ {1...5000}
k ∈ {1...32}

L(π(α, β)) =
5000∏

n=1

π1(α, β)η1,nπ2(α, β)η2,nπ3(α, β)η3,n (4.4)

The probability of non-firing π1 is the standard of comparison, in relation
to which we evaluate the probability of weak responses π2 and proper firing
π3 respectively. This is done by modeling the odds for active responses:
π2
π1

and π3
π1

. The first step is to analyze the effects of model parameters on
these odds one at the time (OAT). The result is a highly limited number of
parameters making any difference.

Table 9 lists model parameters with deviances greater than 10. Deviance
is a measure of model fit, a comparison of log likelihoods. In this case, we
compare log likelihoods of logistic models including a model parameter or the
intercept-only. A larger deviance, i.e. a larger deviance reduction compared
to the intercept-only model, makes the better fit. One parameter stands
out from the rest, Uh2 , the voltage midpoint of inactivation for NaTTX−R.
It reduces the deviance of the intercept only model by 28.4 % (McFadden’s
pseudo-R-square). Two further parameters have a clear impact: stimulus
S and Un1 , the activation midpoint of KDR. Additional eight parameters
make smaller but significant differences in deviance reduction, 0.1-10 %, but
their contribution to the accuracy of category prediction is highly limited
by themselves.

Table 9 also shows the estimated odds of the parameters. A negative
shift of Uh2 increases the odds for η2 and η3. It corresponds to shifting
the inactivation of NaTTX−R towards depolarized potentials, releasing the
system from inactivation. The response effects of the other parameters ap-
pear tuned to the same mechanism. Positive values of Un1 , the activation
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Parameter dev % red exp(β3) % ac3 exp(β2) % ac2

gNaTTX−R
13.1 0.2 1.14 0 1.02 0

Um1 24.7 0.3 1.14 0 0.86 0
Um2 139.6 1.8 1.07 0 1.88 0
Uh2 2207.4 28.4 0.10 55.8 0.14 0
km2 10.4 0.1 0.91 0 1.08 0
Un1 208.8 2.7 1.59 0.9 1.60 0
Uq1 50.6 0.7 1.29 0 1.08 0
Uq2 27.7 0.4 1.20 0 1.04 0
kh3 10.9 0.1 0.89 0 0.95 0
Vi 85.9 1.1 0.76 0 0.72 0
S 580.2 7.2 0.41 14.1 1.23 0

Table 9: Response effects of parameter variation one at the time (OAT).
“dev” denotes the deviance of the multinomial logistic regression model with
a single parameter compared to the intercept-only model. “red” denotes the
reduction of deviance in percentage compared to the intercept-only model.
“exp(β2)” and “exp(β3)” refer to estimated linear effects of parameter vari-
ation on odds for response cluster 2 and 3 respectively. The increase in
classification accuracy for cluster 2 and 3 is reported under “% ac2” and “%
ac3” respectively.

midpoint of the delayed potassium current, increase the odds for η2 and η3.
This involves shifting the activation curve towards hyperpolarized poten-
tials, which ought to release the system from inactivation, thereby favoring
firing responses. Also the impact of the H-currents is in line with this, al-
though the effects are weak. Uq1 and Uq2 raise the firing odds when shifted
in the positive direction, i.e. when reducing the Q conductance, which hy-
perpolarizes and makes the membrane more negative.

The effect of S is more equivocal than the effects other parameters. A
negative S raises the odds for η3, but a positive S favors the odds for η2.
In the default Herzog model, negative stimuli do in fact generate stronger
responses than positive ones. The explanation is that negative stimuli release
the system from a state of inactivation, whereas positive stimuli favor it.
However, the effect is non-systematic. There is no steady change of output
in response to steady change of input.

Because of the dominance of Uh2 , we make it an obligatory regres-
sor/predictor when elaborating the logistic model and incorporating mul-
tiple regressors/predictors. We add the remaining 31 parameters, as well as
all pair-wise interaction terms between them (Pi ∗ Pj , i, j ∈ 1...32, i 6= j),
OAT to a logistic model that always includes Uh2 . We check for larger de-
viance effects. This analysis confirms the importance of the parameters in
table 9, as well as some others with very low deviance (< 10). To select
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Parameter β2 SE Wald df p exp(β2) % ac2

Intercept -3.15 0.10 950.57 1 0.00
Uh2 -2.83 0.12 560.61 1 0.00 0.06 19.1
S -0.43 0.08 31.67 1 0.00 0.65 17.9
Un1 0.95 0.08 151.21 1 0.00 2.58 7.0
Vi -0.70 0.07 105.18 1 0.00 0.50 5.5
Um2 0.76 0.07 122.82 1 0.00 2.15 10.1
Uq1 0.25 0.07 15.15 1 0.00 1.29 2.6
Um2 ∗Vn1 0.56 0.07 58.82 1 0.00 1.76 5.3

Table 10: Final estimates for weak responses from multinomial logistic re-
gression of η2 on system parameters. β2 refers to the log odds coefficients
for weak responses, with the standard error given under “SE”. The “Wald”
statistic is used to test the significance “p” of the coefficients, assuming the
Chi-square distribution with “df” degrees of freedom. The column “ac2”
gives the decrease in classification accuracy of weak responses without the
parameter, keeping the remaining parameters in the regression model.

model parameters for further analysis, we apply a classification criterion,
i.e. parameter contributions to classification accuracy. We include only pa-
rameters that increase prediction accuracy for either η2 or η3 by 1%. This
adds six parameters and one interaction term to the final logistic model:
Um2 , Uh2 , Un1 , Uq1 , Vi, S, and Um2*Un1 . The model has a total predication
accuracy of 86.1 %: 81.5 % for η3, 20.8 % for η2, and 95.1 % for η1, with
pseudo R-Square is 52.8 % (McFadden).

Tables 10 and 11 present estimates of the final logistic regression of
η on model parameters. The importance of Uh2 is reinforced in the final
model. In the initial analysis OAT, one standard unit of Uh2 in the negative
direction increases the odds for η3 by 7.1 (0.14 in the positive direction).
In the final model, the corresponding value is 50 (0.02). The impact of
Un1 also increases. Furthermore, Um2 reinforces its dampening function,
favoring η2 over η3. The effect of Uq1 remains weak and the impact of S
changes character. It looses its counter-effects on η2 and η3, retaining its
odds function for η3, but reverses for η2.

4.2 Modulators of firing frequency

The distribution of frequency responses ω for η3 is close to normal (figure
5). For optimal fit, i.e. maximal correlation between ordered sample values
ω∗ and corresponding quantiles of the standard normal distribution (4.5),
we apply power transformation. A transformation with k=0.6280 results in
maximal correlation of 0.9993 for n=1046 cases.
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Figure 4: Illustrations of logistic regression. The upper left plot renders the
density of η3 with respect to Uh2 , showing the support for a logistic predictive
function. It appears to reverse direction at highly negative potentials, but
the limited number of observations at these potentials makes any conclusion
uncertain. The upper right plot shows the normal density of Uh2 . The lower
plots represent the density of η2 and η3 with respect to predicted response
class (η̂2 and η̂3), confirming approximately linear relationships.
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Parameter β3 SE Wald df p exp(β3) % ac3

Intercept -3.44 0.11 929.12 1 0.00
Uh2 -3.88 0.13 938.89 1 0.00 0.02 55.5
S -2.00 0.08 571.86 1 0.00 0.14 12.1
Un1 1.32 0.07 342.77 1 0.00 3.74 7.0
Vi -0.86 0.06 175.28 1 0.00 0.42 3.3
Um2 0.11 0.06 3.30 1 0.05 1.12 2.2
Uq1 0.55 0.06 80.14 1 0.00 1.73 2.0
Um2 ∗Un1 0.74 0.07 126.21 1 0.00 2.10 3.3

Table 11: Final estimates for firing responses from multinomial logistic re-
gression of η3 on system parameters. β3 refers to the log odds coefficients
for weak responses, with the standard error given under “SE”. The “Wald”
statistic is used to test the significance “p” of the coefficients, assuming
the Chi-square distribution with “df” degrees of freedom. The column
“ac3” gives the decrease in classification accuracy of proper firing responses
without the parameter, keeping the remaining parameters in the regression
model.
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Figure 5: The distribution of frequency responses, before ω and after ω∗
power transformation.
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Parameter B SE t p
Intercept 3.804 0.040 93.973 0.000
Uh2 -0.756 0.027 -27.641 0.000
km2 0.381 0.023 16.690 0.000
Vi -0.380 0.019 -20.184 0.000
Um2 0.331 0.017 19.525 0.000
S 0.140 0.021 6.665 0.000
Un1 0.160 0.018 8.927 0.000

Table 12: Linear regression estimates of parameter effects on dominant fre-
quency ω*.

ω∗ = ωk, k ∈
{

R : max

(
corr

(
ωk

i , N−1

(
i

n + 1

)))}
(4.5)

i ∈ {1, ..., n : ω1 < ... < ωn}
Linear regression of ω∗ on standardized values of 32 parameters OAT

reveals eleven significant parameters. Uh2 is the parameter with the largest
coefficient of determination (R2=0.25), i.e. the parameter that accounts
for the largest proportion of the response variation, but its dominance is
not as pronounced as in the logistic case. When elaborating a linear model
with Uh2 , adding other parameters and interaction terms OAT, stepwise, we
get model with six parameters, and without interaction terms: R2=0.665
(F(6,1039)=344.2, p<0.001).

Uh2 remains the most significant parameter (table 14). Negative values
increase frequency. Thus, Uh2 is both a regulator of firing behavior and a
modulator of firing frequency. This is also the case for Un1 and Um2 , positive
values favoring firing odds and higher frequency. However, the effect of Um2

is not too clear. In the logistic case, it raises the odds for η2, weak responses,
rather than η3. This indicates that the effect of Um2 is irregular rather than
supporting a response function. The parameter km2 , the slope (the voltage
sensitivity) of the activation function of NaTTX−R, had no effect at all in
the logistic model, but has a clear effect on ω∗. A larger slope implies a
reduction in the voltage sensitivity and a higher frequency response.

The effect of Vi is systematic. Higher positive values increase the odds
for η2,3 and raise the frequency ω∗. This is consistent with a release func-
tion, i.e. releasing the system from inactivation by negative shifts of voltage
potentials. However, the parameter is not interesting in itself. The initial
membrane potential lacks distinct physiological correlates. At most, it cor-
responds to the sum of all previous neuronal activity and stimuli, defining
the membrane potential at a given time. It hardly makes a reliable regula-
tor or modulator of neuronal activity. In this study, we included Vi only to
randomize system conditions.
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Figure 6: The distribution of dominant amplitude before θ and after θ∗
power transformation.

In the logistic model, there is a negative correlation between S and firing
odds, negative S favoring firing odds, although the effects were not altogether
clear and consistent. In the linear model, the correlation between S and ω∗ is
positive, positive S raising the frequency. This confirms the non-systematic
impact of S and the need for alternative mechanisms of firing.

4.3 Modulators of firing amplitude

The distribution of dominant amplitude θ for η3 is close to normal (figure
6). The fit is optimized by power transformation. Applying the criterion of
maximal correlation between transformed sample values θ∗ and their corre-
sponding quantiles results in a correlation of 0.9976 for k=0.58 and n=1046
cases.

To identify modulators of amplitude, we apply linear regression of model
parameters on dominant amplitude θ∗. The analysis is carried out in the
same step-wise manner as in previous cases, beginning with parameters
OAT, and then adding them one after another. The result is a less clear-cut
set of parameters. About 20 parameters demonstrate significant effects. By
limiting the analysis to the ones that contribute to R2 more than 2.5%, we
are left with a final model with six parameters (R2=0.753, F(6,1039)=527.4,
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Parameter B SE t p
Intercept 11.852 0.076 156.944 0.000
Um1 0.520 0.032 16.254 0.000
Uh1 -1.130 0.034 -33.454 0.000
Um2 -1.126 0.044 -25.408 0.000
Uh2 0.651 0.051 12.724 0.000
Un1 0.543 0.035 15.425 0.000
S -1.316 0.041 -32.030 0.000

Table 13: Linear regression estimates of parameter effects on dominant am-
plitude θ∗.

p<0.001).
The analysis reveals a moderate reversed modulatory role of the TTX-

resistant Na+-conductance for response effects. Shifts of voltage midpoints
of activation and inactivation Um2 and Uh2 that favor firing responses η2,3

and ω∗ reduce amplitude θ∗. The effect is weak, but it indicates a limit
to the regulatory role of Uh2 . Too strong negative shifts may be counter-
productive for firing dynamics. Also S demonstrates inconsistent effects on
firing behavior. Negative values of S reduce ω∗, but increase θ∗. Un1 is the
only consistent model parameter, favoring firing response on all response
measures when shifted in the hyperpolarized direction, even if the effect is
relatively weak compared to Uh2 and S.

The linear regression on θ∗ also reveals two new parameters to firing
dynamics: the voltage midpoints of activation and inactivation (Um1 and
Uh1) of the TTX-sensitive Na+-conductance (NaTTX−S). Amplitude in-
creases with negative and positive shifts of Um1 and Uh1 respectively.This
is in agreement with previous experimental and modeling studies, showing
that NaTTX−S modulates the amplitude of spikes, rather than generating
spikes.

5 From statistics to mechanics

The statistical sensitivity analysis confirms response effects of a limited
number of parameters. They indicate alternative pathways of firing than
stimulus-response. However, the analysis is based on an unrealistic assump-
tion, i.e. normal parameter distributions. In real neurons, the variation
of the physiological correlates to model parameters are far from smooth,
monotone and regular. For example, voltage midpoints of activation and in-
activation are shifted in discrete steps due to a variety of biochemical inter-
actions. To make credible hypotheses and predictions, we need to translate
our statistical findings into realistic model components.

Considering the large number of model parameters, the analysis needs
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to be limited. The statistical sensitivity analysis revealed the importance of
four parameters for all three response measures: the midpoint of inactivation
of NaTTX−R (Uh2), the midpoint of activation of K (Un1), stimulus (S)
and the initial membrane potential (Vi). S and Vi are here dropped from
the discussion. They are functions of many transduction and conductance
processes and do not correspond to any distinct conductance mechanism.
We are left with Uh2 and Un1 , but add two parameters, Um2 , the midpoint
of activation of NaTTX−R, and km2 , the slope of activation of NaTTX−R.
The roles of Um2 and km2 are not prominent, but interesting. They are
components of the same conductance as Uh2 and appear to have opposite
effects on firing responses, disrupting and supporting responses respectively.

5.1 From graded effects to discrete conductance shifts

As mentioned in the introduction, the physiological correlates to parame-
ter variation are of different kinds: (1) between cell variation, phenotypic
traits, e.g. morphology, (2) within cell variation, electro- and biochemical
regulation, e.g. transduction processes (3) physical fluctuations (random
variation). All three sources of variation manifest themselves in shifts of the
activation and inactivation midpoints of ion channels and receptors. The
largest variation exists between neurons and neuronal populations. The
smallest arises from physical fluctuations. Our focus here is on activation
and inactivation shifts due to electro- and biochemical regulation, i.e. shifts
in the order of 5-50 mV.

The logistic regression analysis shows that negative shifts of Uh2 increases
the odds for firing. According to this statistical model, the shift may take
any value. This is not a realistic assumption. First, there are lower and
upper limits to the magnitude of a shift serving regulatory processes, 5-
50 mV. Second, a shift is discrete in nature, not graded. It arises due to
specific molecular interactions causing an all-or-none change. Thus, we need
translate this graded shift into a discrete one.

We begin by calculating the effect of a discrete shift of the inactivation
midpoint of NaTTX−R, Uh2 . Given the logistic regression analysis, shifting
it by two standard units in the negative direction, i.e. ≈ −10 mV, increases
the odds for firing against non-firing from 3:100 to about 75:1. Two standard
units account for 95% of the observations in the sample. Beyond that, we
cannot be sure of the effects. Therefore we let two standard units be an
upper limit to all activation and inactivation shifts, including Um2 and Un1 .

To remodel the activation and inactivation shifts, we define new con-
ductance components in the original model. For each midpoint shift, we
duplicate the original current/conductance (Ishift) and edit the activation
or inactivation midpoint of the gating function in question, for example h2s,
which stands for a shifted gating inactivation function of the NaTTX−R con-
ductance. The new conductances are similar to their originals except for
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the shifted midpoints. We hypothesize discrete shifts in the order of 10 mV,
in the negative direction for Uh2 ; in the positive direction for Um2 and Un1 .
The following equations illustrates the shifted NaTTX−R conductance:

INashift
= ζ ∗ gNaTTX−R

m2hS2(V − ENa) (5.1)

dh2s

dt
=

h2s(∞)− h2s

τhS2

(5.2)

h2s(∞) =
αh2s

αhS2
+ βhS2

τhS2
=

2
αh2s + βh2s

αh2s =
0.06435

1 + e
V +73.26415−10

3.71928

(5.3)

βh2s =
0.13496

1 + e
V +10.27853−10

−9.09334

(5.4)

For the sake of simplicity, the shift of km2 , the slope of activation, is
treated in a similar manner as midpoints of activation and inactivation. A
shift is in the order of 2 standard units in the direction that favors response
changes. It could be argued that slopes of activation and inactivation (volt-
age sensitivity) are graded in kind, depending on ionic gradients, rather
than discrete due to single molecular interactions. However, for the sake of
demonstrating the method of remodeling, we here simply assume that slope
shifts are discrete.

We keep the total density of the conductances constant, but varies the
proportion of shifted and non-shifted conductances (ζ ∈[0,1]). The physio-
logical correlate of this would be a change in concentration of non-shifted
and shifted NaTTX−R-conductances (ion channels). Thus, this remodeling
of shifts of midpoints makes for more realistic modeling, discrete rather than
graded shifts, while still allowing for graded modulation at the level of max-
imal conductances. In the next section, we present the results of simulations
that include the shifted conductance components.

5.2 Dual firing mechanisms

To explore the effects of remodeling, we run simulations with shifted Uh2 ,
Um2 and Un1 , and with default values of the remaining model parameters.
We use the same simulation protocol and response measures as in the random
sampling: Matlab ODE45, 1 second response time and 1 µs time steps.
Here we limit the discussion to the frequency responses with respect to δ,
the proportion of shifted conductance. We use nine different remodeling
conditions “SC-X” (Shifted Conductance Case No X).
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Shifted Conductance Description
SC-1 Shifting Uh2 -10 mV
SC-2 Shifting Un1 +10 mV
SC-3 Shifting Uh2 -10 mV and Un1 +10 mV
SC-4 Shifting Uh2 -10 mV and Um2 +10 mV
SC-5 Shifting Un1 +10 mV and Um2 +10 mV
SC-6 Shifting Uh2 -10 mV, Un1 +10 mV and Um2 +10 mV
SC-7 Shifting Uh2 -10 mV and km2 + 2 standard units (s.u.)
SC-8 Shifting Un1 -10 mV and km2 + 2 s.u.
SC-9 Shifting Uh2 -10 mV, Un1 -10 mV and km2 + 2 s.u.

Table 14: Nine conditions for simulating frequency effects of shifted conduc-
tances of Uh2 , Um2 , Un1 and km2 .

In figure 7, we show nine plots illustrating the effects of remodeling Uh2 ,
Um2 and Un1 . The top left plot shows the effect of shifting Uh2 alone, -10 mV,
all other parameters at their default values. It demonstrates a monotone
response function of density. Also Un1 demonstrates the capacity to induce
firing responses on its own (c.f. SC-2). To test if any other model parameter
can induce firing responses on their own, we applied conductance shifts to
all other model parameters. Only Uh2 and Un1 have this capacity. The effect
of Un1 appears weaker compared to Uh2 . Still, the effects of Un1 and Uh2

are complementary. The threshold of firing is higher for Un1 and its range of
response frequencies lower, which agrees with the regression analysis. This
indicates that it is in principle possible for different transduction pathways
to act through different response, thereby enabling dual coding of stimuli.

In the third plot (SC-3), we add both shifted Uh2 and Un1 to our model.
The result is not too different from Uh2 alone. The frequency function
raises more sharply, but otherwise no major difference. In plots 3-6, we
check the effects of discrete shifts of Um2 ; first when added to a model
with shifted Uh2 (SC-4); then together with shifted Un1 (SC-5); and last all
three together (SC-6). The pattern is inconsistent, which agrees with our
regression analysis. Um2 both increases and decreases firing responses. In
contrast, km2 generates more consistent response patterns. When added to
shifted Uh2 model (SC-7), it broadens the range of response frequencies, but
does not change the threshold. It has less of an effect together with Un1

(SC-8). Adding Uh2 , Um2 and km2 together (SC-9), the result is similar to
Uh2 and km2 alone.

Overall, the remodeling of conductance components supports and refines
the regression analysis. Uh2 and Un1 have independent complementary ef-
fects, mediating the response effects of Um2 and km2 . km2 appears to have
a consistent modulatory role, increasing the firing frequency of Uh2 shifts.
Considering that ion channel modulation targets single proteins, this inter-
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Figure 7: To evaluate response functions of parameter variations, indi-
cated by regression analysis, we remodel conductance components by adding
shifted versions to the original conductance components in the model. The
conductances are the same except for shifted parameter values in agree-
ment with the regression analysis. We keep the total density of a particular
conductance constant, NaTTX−R for example, but varies the proportion of
shifted and non-shifted parts (δ = [0, 1]). The remaining model parameters
are at their default values. We render nine plots of the remodeling effects on
response frequency ω. “SC-X” stands for Shifted Conductance No X. SC-
1: shifting Uh2 alone, −10 mV, results in a monotone response function of
density. SC-2: shifting Un1 alone, 10 mV, also demonstrates a frequency re-
sponse function, but weaker in effect (firing threshold and frequency range).
No other parameters have the capacity to induce firing on their own. SC-3:
shifting Uh2 and Un1 together indicates no larger interaction effects. SC-4:
shifted Um2 added to shifted Uh2 generates non-linear effects. SC-5: shifted
Um2 added to shifted Un1 gives a slight increase in effects of the latter. SC-
6: shifted Um2 added to both shifted Uh2 and shifted Un1 has a dampening
effect. SC-7: shifted km2 added to shifted Uh2 increases the frequency range
of the response function. SC-8: shifted km2 added to shifted Un1 has limited
effects. SC-9: shifted km2 added to both shifted Uh2 and shifted Un1 has
effects similar to km2 and Uh2 alone.
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action is reasonable. It is more reasonable with joint shifted activation and
inactivation for one and the same conductance, Uh2 and km2 , rather than
for different conductances, Un1 and km2 .

6 Discussion

Depending on purpose, we describe and explain firing dynamics of single
neurons with models at different levels of abstraction. On the one hand,
experimentalists tend to define detailed models on the basis of particular
experiments and neurons (Hodgkin and Huxley 1952). The purpose is to
synthesize and summarize research findings. On the other hand, mathe-
maticians formalize abstract models. The purpose is then to define the
most general properties of system dynamics (Izhikevich 2007). Without any
doubt, both approaches are important for developing and testing theories
of system dynamics of single neurons. We need to know both general and
specific properties of firing dynamics. However, to strengthen the predictive
power of our models, we must also connect the different levels of abstrac-
tion. In this article, we applied statistical sensitivity analysis and system
remodeling to this end.

When modeling neuronal excitability with Hodgkin-Huxley-like models,
we tend to keep parameters constant for the purpose of describing firing
mechanisms. In this study, we have shown that statistical sensitivity analy-
sis of parameter variations can be used to reveal other mechanisms of firing
dynamics than the traditional one: stimulus-response. By varying midpoints
and slopes of activation and inactivation, as well as conductance densities,
we have identified ion channel components that can regulate neuronal ex-
citability and themselves be targets of transduction pathways and processes,
i.e. biochemical regulation by means of molecular interactions.

The analysis indicates that the inactivation midpoint of the NaTTX−R-
current plays a critical role. Shifting it induces firing and generates linear
frequency responses. In experimental studies, the inactivation part of the
ion channel does in fact generate disturbances of the neuronal excitability
(Cummins et al 2007; Rush et al 2006). The same goes for the activa-
tion midpoint of the delayed potassium rectifier. Also this conductance has
been implicated in excitability disturbances in experimental studies (Sun et
al 2006). Their effects may be induced independent of each other, which
opens up the possibility for complementary transduction pathways to the
excitability of nociceptors. The activation of different receptors, mechano-
and thermosensitive receptors for example, may target the inactivation of
NaTTX−R and the activation of Kdr respectively. Thus, these sensory neu-
rons are not only relaying stimuli, but actually interpreting them.

These conclusions are but hypotheses that need to be expanded and
elaborated by both experimental and modeling studies. We believe that
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statistical sensitivity analysis has an important role to play here. Tradition-
ally, research on membrane excitability ends up specifying response functions
(gain functions) describing how response frequency changes as a function of
stimulus intensity. The purpose is usually a descriptive summary of observ-
able relations between input and output. It is rarely possible to study more
than a few variables and variations of experimental conditions. In contrast,
the number of parameters is not really the problem in modeling studies, but
making good and relevant predictions. Here statistical sensitivity analysis
serves its purpose. It adds generality to experimental models and predictive
value to modeling studies.

A fundamental assumption here is that the explanatory value and pre-
dictive power of a model is intrinsically linked to some methods of obser-
vation and measurement. To the extent that a model disregards conditions
of observation, or adds spurious ones, it looses value and power. For this
reason, we choose to stay close to the classic Hodgkin-Huxley approach,
whole-cell measurements, which is still a very important method in exper-
imental neurophysiology. However, to analyze nociceptors and verify their
firing mechanisms in detail, we need to extend the approach. In particular,
when dealing with polymodal nociceptors, we need to integrate experimen-
tal models of both transduction and conduction processes. Considering the
complexity of this parameter space, statistical sensitivity analysis may then
become of even greater value and use.
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