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ABSTRACT
Before a clinical trial can be performed there are a number of considerations that need to be
done. A study protocol is needed, where it is described how the trial will be conducted. The
population of patients to be studied must be well defined. The protocol also need to include
the objectives of the trial, the response variables chosen to measure efficacy and safety, and
the methods to be used for statistical analyses. Preferably, trials are controlled, randomised
and double-blind. In this licentiate thesis, we consider clinical trials with parallel treatment
groups, where a so called covariate-adaptive randomisation procedure has been used to
allocate patients to treatment. We discuss how the statistical analysis is affected by such
randomisation and how the treatment effect can be measured when the primary efficacy
outcome is an ordinal categorical variable.

When prognostic factors, suspected to influence the response variable, are identified, it is
desirable to use a randomisation procedure that achieves balance between treatment groups
with respect to these prognostic factors. Covariate-adaptive randomisation is a treatment
allocation procedure where the allocation for a new patient depends on the prognostic factors
of patients already recruited. A question is how covariate-adaptive randomisation affects a
following standard statistical test. Of particular interest is if the significance level is
maintained when the covariate-adaptive randomisation is not taken into account or if a
rerandomisation test is needed. There is a discussion in paper I, “A study of p-values in
clinical trials with covariate adaptive randomisation”, regarding covariate-adaptive
randomisation and rerandomisation tests. Simulations were carried out in order to study the
possible effects of the p-values of two standard tests used in connection with ordinal data, the
Wald test from a logistic regression model and the Cochran-Mantel-Haenszel (CMH) test.
The simulations show that covariate-adaptive randomisation, if not taken into account
properly in the analysis, may lead to incorrect type I error. The conclusion is that the gain
with covariate-adaptive randomisation is limited and a rerandomisation test is needed.

In a clinical trial with an ordinal categorical response variable, a logistic regression can be
applied to data under the assumption of proportional odds. When there are prognostic factors
that need to be taken into account in the statistical analysis, they can easily be incorporated
into the logistic regression model as covariates, and the odds ratio can be used as a measure of
effect. However, with covariates the risk that the model assumption of proportional odds is
violated increases. This is a reason to prefer a non-parametric method, such as the CMH test.
When the CMH test is used, we recommend to chose an effect measures corresponding to this
test; Mann-Whitney’s U, Somers’ D (equivalent with Mann-Whitney’s U), or the Number
Needed to Treat (NNT, Somers’ D reciprocal). In paper II “Effect measures in clinical trials
with ordinal data”, these effect measures are discussed, in particular in the presence of
prognostic factors.



Paper I A study of p-values in clinical trials with covariate adaptive
randomisation

Paper II Effect measures in clinical trials with ordinal data



Clinical trials

‘On the 20th of May 1747, I took twelve patients in the scurvy, on board the Salisbury at sea.
The cases were as similar as I could have them. They all in general had putrid gums, the spots
and lassitude, with weakness of the knees. They lay together in one place... and had one diet
common to all. Two of these were ordered each a quart of cider a day, two others took 25
gutts of elixir vitriol 3 times a day upon an empty stomach. Two others took two spoonfuls of
vinegar 3 times a day... Two of the worst patients were put under a course of seawater. Two
others had each two oranges and one lemon given them every day... they continued but six
days under this course, having consumed the quantity that could be spared. The two
remaining patients took... an electuary recommended by a hospital surgeon. The consequence
was that the most sudden and visible good effects were perceived from the use of oranges and
lemons; one of those who had taken them being at the end of six days fit for duty, the other...
was appointed to nurse the rest of the sick.’ [1]

Robert A. Thon, A History of Medicine in Pictures, Parke, Davis and Co., 1957

Dr. James Lind tested several scurvy treatments on crew members of the British naval ship
Salisbury and discovered that lemons and oranges were most effective in treating the dreaded
affliction. This experiment is probably the first well-documented clinical trial. Regarding
clinical trials much has happened since 1747, mostly during the second half of last century.
Today, a clinical trial is defined as a study conducted by researchers on human subjects to test
a medical treatment or prevention strategy. The medical treatment under examination could be
a drug, a surgical procedure, a medical device or a therapy. [2]



Nowadays an application need to be sent to regulatory authorities, such as the Food and Drug
Administration (FDA) in USA and the European Agency for the Evaluation of Medical
Products (EMEA), before a drug can enter the market and be used by patients. An application
includes a number of clinical trials and there are many requirements for these trials. For each
clinical trial, a study protocol is needed, describing how the trial will be conducted and how
the population of patients, that will be studied, is defined.

A clinical trial requires a precise definition of which patients are eligible for inclusion. This is
to ensure that patients in the trial may be identified as representative of some future class of
patients to whom the findings in the trial can be applicable. In focus is the type of patients
considered most likely to benefit from the new treatment. The disease state of investigation
must be established, and this often requires quite detailed inclusion and exclusion criteria in
the study protocol. Duration of a study is limited and when the requirements are too stringent
it will be difficult to find enough patients in time.

If possible, a trial is controlled with standard treatment or with placebo. The word placebo
appeared in medical literature in the early 1800s. Hooper’s Medical Dictionary of 1811
defined it as “an epithet given to any medicine more to please than benefit the patient.”
Placebo means to please and the antonym is nocebo, which means to harm.

To be able to say that a trial is reliable, it is preferable that the study is blind. The reason for
performing a blind clinical trial is to avoid biased outcome. The comparison of treatments
may be distorted if the patient herself or those responsible for treatment and evaluation know
which treatment is being used. This problem is avoided by a double-blind study design, where
the patient, physician and the evaluator are not aware of which treatment the patient actually
receives.

Patients are best allocated to treatment by use of randomisation, which is one of the central
characteristics of a clinical trial. Today most clinical trials are randomised and are usually
utilized to evaluate the efficacy of treatment. One reason to use randomisation is to maintain
approximate balance across treatment groups of prognostic factors that are affecting the
response variable. This will eliminate selection bias between groups. An other reason is the
justification of randomisation based tests. Randomisation is also a tool to keep the study
blind.

There are a number of different algorithms that can be used when patients are allocated to
treatment. The simplest form of randomisation is to flip a coin. However, this is never done in
practice. Randomisation schemes are generated by computerised systems, more or less done
in a complex way. A quite complex randomisation process that has achieved popularity lately
is a so called covariate-adaptive randomisation. Covariate-adaptive randomisation is a
treatment allocation procedure where the allocation for a new patient depends on prognostic
factors of patients already recruited. The aim is to achieve balance between treatment groups
with respect to these prognostic factors. The question is how covariate-adaptive
randomisation affects a following standard statistical test that is randomisation based. Of
particular interest is if the significance level is maintained.

The statistical aspects on clinical trials with covariate-adaptive randomisation with ordinal
response data that are considered in this licentiate thesis appeared in three clinical studies
performed in the stroke area. All three studies used a covariate-adaptive randomisation
procedure proposed by Pocock and Simon [3]. The response variable in these studies was an
ordinal categorical response, which was analysed by use of the Wald test from a logistic



regression model and the Cochran Mantel Haenszel (CMH) test. We have used these three
stroke studies as basis for simulations. The simulations were done to investigate the properties
of standard tests performed after a covariate-adaptive randomisation proposed by Pocock and
Simon [3]. How these tests perform after covariate-adaptive randomisation is discussed in
paper I “A study of p-values in clinical trials with covariate-adaptive randomisation”. The
conclusion is that the significance level is not always maintained and a rerandomisation test is
needed.

This licentiate thesis concentrates on clinical trials with parallel treatment groups where we
have a response outcome on an ordinal scale with categories described in words such as
“none”, “mild”, “moderate” or “severe”. To be specific, suppose we use a scale with m
different categories. The frequencies in each row have a multinomial distribution and the
probabilities of falling into different categories within each treatment are described in Table 1.

Table 1 Category probabilities for ordinal response in patients receiving test or control
treatment

Category
Treatment 1 2 … m

Test π1T π2T … πmT

Control π1C π2C … πmC

There are two main approaches to analyse data, parametric or non-parametric analyses [4].
For ordinal data, a preferred parametric approach is an ordinal regression method. In the
statistical assessment of ordinal outcomes in comparative studies [5] it is essential that the
ordinality of the ranked data is fully exploited. If the response is treated as a categorical
variable on a nominal scale much of the information is wasted. In other word, it is not
advisable to evaluate the data by calculating the proportions for each category of outcome and
perform a chi-square test of association. Nor is it advisable to analyse ordinal outcome data
with binary logistic regression. Information is lost when the variable is reduced by
dichotomisation. There are several regression models that can be used for ordinal data, but for
most of them there is no single effect measure that captures the impact of the treatment. We
will concentrate on the proportional odds model. The proportional odds model is an extension
of binary logistic regression and is sometimes referred to as the “ordinal logistic” model. It is
also referred to as a “cumulative odds” model. The model is linear and additive on the logit
scale, and use maximum likelihood methods to estimate a summary odds ratio. In this model
the data is dichotomised across the scale, also refer to as “cut-points”. As an example, the cut-
points for an ordinal variable with the outcomes “none”, “mild”, “moderate” or “severe” can
be found in Table 2.



Table 2 Cut-points for a proportional odds model based on an ordinal outcome
variable with 4 categories

Cut-points Proportional odds model:
successive incremental

cut-points

1 None vs. mild, moderate and severe

2 None and mild vs. moderate and severe

3 None, mild, and moderate vs. severe

With m categories, see Table 1, there are (m-1) cut points and the cumulative probability for a
patient to fall into category k or better (a lower category) will be denoted QkT for test
treatment and QkC for control treatment:

QkT = π1T + π2T + … + πkT ; QkC = π1C + π2C + … + πkC,   k = 1, … , m .

Notice that QmT = QmC = 1. At each cut point an odds ratio can be calculated:

ORk = 








−

−

)Q(Q

)Q(Q

kCkC

kTkT

1

1

When all these odds ratios have a common value, i.e. OR = OR1 = OR2 = … = ORm-1, we
have proportional odds, and the common value OR is a natural measure of treatment effect in
the population.

When prognostic factors influence the response variable it is possible to include the
prognostic factors and calculate an adjusted estimate of the odds ratio under the assumption of
proportional odds. This is easily done by use of the PROC LOGISTIC procedure provided by
the SAS® system [6]. Problems arise when the assumption of proportional odds is violated
and the risk of violating the assumption increases with the number of prognostic variables.

The Cochran-Mantel-Haenszel (CMH) test is a non-parametric test, also called stratified
Wilcoxon, since it is possible to include prognostic factors. Continuous prognostic factors
need to be categorized before they can be included in the statistical analysis. A stratum is a
given combination of levels from different factors, so e.g. with 2 prognostic factors of 2 levels
each, there are four strata. The frequency tables from different strata are assumed to be
independent given the row sums, and the null hypothesis is that in each stratum, the
multinomial distributions in the two rows have common probability parameters over the
response categories.

An ideal measure of treatment effect should exhibit good interpretability and good statistical
properties. We would like the effect measure to tell the clinicians how likely it is that patients
benefit from the test treatment. A good effect measure can communicate information useful to
assess the clinical significance of any result found in a clinical trial. The odds ratio has been
criticised for not having these properties. Besides, the assumption of proportional odds can be
violated, especially when covariates are included in the logistic regression model. In this case



we prefer Somers’ D (Somers’ rank correlation index D) as effect measure. Somers’ D is a
modification of the Kendall tau rank correlation coefficient for the association between
treatments and the response variable [7]. Somers’ D can be adjusted for prognostic variables
and there is no need for proportional odds. Somers’ D is also called the expanded success rate
difference, since in the case of binary response Somers’ D reduces to success rate difference.
More regarding Somers’ D and corresponding effect measures, Mann-Whitney’s U and the
Number Needed to Treat (NNT, Somers’ D reciprocal), in particular when adjustment is
needed for prognostic factors, can be found in paper II “Effect measures in clinical trials with
ordinal data”.
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A study of p-values in clinical trials with covariate-adaptive 
randomisation 

ABSTRACT 

Covariate-adaptive randomisation is a treatment allocation procedure where the allocation for a 
new patient depends on prognostic factors of patients already recruited. The question is how 
covariate-adaptive randomisation affects a following standard statistical test. Of particular 
interest is if the type I error may be incorrect. Because of this concern, a rerandomisation test 
may be needed instead of a statistical test that does not take the covariate-adaptive randomisation 
into account.  

The primary reason for using the covariate-adaptive randomisation is to achieve balance between 
treatment groups with respect to prognostic factors. The aspect of balance is not trivial and in 
studies with good balance the result will get higher credibility. Another reason is that with good 
balance one may intuitively expect that the power of a test is higher. 

There are many aspects that need to be considered when covariate-adaptive randomisation is 
used. An important aspect is that regulatory authorities are conservative regarding covariate-
adaptive randomisation and want the reason for using covariate-adaptive randomisation to be 
based on solid clinical and statistical ground. The programming of the covariate-adaptive 
randomisation procedure, as well as the rerandomisation test, is not straightforward in practice 
and errors may occur. Another consideration is the increased cost if a computerised 
randomisation system is needed. 

In this paper, studies are simulated to investigate the properties of standard tests performed after a 
covariate-adaptive randomisation proposed by Pocock and Simon. The simulations are based on 
actual clinical data from three trials conducted in the stroke area. We have looked at the Wald test 
from a logistic regression model and the Cochran Mantel Haenszel (CMH) test.  

The simulations show that covariate-adaptive randomisation, if not taken into account properly in 
the analysis, may lead to incorrect type I error. A recommended approach is to perform a 
rerandomisation test. The conclusion is that covariate-adaptive randomisation does no harm, if 
properly taken into account, but that the gain has its limitation. 

Keywords: Covariate-adaptive randomisation; Taves� minimisation; simulation 

1. INTRODUCTION 

Randomisation is one of the central characteristics of a clinical trial and today most clinical trials 
are randomised. One aspect of randomisation is the maintenance of approximate balance across 
treatment groups of prognostic factors that are affecting the response variable. These prognostic 
factors can be known or unknown in the planning phase of the clinical trial. In combination with 
blinding, randomisation helps to minimise possible bias. Randomisation ensures an unbiased 



Adaptive randomisation         Anna Stoltenberg 

2(31) 

treatment comparison, i.e. makes sure that any difference between the treatment groups is 
attributed to the treatment effect rather than to influence from prognostic factors.  

General description of randomisation procedures will be found in Section 2. The covariate-
adaptive randomisation method that has been used in this paper, proposed by Pocock and Simon, 
is described in Section 3. In Section 4 a rerandomisation test will be described. Issues regarding 
covariate-adaptive randomisation can be found in Section 5. In Section 6, there is an explanation 
of how the simulations are performed and the results from the simulations are also included. In 
Section 7 there is a discussion and in Section 8 the conclusions can be found. 

2. RANDOMISATION PROCEDURES 

Four classes of randomisation procedures can be distinguished: complete randomisation, 
restricted randomisation, covariate-adaptive randomisation and response-adaptive randomisation. 
We will restrict the discussions to the simple case where we have two parallel treatment groups. 
More general information regarding randomisation can be found in Randomization in Clinical 
Trials by William F Rosenberger [1]. 

2.1 Complete randomisation 
Complete randomisation is simply toss of a fair coin, where the treatment assignments between 
patients are independent. This is only of theoretical interest, and in the worst case, all patients can 
be assigned to the same treatment. 

2.2 Restricted randomisation 
We refer to restricted randomisation when the treatment allocations to patients are mutually 
dependent in some way. To have equal numbers of patients assigned to each treatment group is 
one of the most common restrictions. A randomisation list can be generated prior to the inclusion 
of patients. The randomisation list includes randomisation numbers and each number is 
accompanied with a treatment code. Patients entering the study will be allocated to treatments in 
accordance with the randomisation numbers on the randomisation list in a consecutive order. 

2.2.1 Balance between treatment groups 
2.2.1.1 Truncated binomial randomisation 
A restriction can be that we want to randomise a study with 2n patients such that we achieve 
equal number of patients in each treatment group. A way of assigning exactly n patients to each 
of two treatment groups is to use coin tossing until one treatment has been assigned to exactly n 
patients and then allocate the other treatment to the rest of the patients. This is referred to as the 
truncated binomial randomisation. 

2.2.2 Permuted blocks  

Randomisation in permuted blocks [2] helps to avoid imbalance and to increase the comparability 
of the treatment groups. For example, if two treatments, A and B, are to be compared, a permuted 
block of four patients can be AABB, ABAB, ABBA, BABA, BBAA, or BAAB. In a study with a 
total sample size of 4n, with permuted blocks of size four, n blocks are needed and the number of 
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patients assigned to each treatment can never differ by more than two, whenever patient 
assignment ends. With small block, we will get close to perfect balance.  

2.2.3 Stratified randomisation 
Prognostic factors are variables that are potentially correlated with response variable. A stratum 
is a given combination of levels from different factors, so e.g. with 2 prognostic factors of 2 
levels each, there are four strata. With stratified randomisation, separate randomisations are 
performed for each stratum. Random permuted blocks can be used within each stratum, with 
varying block length as an option. The idea behind stratified randomisation is to keep the balance 
between the treatment groups within each prognostic factor level and still be able to claim that 
the study is a randomised clinical trial. Stratified block designs can, in some cases, lead to 
imbalance if not all randomisation numbers are used within the last blocks in many strata. 

2.3 Covariate-adaptive randomisation 
Covariate-adaptive randomisation is employed when there are known prognostic factors and there 
is a desire to balance between treatment arms with respect to these prognostic factors. This is a 
method in which the allocation of patients is determined by the current balance of the treatment 
groups, meaning that we use information from the previously allocated patients to assign 
treatment to the next patient to be included. When we refer to adaptive randomisation, we will 
mean the covariate-adaptive randomisation procedure proposed by Simon and Pocock, which is 
described in Section 3.  

2.4 Response-adaptive randomisation 
In response-adaptive randomisation, the treatment assignment to a new patient depends upon the 
treatment responses of previously included patients. Response-adaptive randomisation can be 
used when it is desirable to randomise patients to the most promising treatment. Response-
adaptive randomisation is outside the scope of this paper. 

3. THE ADAPTIVE RANDOMISATION METHOD OF POCOCK 
AND SIMON 

The adaptive randomisation procedure considered in this paper is a technique developed by 
Pocock and Simon [3] and is the most commonly used adaptive randomisation procedure. It is 
based on an entirely deterministic allocation method originally proposed by Taves [4], which we 
will refer to as Taves� minimisation. Pocock and Simon introduced a random element to the 
minimisation procedure. The basic idea behind the method of this adaptive randomisation is that 
imbalance is measured marginally for each level of the prognostic factors and summed over the 
factors. The method balances treatments at each prognostic factor level marginally, but 
approximate balance within each stratum is also achieved, which is desirable. The assignment of 
treatment group to the next patient in line is determined to minimise the imbalance and depends 
on the values of the prognostic factors for the patients already included in the study.  

Suppose that we have p prognostic factors for which treatment balance is desired. The numbers 
of levels of these factors are r1, r2, �, rp. The procedure is best described at an arbitrary time 
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point in the study when some of the patients have already been included in the study and a new 
patient is to be allocated to treatment. The imbalance measure, Gk, assuming that the new patient 
is allocated to treatment k (where k is A or B), is calculated as the total sum of absolute 
differences between number of patients (including the new patient) in each treatment group for 
each prognostic factor within each level of the prognostic factors: 

Gk = ∑∑
= =

p

i

ir

1j
ijBijA |n-n|

1
, where i represent a prognostic factor (i = 1, 2, �, p), and j a level within 

a factor (j = 1, 2, �, rj). The imbalance measure GA is calculated assuming that the new patient 
receives treatment A, and GB is calculated assuming that the new patient is allocated to treatment 
B. If GA < GB, the new patient is assigned to treatment A with a higher probability than B, and to 
treatment B with a higher probability than A when GA > GB. When GA = GB the new patient is 
equally likely to receive treatment A as treatment B. 

Table 1 illustrates the calculation of the imbalance measures GA and GB. Imagine a clinical trial 
with two parallel treatment groups and with three important prognostic factors (condition at 
baseline, gender, and already on treatment or not) that we want to balance for and use in the 
adaptive randomisation procedure. Forty patients have already been allocated to treatment, 20 in 
each treatment group, and the new patient has a mild condition at baseline, is female and is not 
already on treatment. Assigning the new patient to treatment A would lead to a total imbalance of 
GA = |3 � 5| + |(9+1) � 7| +|6 � 5| + |2 � 3| + |10 � 13| + |(10+1) � 7| + |9 � 14| + |(11+1) � 6| = 25, 
whereas assigning the new patient to treatment B would lead to a total imbalance of  
GB = |3 � 5| + |9 � (7+1)| +|6 � 5| + |2 � 3| + |10 � 13| + |10 � (7+1)| + |9 � 14| + |11 � (6+1)| = 19. 
The total imbalance would be minimised if the new patient receives treatment B, since GA > GB 
(25 > 19), and therefore the new patient will be assigned to treatment B with a higher probability 
than to treatment A. 
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Table 1  Calculation of imbalance measures GA and GB for the new 41th patient 

 Prognostic 
factor 

Level Treatment A Treatment B Imbalance 

None 3 5   

Mild 9 7   

Moderate 6 5   

Patients already 
allocated to 
treatment 

Condition at 
baseline 

Severe 2 3   

 Male 10 13  

 

Gender 

Female 10 7  

 Yes 9 14  

 

Already on 
treatment No 11 6  

None 3 5 2 

Mild 10 7 3 
Moderate 6 5 1 

New patient 
allocated to 
treatment A 

Condition at 
baseline 

Severe 2 3 1 

 Male 10 13 3 

 

Gender 

Female 11 7 4 

 Yes 9 14 5 

 

Already on 
treatment No 12 6 6 

     GA=25 

None 3 5 2 

Mild 9 8 1 

Moderate 6 5 1 

New patient 
allocated to 
treatment B 

Condition at 
baseline 

Severe 2 3 1 

 Male 10 13 3 

 

Gender 

Female 10 8 2 
 Yes 9 14 5 

 

Already on 
treatment No 11 7 4 

     GB=19 
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4. RERANDOMISATION TEST 

A rerandomisation test can be applied to all types of response data, i.e. continuous, ordered or 
categorical data. Such a test is performed as follows: 

Specify the problem. Assume that we have a clinical trial with 2 parallel treatment groups and 
want to test the null hypothesis that the two treatments are equivalent, i.e. the patient�s response 
is the same regardless of treatment.  

Choose a test statistic. If the two treatments are not equivalent, we want to be able to detect the 
difference and choose a test statistic that is sensitive to such a difference. Under the null 
hypothesis the test statistic has a certain null distribution under the used randomisation procedure, 
where the responses are considered as fixed. 

Compute the test statistic for the observed responses using the treatments assigned to patients in 
the original randomisation. This test statistic will be referred to as the raw test statistic. 

Estimate the null distribution of the test statistic by generating a large random sample from this 
distribution as follows:  
(a) reallocate treatments to patients in accordance with the chosen randomisation procedure; 
(b) compute the test statistic for this reallocation; and  
(c) do independent repetitions of (a) and (b) a large number of times. The empirical distribution 
of the values from the generated test statistic estimates the null distribution. A large enough 
sample will accurately estimate this null distribution. In some situations it is possible to derive 
the true null distributions through complete enumeration of the possible allocations and their 
probability. 

Accept or reject the hypothesis using the estimated null distribution. Determine the relevant 
critical region (one-tailed or two-tailed) from this null distribution, and reject the null hypothesis 
if the raw test statistic computed for the original randomisation falls into this region. 

It is important to note that the responses (and corresponding covariate values) of patients are 
considered as given constants in the rerandomisation test described above. More information 
regarding rerandomisation and permutation tests can be found in a book written by Good [5]. In 
this book, Good use �permutation� and �rerandomisation� interchangeably. However, for a 
permutation test, all permutations of treatment assignment sequence are equally likely. After 
adaptive randomisation some treatment sequences are more likely than others and some are 
highly unlikely, so we prefer �rerandomisation� to �permutation� in the present context. 

5. ASPECTS OF ADAPTIVE RANDOMISATION 

5.1 Balance 
The aspect of balance is not trivial. It is unnecessary to be exposed to potential criticism about the 
credibility of the result. This can be the case when there is severe imbalance between treatment 
groups regarding important prognostic factors. Achieving balance within strata becomes more 
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complex when there are many prognostic factors and when some of these factors have more than 
2 levels. In several papers the balancing properties of adaptive randomisation have been 
compared to other allocation methods [6, 7, 8, 9]. The general view is that adaptive 
randomisation yields tight balance and outperforms stratified randomisation as the number of 
prognostic factors increases. Adaptive randomisation can cope with more factors than permuted 
blocks within strata, which becomes unworkable as the number of prognostic factors increases 
and the number of strata required quickly exceeds the number of patients in the trial [10]. 
However, if the number of prognostic factors with several levels is too large to be handled by 
randomisation with permuted blocks within strata, adaptive randomisation is perhaps not the only 
solution. In this case it might instead be better to decrease the number of prognostic factors.  

McEntegart [11] believes that the primary reason to achieve good balance in a study, for instance 
by use of adaptive randomisation, is to get higher credibility among journal readers and 
regulatory authorities. It is appealing to see that there is treatment balance when data is tabulated 
by important prognostic factors, but that alone cannot justify the use of adaptive randomisation. 

5.2 Power 
Increasing the power could be a reason to use adaptive randomisation. However, Peto et al. [12] 
conclude that the gain in efficacy and balance relative to more simple randomisation methods are 
negligible. Weir and Lees [6] made simulations of trials including 1000 subjects per trial. They 
simulated normally distributed response variables and performed analyses of covariance 
(ANCOVA), where the prognostic factors used in the randomisation process were included as 
covariates. They compared adaptive randomisation to stratified random permuted block and 
could conclude that adaptive randomisation only resulted in slight improvement in power. In a 
paper by Lachin [13], where the statistical properties of randomisation in clinical trial are 
discussed, he concludes: �Although treatment imbalances affect power, the effects are trivial 
unless the imbalances are substantial. Therefore, for large trials, the susceptibility of a 
randomisation procedure to such imbalances is not a statistical concern.� 

5.3 Regulatory guidance 
In a trial using Taves� minimisation as treatment allocation method, the Food and Drug 
Administration (FDA) requested that a non-deterministic element should be included in the 
randomisation procedure [14]. In addition, FDA requested that a rerandomisation test (see 
Section 4) should be performed to confirm the conclusion from the primary statistical analysis 
that did not take the randomisation procedure into account. 

In Statistical Principles for Clinical Trials guideline, ICH E9 of the International Conference on 
Harmonisation [15], we can read: �Stratification by important prognostic factors measured at 
baseline (e.g. severity of disease, age, sex, etc.) may sometimes be valuable in order to promote 
balanced allocation within strata; this has greater potential benefit in small trials.� We can also 
find the following advice regarding adaptive randomisation: �Deterministic dynamic allocation 
procedures should be avoided and an appropriate element of randomness should be incorporated 
for each treatment allocation.� In other words, applicants are not recommended to use Taves� 
minimisation, but as long as a random element is included there is no strong position against 
adaptive randomisation. 
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In �Points to consider on adjustment for baseline covariates� [16] (below referred to as the CPMP 
document), published by the Committee for Proprietary Medical Products (CPMP) of the 
European Agency for the Evaluation of Medical Products (EMEA) more advise is given: �� 
stratification for more than a few prognostic factors is not always possible, especially for small 
trials. In this situation, techniques of dynamic allocation such as minimisation are sometimes 
used to achieve balance across several factors simultaneously. Even if deterministic schemes are 
avoided, such methods remain controversial. Thus, applicants are advised to avoid such methods. 
If they are used, the reasons should be justified on solid clinical and statistical grounds.� And 
further, �Dynamic allocation is strongly discouraged. However, if it is used, then it is imperative 
that all factors used in the allocation scheme be included as covariates in the analysis. Even with 
this requirement, it remains controversial whether the analysis adequately reflects the 
randomisation scheme. Applicants will be required to describe the sensitivity analyses they intend 
to perform to support the conclusions from the primary analysis. Without adequate and 
appropriate supporting/ sensitivity analyses, an applicant is unlikely to be successful.� 

The CPMP document has been criticised. Roe [17] thinks that �The almost dogmatic position in 
this document regarding dynamic allocation seems out of tune, �� and hopes that this will not 
stimulate a premature dismissal of a range of allocation methods for which there is empirical 
evidence that they can be beneficial in the practice of clinical trial design. Other critics to the 
view expressed in the CPMP document regarding adaptive randomisation are Buyse and 
McEntegart [18]. They believe that CPMP�s position is unfair, since it ignores recent 
methodological literature that encourages wider use of minimisation, and because it does not cite 
any references supporting its own view. Buyse and McEntegart consider CPMP�s position as 
unfounded because it endorses static balancing methods and rejects dynamic methods, when in 
fact there is no essential difference in the two, according to them. They also believe that CPMP�s 
position is unwise, because it favours use of randomisation methods that expose clinicians and 
the medical community to the risk of accidental bias, when this risk could have been limited, 
especially when the trials are small and cannot easily be repeated.  

An answer to this criticism was written by Simon Day, Jean-Marie Grouin and John A. Lewis 
[19], all three authors involved in drafting the CPMP document. They have often observed, when 
reviewing applications from sponsor companies, that the use of adaptive randomisation results in 
more harm than good. They have rarely seen the need to use any allocation procedure more 
complex than simple stratified randomisation with permuted blocks. They have also seen trials 
where the choice of factors included in the randomisation algorithm has been poorly thought out, 
where the programming algorithm has been incorrect, and where the telephone system or web-
based system for adaptive randomisation was unreliable.  

5.4 Prognostic factors 
In the CPMP document [16], it is a minimum requirement that the factors used in the 
randomisation procedure have to be included in the statistical model used for analysis. Our own 
view is that if a factor is so important that we use it in the randomisation procedure, it needs to be 
included in the statistical model used for statistical analysis. We want to point out that the CPMP 
document discourages the use of too many covariates and models that become too complex. 
Dynamic allocation procedures are said to be beneficial when the number of strata becomes 
larger [10]. However, since the guideline argues for including stratification factors in the 



Adaptive randomisation         Anna Stoltenberg 

9(31) 

statistical model, and it discourage a large number of factors in that model, only a few 
stratification factors should be used. Statistical models with many covariates lead to complex 
models, which are complicated to interpret. With few stratification factors, other treatment 
allocation procedures than adaptive randomisation can be considered. 

5.5 Computerised randomisation system 
Most likely, any study allocating patients to treatment by use of an adaptive randomisation 
procedure becomes so complicated that there is a need of a computerised randomisation system. 
A telephone based interactive voice response (IVR) system, or a web-based system, see Cai et al 
[20], are examples of such. In the three stroke studies described in Section 6.1, an IVR system 
was used. The system had to be reliable and available all round the clock, since the patients 
arrived at hospital in an emergency situation, requiring immediate treatment allocation. For 
various reasons the physician occasionally never called the IVR system and the patient received a 
package of drug labelled with the lowest available randomisation number stored at the clinic. In 
this case, or if any of the prognostic variables were incorrect at the first call, it was always 
possible to update the IVR system later. The message heard when the IVR system was called, 
was available in 19 different languages. There was also a helpdesk facility available. In this 
example, many centres with few patients were included and there was an obvious risk for severe 
imbalance between treatment groups in small centres. It is not possible to answer if it was 
beneficial to use an IVR system, and what would have happened if it was not used. It can only be 
established that the desire of achieving balance required a lot of time for planning and was very 
expensive. Balance between treatments for each prognostic factor at all levels was achieved, but 
only one of the prognostic factors used at randomisation was correlated to the primary response 
variable. 

6. SIMULATION 

A number of authors have used computer simulations to show that better balance is achieved with 
adaptive randomisation compared to other stratification procedures [6, 7, 8, 9]. Better balance is 
most probably achieved, but in this paper we are more interested in how the adaptive 
randomisation procedure influences the statistical inference. Adaptive randomisation introduces a 
deterministic element to the randomisation, with the consequence that some sequences become 
more likely than others and some become highly unlikely. This may lead to better balance at the 
expense of a biased estimate of the variability in the test statistic, and there is a concern that the 
statistical test does not maintain its significance level after performing an adaptive randomisation. 
We have made simulations to see if the level of the type I error is maintained in tests that does 
not take the adaptive randomisation into account or if a rerandomisation test is needed. In order to 
make these simulations potentially relevant for applications in clinical trials, we based the 
simulations on three actual clinical studies, to be described below. 

6.1 Description of the stroke studies used as basis for simulation 
The clinical data that constitutes the basis for the simulations comes from three acute stroke 
studies, here referred to as studies 1, 2 and 3. They were double blind, multicenter, and placebo 
controlled phase IIb/III studies with two parallel treatment groups, active and placebo. The 
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efficacy response variable was disability at end of the 3 months study, as measured according to a 
6-category ordered scale, the modified Rankin Scale (mRS), ranging from 0 (no symptoms) to 5 
(severe disability), where death is merged with the latter category.  

In study 1, 595 patients were included. The aim was to evaluate safety and no sample size 
calculation concerning efficacy was done. In the two other studies the sample size was based on 
an anticipated difference in efficacy. In study 2, 1699 evaluable patients were analysed for 
efficacy. The sample size calculation for study 3 was based on the result in study 2. This led to a 
larger sample size and study 3 was almost twice as large as study 2, with 3196 patients included 
in the efficacy analysis.  

In study 1, two prognostic factors were used in the randomisation procedure, severity of stroke at 
baseline and country. Severity of stroke at baseline is a factor with four levels, none, mild, 
moderate and severe. In studies 2 and 3, two more two-level factors were identified as potentially 
prognostic and used at randomisation: whether alternative treatment was received or not, and side 
of brain where stroke occurred. The prognostic factors used in the randomisation were included 
as covariates in the statistical analyses. 

The patients in studies 1, 2 and 3 were randomised in accordance with an adaptive randomisation, 
as described in Section 3. When the imbalance measure for active treatment, Gactive, was greater 
than the imbalance measure for the placebo group, Gplacebo, the next patient was assigned to 
placebo with a higher probability than active, and to treatment active with a higher probability 
than placebo when Gactive < Gplacebo. When Gactive = Gplacebo the new patient was equally likely to 
receive active treatment as placebo. The probability used in the three studies was chosen to be 
0.75. However, this is not an obvious choice. Pocock [21] recommended a probability of 0.66 to 
0.75. Weir and Lees [6] investigated the imbalance for various values of allocation probabilities, 
0.85, 0.9, 0.95 and 1. McEntegart [11] used 0.75 as an example and the influential CONSORT 
group statement [22] gave a probability of 0.8 as an example. 

6.2 Creation of pseudo studies 
When the three studies had been conducted it was found that severity of stroke at baseline was 
the only prognostic factor used in the randomisation procedure that was actually correlated to the 
response variable, modified Rankin Scale (mRS), so only this prognostic factor is used in the 
simulation.  

In Figure 1, for each study 1-3, the joint distribution of severity at baseline (none, mild, moderate, 
severe) and disability at end of study (mRS score 0 to 5) is visualised. No consideration of 
treatment is done here. The first four bars in Figure 1 represent no disability at end of study 
where the first bar is the percentage of patients with no severity of stroke at baseline and the 
following bars represent mild, moderate and severe stroke at baseline. The next four bars 
represent a mRS score of 1, and so on. The sum of the 24 bars is 100%. As we can see, patients in 
study 1 had more severe strokes at baseline and were more disabled at end of study, compared to 
patients in the other two studies. Only a small proportion of the patients have no symptoms after 
3 months of receiving active treatment or placebo. Study 2 and 3 were similar, with large 
proportion of patients with the outcome 0 (no symptoms) or 1 (mild symptoms) on the mRS scale 
and the condition at baseline were none or mild stroke for more patients than in study 1.  
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Figure 1  The joint distribution of severity of stroke at baseline (none, mild, 
moderate, severe) and disability at end of study, mRS score (0 to 5), for 
each study 1, 2 and 3 
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New pseudo studies are generated by multinomial sampling with 24 categories and probability 
parameters given by the observed distributions in Figure 1. Each hypothetical patient in a pseudo 
study is randomly assigned a number between 1 and 24. For example, if a patient is assigned the 
number 6, this corresponds to the sixth bar in one of the distributions in Figure 1. This means that 
the patient is assumed to have a mild condition for the prognostic factor �severity of stroke at 
baseline� and an outcome of score 1 on the mRS. When all patients in a pseudo study randomly 
have been assigned a number between 1 and 24, numbers are translated to a value for the 
prognostic factor and a mRS score as response.  

Pseudo studies of sizes 50, 595 and 1699 were sampled from each of the three studies in Figure 1. 
The size of 50 was chosen to represent a small study. A study with only 50 patients is not likely 
to be large enough to detect any treatment effect, and the choice may seem unrealistic. However, 
if there are any patterns to be seen, we hope to see them more clearly in many small studies, than 
in few larger ones. The other study sizes, 595 and 1699, were the actual sizes in studies 1 and 2. 
They represent a more realistic choice of sizes, even though the study of 595 patients was 
planned to only evaluate safety and not large enough to show any treatment effect. The reason for 
not simulating studies with the same size as in study 3, a size of 3196, is both that this is time 
consuming and that we will probably not be able to see anything that has not already been seen in 
the pseudo studies of smaller sizes.  

For the larger sample sizes of 595 and 1699, eight pseudo studies for each of the three studies 
were created. Pseudo studies of size 50 were faster to sample than studies of larger sizes and 99 
pseudo studies for each of the three studies were generated. In Appendix 1 a selection of 
underlying distributions of the pseudo studies can be found. When the sample size is as large as 
1699 there are small variations between the distributions of the eight pseudo studies, and the 
distributions of severity of stroke at baseline by mRS score are similar to those of the original 
studies. Totally, 297 + 24 + 24 = 345 pseudo studies were generated, see Table 2.  
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Table 2 Number of pseudo studies generated for each study in Figure 1 

 Study 

Pseudo studies 
of size (N) 

 
1 

 
2 

 
3 

 
Total 

50 99 99 99 297 

595 8 8 8 24 

1699 8 8 8 24 

 

6.3 Statistical tests used in the studies 
The simulations of the pseudo studies are based on three stroke studies. In these stroke studies the 
primary effect variable (mRS) was analysed by use of two tests, the non-parametric Cochran-
Mantel-Haenszel (CMH) test and the Wald test in a logistic regression model. Since these two 
tests were used in the three stroke studies, we have chosen to use these test in the pseudo studies 
as well. With no covariates the CMH test reduces to the Wilcoxon-Mann-Whitney (WMW) test. 
In simple comparisons of two treatments, without any prognostic factors, the Wald test in a 
logistic regression model is equivalent to the WMW test and provides identical p-values when the 
hypothesis that the treatments are equally effective is tested [23]. This means that if there is a 
difference between the p-values from the Wald test in a logistic regression model and the CMH 
test, this is probably due to the use of prognostic factors in these tests. The standard tests do not 
take the adaptive randomisation into account, and therefore we want to evaluate them to see if 
they will maintain their significance level under adaptive randomisation. 

6.3.1 Cochran-Mantel-Haenszel test 

The Cochran-Mantel-Haenszel (CMH) test is a test of conditional independence. In a clinical trial 
with binary response (0 or 1), the CMH test tests the null hypothesis of conditional independence 
in S 2x2 tables, where S is the number of strata. A 2x2 frequency table for the response in stratum 
h (h = 1,� ,S) can be seen in Table 3. 

Table 3 Frequency table for binary response in patients treated with active or 
placebo in stratum h 

 0 1 

Active  nA0h nA1h 

Placebo nP0h nP1h 

In each stratum h, given the row sums of the 2x2 tables, the first cell counts nA0h and nP0h in the 
two rows are assumed to have a binomial distribution. The 2x2 tables from different strata are 
assumed to be independent given the row sums. The null hypothesis is that in each stratum h, the 
two binomial distributions have equal probability parameters. Under this null hypothesis, given 
the row and column marginals of each 2x2 table, the first cell nA0h in each table is then 
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(conditionally) distributed according to a known hypergeometric distribution with mean µA0h and 
variance var(nA0h), and the test statistic, 
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has approximately a chi-squared null distribution with one degree of freedom. 

However, in our situation, the response variable is the modified Rankin Scale (mRS), ranging 
from 0 (no symptoms) to 5 (severe disability), where death is merged with the latter category. In 
each stratum h, the frequencies in each row of the resulting 2x6 frequency table are assumed to 
have a multinomial distribution given the row sums, and the frequencies in different categories 
within each treatment are denoted as in Table 4. 

Table 4 Frequency table for modified Rankin Scale score in patients receiving 
with active or placebo in stratum h 

 0 1 2 3 4 5/death 

Active nA0h nA1h nA2h nA3h nA4h nA5h 

Placebo nP0h nP1h nP2h nP3h nP4h nP5h 

The frequency tables from different strata are assumed to be independent given the row sums, 
and the null hypothesis is that in each stratum, the multinomial distributions in the two rows have 
common probability parameters over the response categories. 

In this more general case, the CMH test is defined in terms of the mean scores 
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within stratum h, where x0h, x1h, � , x5h are scores assigned to the outcomes 0, 1, �,k, 
respectively. The CMH statistic, given these scores, is 

( ) ( )∑∑
==

−







−=

S

1h
PhAh

2S

1h
PhAhCMH xxvarxxz . 



Adaptive randomisation         Anna Stoltenberg 

14(31) 

In each stratum, the frequencies in the two marginals of the 2x6 table are considered fixed, and 
the cell-frequencies within the table are then (conditionally) distributed according to a known 
multiple hypergeometric distribution under the null hypothesis. This means that under the null 
hypothesis, the (conditional) variances ( )PhAh xxvar −  are known, and the statistic zCMH is 
approximately chi-square distributed with one degree of freedom. The null hypothesis is rejected 
if zCMH is too large. Different choices of the scores x0h, x1h, �, and x5h lead to different versions 
of the CMH test. The scores chosen are so called Modified Ridit scores, which correspond 
(within each table) to Wilcoxon midrank scores. The SAS procedure PROC FREQ was used with 
the option �modified ridit� to perform this CMH test in the stroke studies. Unfortunately, only a 
2-sided test is performed, and only a 2-sided p-value is provided by PROQ FREQ, i.e. the p-value 
does not indicate whether a difference is in favour of the active treatment or placebo. 

The CMH statistics have low power for detecting an association in which the patterns of 
association for some of the strata are in the opposite direction of the patterns displayed by other 
strata. Thus, a non-significant CMH statistic suggests either that there is no association or that no 
pattern of association has enough strength or consistency to dominate any other pattern. 

6.3.2 Wald test 

A logistic regression model can be applied to ordinal response data and an associated Wald test 
can be performed by use of PROC LOGISTIC from SAS®. Wald test is a standard way to use the 
likelihood function to perform large-sample inference. Wald�s test, the likelihood ratio (LR) test 
and the score test usually give similar results for studies with large samples. In studies with few 
observations it is preferable to choose the LR test instead of a Wald test, since the Wald test is 
only an approximation of the LR test. The LR test incorporates the log-likelihood at H0 as well as 
at β̂ . Since the Wald test was used in the three stroke studies and since no LR test and only Wald 
test is given with PROC LOGISTIC, we have chosen to evaluate the Wald test for the influence 
of adaptive randomisation. 

Consider a binary response applied to a logistic regression model with only treatment as factor, 
logit = α + βx, where β is the log odds ratio. The significance test focus on H0: β = 0, the 
hypothesis of independence. The Wald test uses the test statistic z = β̂/SE, where β̂ is the 
maximum likelihood estimate of β and SE the standard error of β̂ . The test statistic z = β̂ /SE has 
an approximate standard normal distribution under H0. One refers z to the standard normal table 
to obtain one- or two-sided p-values. Equivalently, for the two-sided alternative, z2 has a chi-
squared probability above the observed value. z2 is asymptotically chi-squared with 1 degree of 
freedom for large samples.  

In our situation, the response is an ordered variable with six categories. With a six category scale, 
there are five cut-off points and the frequencies in the five 2x2 tables at each cut-point can be 
seen in Table 5, for a given strata. 
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Table 5 Frequency tables at each cut-point for the modified Rankin Scale score in 
patients treated with active or placebo 

 0 ≥ 1   ≤ 1 ≥ 2     ≤ 4 5/death 

Active  nA11 nA21  Active  nA12 nA22  �  Active  nA15 nA25 

Placebo nP11 nP21  Placebo nP12 nP22    Placebo nP15 nP25 

For each 2x2 table an odds ratio can be calculated as, ORk = 
kPkP

kAkA

nn
nn

21

21 , k = 1, �, 5. In a 

cumulative logit model, originally proposed by Walker and Duncan [24] and later called the 
proportional odds model by McCullagh [25], it is assumed that all these odds ratios have a 
common value, i.e. OR = OR1 = � = OR5, not only within each stratum, but also over all strata. 
With this approach we can apply the same model to data when we have an ordered response 
variable as in the binary case described above. In this situation β is the log odds ratio, log OR, in 
the model, logit = αk + βx, k = 1, �, 5. 

In the statistical program package SAS®, the Wald chi-square statistic given by PROC 
LOGISTIC is computed by squaring the estimated log odds ratio divided by its standard error 
estimate, and the p-value of the Wald chi-square statistic with one degree of freedom is given. 
This means that a p-values corresponding to a 2-sided test is provided, i.e. the p-value does not 
indicate whether a difference is in favour of the active treatment or placebo. 

6.4 Estimation of null distribution 
In the pseudo studies we use the adaptive randomisation suggested by Pocock and Simon. For 
each pseudo study, new treatment allocations are generated using the allocation probabilities 
described in Section 6.1. The new treatment reallocations are done conditional on the observed 
sequence of patient entries, and the values of the response and the prognostic factor, severity of 
stroke at baseline, are also considered as given. After each generated sequence of treatment 
reallocations, the value of the CMH test statistic and the values of the Wald test statistic from a 
logistic regression model are calculated. See Section 6.3 for details regarding these tests. Both 
tests adjust for the prognostic factor, severity of stroke at baseline, which was used in the 
randomisation procedure.  

For each such pseudo study, 40 000 sequences of treatment reallocations are done, leading to the 
calculation of 40 000 pairs of test statistic values (one from the CMH test, and one from the Wald 
test). For each type of test, under the assumption that the null hypothesis of equal treatment effect 
is true, these test statistic values come from an underlying null distribution function (one for 
CMH, and one for Wald) that depends on the pseudo study, sample size and treatment allocation 
method. The empirical distribution function, based on 40 000 test statistic values, is a good 
estimate of the null distribution function. An alternative to these test statistics is the 
corresponding p-values, here obtained by assuming that the test statistic is χ2 distributed. After 40 
000 repetitions of the treatment allocations , the p-values are sorted in increasing order from  
p(1), p(2), �, to p(40 000), and their empirical distribution function is used to estimate the underlying 
true null distribution function of p-values. We will denote such a null distribution function of p-
values by F, and the corresponding estimate, the empirical distribution function, by F� . A test that 
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perfectly satisfies the distributional assumption on it, and in particular is not affected by the 
adaptive randomization or by finite sample deviation from its asymptotic distribution, will have a 
null distribution function F that is the uniform distribution, satisfying F(u)=u, 0 < u < 1. The 
difference between the actual F and the �ideal� uniform distribution function can theoretically be 
described through a p-p-plot (u, F(u)), 0 < u < 1; but since F is unknown, we must instead study 
the p-p-plot (u, F� (u)), 0 < u < 1, and evaluate by how much this curve differs from the diagonal 
line (u, u), 0 < u < 1, of equality. Equivalently, we can study the vertical difference u)u(F� −  
plotted against u, as illustrated in Figure 2. 

Figure 2 Difference between empirical distribution function, F̂ , and u, u)u(F̂ −  
plotted against u 
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adaptive randomisation. We use the same pseudo studies of size 50, with the same prognostic 
factors and responses as we used for the adaptive randomisation. Instead of an adaptive 
randomisation we perform unstratified treatment allocations with a single permuted block of size 
50, with 25 patients in each treatment group. Patients are reallocated to treatment and 40 000 
pairs of p-values, one from the CMH test, and one from the Wald test from a logistic regression 
model are calculated. After 40 000 repetitions of the treatment allocation, the p-values are sorted 
and new null distributions are estimated, )u(F� ′ .  

6.5 Results 
Pseudo studies with 50 patients are fast to generate, and we created 99 pseudo studies with 50 
patients each. Instead of presenting results from all these 99 pseudo studies, we selected 8 of 
them as follows. For each pseudo study the value u0.05, such that F�  (u0.05) = 0.05, for the Wald 
test from a logistic regression model was determined. The u0.05-values were sorted and ranked 
from 1 to 99 and we chose to present the results selected from the eight pseudo studies with ranks 
1 (minimum), 15, 29, 43, 57, 71, 85, and 99 (maximum). The same eight pseudo studies were 
used to illustrate the behaviour of the CMH test. 

In Appendix 2, we can find the curves of the difference u)u(F� −  in pseudo studies generated 
from study 1, 2 and 3, with sample size of 50, 595 and 1699 patients, both for the CMH test and 
the Wald test in a logistic regression model, after adaptive randomisation. Totally, there are 144 
curves evaluated. 

We can see in Appendix 2, that for the CMH test the p-values can be underestimated as well as 
overestimated. The absolute differences u)u(F� −  are more pronounced for pseudo studies with 

only 50 patients and the curves get closer to 0 when the number of patients increases. With 595 
patients, curves seem to be close to 0 and with 1699 patients the CMH test performs quite well, 
with curves very close to 0.The curves from the small pseudo studies with 50 patients cannot be 
directly compared to curves from pseudo studies with more patients, particularly not the extreme 
lower and upper curves. The reason for this is that the curves for pseudo studies with 50 patients 
are based on 99 underlying pseudo studies, and that only a selection of these, including the 
extremes (minimum and maximum), is presented.  

We can see that the Wald test from a logistic regression model performs poorly in small studies, 
where Wald test have a tendency to underestimate the p-values. When p-values are under-
estimated there is a risk for rejecting the null hypotheses at a higher significance level than 
planned for. For larger sample sizes, 595 and 1699 patients, the behaviour of Wald�s test is 
remarkably similar to that of the CMH test. The curves do not get closer to 0 when the sample 
size increase from 595 to 1699, especially not for pseudo studies generated from study 3. For 
sample sizes 595 or 1699, the p-values may as well be overestimated as underestimated. 

In Appendix 3, we can in total see eighteen graphical presentations, each for 50 patients and with 
eight curves representing the selected eight pseudo studies. There are six graphs for each of the 
studies 1, 2, and 3, where three of these curves are obtained after performing the CMH test and 
the other three after the Wald test has been used. The graph at the top is taken from Appendix 2 
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and illustrates the curves u)u(F� −  versus u after adaptive randomisation. The graph in the middle 
represents the use of single permuted block randomisation, )u(F� ′ -u versus u. At the bottom is a 
graph with eight difference curves, )u(F� - )u(F� ′ .  

In Appendix 3, we can see that the CMH test performs extremely well after randomisation with 
single permuted block for pseudo studies with 50 patients. This means that most of the error in 
the statistical evaluation in Appendix 2 comes from ignoring that adaptive randomisation was 
used. The curves after adaptive randomisation change little when the single permuted block 
curves are subtracted from them. 

When single permuted block randomisation is used, the estimated null distribution of p-values 
from the Wald test is similar to the estimation after adaptive randomisation. For small sample 
sizes the approximation of the χ2 distribution for the Wald test statistic is poor regardless of 
randomisation procedure. When the curve from the unstratified randomisation is removed from 
the curve of the adaptive randomisation, the behaviour of Wald test is remarkably similar to that 
of the CMH test. See Appendix 3. 

In the pseudo studies with sample size 1699, there are only small variations in the underlying 
distributions of the prognostic factors and the response, compared to the distributions in smaller 
pseudostudies (see Appendix 1 for a selection of underlying distributions). When the underlying 
distributions for the repetitions of treatment allocation are similar, the estimation of the null 
distributions can be expected to be alike, leading to curves of difference close to each other. In 
Appendix 2, we can see that the curves are close to each other, even if it is more pronounced for 
the CMH test than for the Wald test. On the other hand, for the smaller sample sizes, 50 or 595 
patients, the empirical null distribution function is sensitive to the underlying distribution of the 
prognostic factor and response. Even when there is only small variation between the distributions 
of the prognostic factor and of the response, the p-values can be underestimated or overestimated. 
The outcome is unpredictable. We are not aware if any pattern in the underlying distribution of 
the prognostic factor and the response can predict the direction of the result, that is if the p-value 
will be under- or overestimated. 

In a rerandomisation test (see Section 4) we choose a test statistic or the corresponding p-value, 
as was done in Section 6.4. This choice will not influence the outcome of the rerandomisation 
test, since the p-value is a monotone function of the original test statistic and can be used in the 
same way. After the null distribution has been estimated, we use the raw p-value, praw, (which 
does not take the adaptive randomisation procedure into account) as follows. If the raw p-value is 
within the defined critical region of the estimated null distribution, the null hypothesis is rejected 
and there is a statistically significant treatment effect. The critical region for the rerandomisation 
test at significance level α (approximately) is based on the estimated null distribution function, F� , 
as follows: (a) determine the critical value uα for which F� (uα) = α; and (b) reject the null 
hypothesis (same effect in the two treatment groups) if praw ≤ uα. Thus, uα is the empirical  
α-quantile based on the empirical distribution function F� . The critical values for rerandomisation 
tests at a significance level of 5%, after the performance of the Wald test and the CMH test after 
adaptive randomisation, F� (u0.05) = 0.05, and after single permuted block randomisation, F� ′ (u0.05) 
= 0.05, in pseudo studies of size 50, can be found in Table 6. As mentioned in the first paragraph 



Adaptive randomisation         Anna Stoltenberg 

19(31) 

of this section, the pseudo studies have been sorted by the u0.05 values from the Wald test for each 
stroke study, which can be seen in Figure 6. 

Table 6 Critical values u0.05, empirically based on 40 000 p-values generated 
through rerandomisation for 8 (of 99) selected pseudo studies of size 50 
from each of stroke studies 1 – 3 

Study 1 Study 2 Study 3 

Adaptive 
randomisation 

Single 
permuted 
block 

Adaptive 
randomisation 

Single 
permuted 
block 

Adaptive 
randomisation 

Single 
permuted 
block 

CMH Wald CMH Wald CMH Wald CMH Wald CMH Wald CMH Wald 

0.039 0.026 0.051 0.035 0.040 0.023 0.050 0.032 0.044 0.028 0.051 0.034 

0.047 0.031 0.051 0.034 0.047 0.034 0.050 0.039 0.047 0.033 0.052 0.039 

0.048 0.035 0.049 0.037 0.047 0.036 0.050 0.038 0.046 0.036 0.051 0.039 

0.051 0.037 0.051 0.037 0.053 0.039 0.052 0.039 0.042 0.039 0.051 0.047 

0.054 0.041 0.050 0.040 0.054 0.042 0.051 0.038 0.051 0.041 0.052 0.041 

0.058 0.044 0.052 0.042 0.050 0.045 0.051 0.044 0.057 0.044 0.052 0.039 

0.057 0.049 0.049 0.039 0.055 0.049 0.052 0.046 0.056 0.048 0.050 0.042 

0.061 0.059 0.050 0.051 0.084 0.077 0.048 0.044 0.059 0.068 0.051 0.055 

 

The results in Table 6 confirm the findings based on the curves in Appendix 3. We can see that 
after adaptive randomisation, the significance level is not maintained for small sample sizes and 
the critical values for the rerandomisation tests can be far from 0.05, especially for the Wald test, 
but also for the CMH test. After randomisation with single permuted block, the CMH test 
performs amazingly well. This is not the case for the Wald test from a logistic regression model, 
where the F� ′ (u0.05)-values are far from 0.05.  

Critical values u0.05 for the rerandomisation tests at the 5% significance level after adaptive 
randomisation for pseudo studies with 595 and 1699 patients, are found in Table 7. 



Adaptive randomisation         Anna Stoltenberg 

20(31) 

Table 7 Critical values u0.05, empirically based on 40 000 p-values generated 
through rerandomisation for pseudo studies of size 595 and 1699 from 
each of stroke studies 1 – 3 

595 patients 1699 patient 

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3 

CMH Wald CMH Wald CMH Wald CMH Wald CMH Wald CMH Wald 

0.048 0.045 0.045 0.042 0.049 0.046 0.049 0.048 0.049 0.049 0.049 0.046 

0.050 0.049 0.050 0.050 0.050 0.048 0.049 0.049 0.047 0.049 0.048 0.047 

0.049 0.049 0.049 0.050 0.048 0.048 0.051 0.050 0.049 0.050 0.049 0.047 

0.050 0.049 0.051 0.051 0.050 0.048 0.051 0.050 0.049 0.051 0.048 0.050 

0.048 0.049 0.052 0.051 0.049 0.049 0.052 0.051 0.050 0.051 0.049 0.051 

0.051 0.050 0.051 0.052 0.050 0.049 0.050 0.051 0.049 0.052 0.051 0.051 

0.054 0.052 0.053 0.053 0.053 0.050 0.052 0.051 0.053 0.053 0.050 0.052 

0.050 0.052 0.057 0.058 0.052 0.050 0.051 0.052 0.052 0.054 0.052 0.053 

 

In pseudo studies with large sample size (595 or 1699 patients) the critical values are closer to the 
significance level of 0.05, but still it is not possible to say that the type I error is not affected 
when the adaptive randomisation is ignored in the statistical analysis, see Table 7. 

An alternative to the use of critical regions for rejecting the null hypothesis (same effect 
regardless of treatment received) is an adjusted p-value. An adjusted p-value, padj, can be 
calculated as padj = F� (praw), which is the proportion of p-values in the empirical distribution 
function equal to or lower than praw. The adjusted p-value can be compared directly with the 
chosen significance level α, and the resulting test will then approximately have a correct 
significance level. For the adjusted p-value, as well as the critical region, to be as correct as 
possible, the number of repetitions, n, needs to be large enough. An asymptotic interval that with 
95% probability will cover the true p-value F(praw), can be calculated as 

n/)p1(p96.1p adjadjadj −± . With n = 40 000, which was the number of repetitions done for each 

pseudo study and adjp  = 0.05, the width of the interval, Ipadj, is approximately 0.004,  
i.e. Ipadj = 0.05 +/- 0.002. For adjp  = 0.01 and adjp  = 0.1 the widths are 0.002 and 0.006 represen-
tatively after 40 000 repetitions. 

7. DISCUSSION 

In a clinical trial, where the statistical test does not take the adaptive randomisation into account, 
the p-value can be questioned. This is confirmed in the simulation of the pseudo studies, based on 
actual clinical data, evaluated above. The p-value may be overestimated as well as under-
estimation. Not surprisingly, when it comes to maintaining the type I error, studies with large 
sample size perform better than smaller trials. However, regardless of sample size, there is no 
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guarantee that the significance level is maintained if a test, which does not take the adaptive 
randomisation into account, is used. 

When a test performs poorly it is not necessarily only due to the adaptive randomisation. It can 
also be due to a poor rate of convergence towards the asymptotic distribution of the test statistics. 
In the simulations, in studies with small sample sizes, we also looked at the maintenance of 
significance level after randomisation in single permuted block. The CMH test performs well 
after single permuted block randomisation, even in small studies. For the Wald test from the 
logistic regression model, this is not the case. In small studies, the Wald test statistic is not 
approximately χ2 distributed. If it can be suspected that the test statistic deviates from its 
asymptotic distribution, which can be the case in a study with small sample size, it can be 
beneficial to consider a rerandomisation test (or permutation test) also in studies where adaptive 
randomisation has not been used. 

Adaptive randomisation is complicated in various ways. Even programming errors have occurred 
and an example of this is a trial that had to rerecruit over 1000 women when a mistake in the 
randomisation algorithm caused serious imbalance [26]. In the same way as the execution of an 
adaptive randomisation procedure can be complicated, a rerandomisation test can be difficult to 
perform. This can be an excuse for not performing a rerandomisation test. However, Green et al 
[27] refer to a case where U.S. regulatory body requested that a trial that had used Taves� 
minimisation procedure had to be reanalysed using rerandomisation test. Regulatory authorities 
are conservative regarding adaptive randomisation. In ICH E9 [15] adaptive randomisation is not 
encourage, and CPMP discourages its use. The reasons for using adaptive randomisation need to 
be based on solid clinical and statistical grounds to be supported by the European authorities [16]. 
Especially in a trial with large sample size it can be questioned if there are any solid and 
statistical grounds. 

When a rerandomisation test is performed, it is usually only to support the primary statistical 
analysis, which does not take the adaptive randomisation into account. For the study to be 
conclusive, the rerandomisation test needs to confirm the result. A problem arises when the raw 
p-value indicates there is statistically significant result but the rerandomisation test does not, or 
vice versa. We suggest that the adjusted p-value from the rerandomisation test should be used as 
the main basis for the evaluation of the primary objective in a confirmatory clinical trial, and that 
this should be stated already in the planning phase. To be trustworthy, it is essential to state á 
priori that the primary p-value will come from a rerandomisation test. In a recent paper by 
Hasegawa and Tango [28], simulations have been made to compare the rerandomisation test to 
standard ANCOVA. Hasegawa and Tango come to the same conclusion when they state �In 
conclusion, we suggest that 1) Pocock�Simon�s procedure could be used as a method of 
randomization, and 2) a permutation test could be used as the primary statistical analysis in a 
confirmatory randomized controlled trial with important prognostic factors.�  

8. CONCLUSION 

We can conclude from the simulations that the p-values from the CMH test and the Wald test can 
be over- or underestimated when performed after adaptive randomisation. The use of adaptive 
randomisation cannot be ignored in the statistical analysis. We suggest that an adjusted p-value 
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from a rerandomisation test should be used for the evaluation of a clinical trial when adaptive 
randomisation has been used. The rerandomisation test should be the primary analysis and for the 
trial to be reliable this need to be stated in the planning phase.  

When adaptive randomisation is to be used, Taves� minimisation should be avoided, since it does 
not include an element of randomness. In the statistical evaluation, the prognostic variables used 
in the randomisation process should be included as covariates in the statistical model used for 
analysis. If a proper analysis that takes adaptive randomisation into account is used, adaptive 
randomisation doesn�t make much harm. However, the gain has its limitations. The decision for 
using adaptive randomisation should be based on solid clinical and statistical grounds, which is 
also required by the regulatory authorities. During the planning phase of a clinical trial, the 
various costs (e.g. computerised systems), including logistic difficulties and potential 
programming and calculation errors, should be taken into account when considering whether 
adaptive randomisation should be used or not. We conclude that adaptive randomisation needs to 
be used with caution and after other possible randomisation procedures have been thoroughly 
considered. There are alternatives to adaptive randomisation, i.e. stratified randomisation. 
Simulation is a great tool to investigate if adaptive randomisation will gain in balance and power 
compared to what can be expected from other randomisation methods. 
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Appendix 1 Distributions 
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Appendix 2    Graphical presentation of F̂ (u) – u vs. u 
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Appendix 3    Graphical presentation of F̂ (u) – u vs. u 
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Effect measures in clinical trials with ordinal data 

SUMMARY 

In a clinical trial with an ordinal categorical response variable, a logistic regression can be 
applied to data under the assumption of proportional odds. An estimate of the odds ratio can 
be used as a measure of treatment effect. Problems arise when the assumption of 
proportional odds is violated. Moreover, the odds ratio has been criticised for being difficult to 
interpret. Instead of an odds ratio as effect measure, we propose Somers� D, or its reciprocal, 
Number Needed to Treat (NNT), or Mann-Whitney�s U (equivalent with Somers� D). These 
effect measures can be used even in situations when there are covariates that need to be 
adjusted for in the analysis. This will be illustrated with an example. We recommend an NNT 
defined via Somers� D, as its reciprocal, but will also discuss alternative definitions that have 
been proposed. 

KEY WORDS: proportional odds; Mann-Whitney�s U; Somers� D; number needed to treat; 
covariates; prognostic factors; stratification  

1 INTRODUCTION 

In a clinical trial with two parallel treatment groups, the effect can be measured in a variety of 
ways. One approach is to choose a random pair of patients, one from each treatment group, 
compare the outcome of the two random patients and decide who has a preferred clinical 
outcome (or declare a tie). This approach leads to effect measures such as Somers� D or 
Mann-Whitney�s U normalized by the product of the sample sizes. The Number Needed to 
Treat (NNT) has been suggested as another option. NNT has received considerable 
attention in recent years, particularly among clinicians. Primarily, this article will handle 
ordinal categorical response variables, but we will see that the effect measures considered 
can also be applied to binary and continuous response variables. 

Binary and ordinal categorical data can be analysed by use of a logistic regression model. 
Under the assumption of proportional odds (constant odds ratio), the odds ratio can be 
estimated and used as a measure of treatment effect. In simple comparisons of two 
treatments and no covariates, through a statistical test of equality, this approach is equivalent 
to the non-parametric Wilcoxon-Mann-Whitney test [1]. 

In clinical trials, it is not unusual to have prognostic factors influencing the response variable. 
In this situation we want an estimate of the treatment effect adjusted for the prognostic 
variables. In a logistic regression model it is possible to include the prognostic factors and 
calculate an adjusted estimate of the odds ratio under the assumption of proportional odds. 
However, an odds ratio is difficult to interpret and the risk of violating the assumption of 
proportional odds increases with the number of prognostic variables. Instead we recommend 
an effect measure that corresponds to the Cochran-Mantel-Haenszel (CMH) test that is not 
dependent on the assumption of proportionality. The comparison between test and control 
treatment in terms of rankings of the response variable can be adjusted, and it will be shown 
that a corresponding treatment effect estimate and associated confidence interval can be 
calculated.  

In many leading health research journals the established policy is to prefer point and interval 
estimates of effect measures to p-values. To the clinician, the p-value is a probabilistic 
abstraction that is commonly misinterpreted, in particular when dichotomised at 0.05 or some 
other conventional significance level: �significant� is interpreted as �real� and �non-significant� 
as �null�, see Newcombe [2]. A p-value is the answer to the question �Is it reasonable that the 
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two treatment effects are the same?� but the magnitude of the difference is more interesting. 
To be able to judge the clinical significance of an observed difference, a statistical test with 
its p-value should be supplemented by a point estimate and an associated confidence 
interval, when this is possible. 

We will restrict the discussion to the simple case where we have two parallel independent 
groups for comparing test treatment (T) to control treatment (C). We assume that lower 
values of the clinical outcome measure correspond to favourable results. 

2 EFFECT MEASURES 

An ideal measure of treatment effect should exhibit good interpretability and good statistical 
properties. We would like the effect measure to tell the clinicians how likely it is that patients 
benefit from the test treatment. A good effect measure can communicate information useful 
to assess the clinical significance of any result found in a clinical trial, and also be the basis 
for sample size determination in the process of designing the study. We also want to be able 
to calculate confidence intervals in an accurate, but not too complicated way. It is desirable 
that the measure can be used to compare the results from several studies in the same 
therapeutic area. For ordinal categorical response variables it is common to use the odds 
ratio as an effect measure, but we will see that there are other measures where the 
assumption of proportional odds is not needed. These alternative effect measures are 
equivalent to each other, the difference is just a matter of scaling. They are also simpler to 
interpret for audiences not familiar with odds ratios, and are widely recommended. 

2.1 Odds ratio 

Consider a clinical trial with two parallel treatment groups where we have an outcome on an 
ordinal scale with categories described in words such as �mild�, �moderate� or �severe�. To 
be specific, suppose we use a scale with m different categories. The frequencies in each row 
have a multinomial distribution and the probabilities of falling into different categories within 
each treatment are described in Table 1. 

Table 1  Category probabilities for ordinal response 

 Category 
Treatment 1 2 … m 
Test  π1T π2T � πmT 

Control π1C π2C � πmC 

The cumulative probability for a patient to fall into category k or better (a lower category) will 
be denoted QkT for test treatment and QkC for control treatment: 

QkT = π1T + π2T + � + πkT ; QkC = π1C + π2C + � + πkC , k = 1, � , m . 

Notice that QmT = QmC = 1. With m categories, there are (m-1) cut points between the 
categories. At each cut point an odds ratio can be calculated: 

ORk = 








−
−

)Q1(Q
)Q1(Q

kCkC

kTkT  
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When all these odds ratios have a common value, i.e. OR = OR1 = OR2 = � = ORm-1, we 
have proportional odds, and the common value OR is a natural measure of treatment effect 
in the population. 

In the special case where we have a binary success/failure - type response, this odds ratio 
reduces to ordinary odds ratio in a 2x2 table, i.e. OR = (πT / (1-πT)) / (πC / (1-πC)), where πT is 
the success rate in the population treated with test treatment and πC the corresponding rate 
in the control group.  

The cumulative logit model was originally proposed by Walker and Duncan [3] and later 
called the proportional odds model by McCullagh [4]. With our notation this model can be 
written 

( ) tk
kt

kt x
Q1

Q
log θ+α=









−
. 

Here t=T or C, with xT=1 and xC=0, and the unknown intercept parameters kα  (k = 1, �, 
m-1) satisfy the condition 1m21 −α≤≤α≤α L . We can see that θ  = log OR, and that θ  and 
OR=exp(θ ) are independent of the cut points k = 1, �, m-1. The Newton-Raphson method 
or the iterative reweighted least squares method can be used for maximum likelihood 
estimation of the parameters. These can be obtained through standard statistical software 
such as the SAS® system. 

The validity of the proportional odds model can be checked by testing the assumption that all 
odds ratios are equal. The standard test is a score test [5]. The estimated odds ratio can be 
used as a summary measure of efficacy, even when the assumption of proportionality is not 
fulfilled. However, we do not know what happens with the properties of this estimator and 
corresponding interval estimator, and that would need further investigation. Violation of the 
assumption of equal log odds could lead to misinterpretation of the outcome in a clinical trial. 

2.2 Somers’ D 

Somers� rank correlation index D is a modification of the Kendall tau rank correlation 
coefficient for the association between treatments and the response variable [6]. There is no 
need for proportional odds. Consider a random pair of patients where one patient is randomly 
selected from the group treated with test drug, whereas the other is randomly (and 
independently) selected from the group of patients treated with the control drug. Let T be the 
outcome from the patient with test drug in the pair, and C the outcome from the patient 
receiving control treatment. When two patients are randomly picked in this way, there are 
three possibilities: T < C, T = C and T > C. P(T < C) is the probability that a random patient 
given the test treatment has a better (lower) outcome than another random patient receiving 
control, and analogously for P(T > C). Here, the outcome is not restricted to an ordinal or 
binary response, but when the response variable is discrete, there is a positive probability for 
T = C. The net gain P(T < C) - P(T > C) is Somers D, which in the case of binary response 
reduces to success rate difference, πT - πC. 

For an unbiased estimation of Somers� D, we will consider all possible (test, control) pairs of 
patients. With nT and nC patients in the treatments groups, let Ti, i = 1, �, nT and Cj 
j = 1, �, nC represent the outcomes in the test and control treatment groups, respectively. 
Let ID(Ti, Cj) represent the comparison within pairs of patients (i, j), 
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ID(Ti, Cj) = 
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There are CT nn ⋅  possible pairs of patients and we let D�  be the total sum of all ID(Ti, Cj) 
divided by the number of all possible pairs, i.e.    

D�  = )nn/()C,T(I CT

Tn

1i

Cn

1j
jiD ⋅∑∑

= =

. 

If nT and nC are large, D�  is approximately distributed according to a normal distribution with 
mean D and variance DV . Goodman and Kruskal [7] proposed an estimate DV�  of DV  that 
could be used for inferences. This estimate DV�  is implemented in the PROC FREQ 
procedure provided by the SAS® system. It is this estimate DV�  that is used to form 

approximate confidence intervals for D of the form D2/1 V�zD� α−± . The variance estimate 

DV�  does not require any assumption about proportional odds. In particular, it is appropriate 
not only under the null hypothesis that the ratios in each category are the same for both 
treatments; H0: πkT = πkC, k = 1, � , m. A variance estimate under this H0 is also provided by 
PROQ FREQ, but will not be considered here. 

It should be mentioned that Goodman and Kruskal [7] derived their asymptotic results about 
D� , DV , and DV�  under a multinomial model for the 2m frequencies in a m2×  table, where 
also the row totals nT and nC are random. It can, however, be shown through standard 
asymptotic results and methods that the resulting DV�  under their model can be used also 

under the present model where the rows totals, nT and nC, are fixed, i.e. DV�)DD�( −  is 
approximately N(0, 1) distributed under the present model, if nT and nC are large. Details 
regarding this are outside the scope of this article, but briefly, the key to this lies in the 
conditional behaviour of the 2m-nomial distribution for the frequencies in a m2×  table given 
the rows totals nT and nC.  

Kraemer and Kupfer [8] have made a review of effect measures used in clinical trials. They 
call Somers� D the expanded success rate difference. They propose that, in all randomised 
clinical trials, along with reporting the p-value comparing T with C, researchers should report 
Somers� D, together with its associated standard error, and confidence interval.  

2.3 Number needed to treat 

The number needed to treat, NNT, was introduced into the medical literature by Laupacis et 
al. [9] in 1988 as an easily understood and �clinically useful measure of the consequences of 
treatment�, and has been widely used since then. Originally NNT was defined as 1/(πT - πC) 
for trials with two balanced parallel treatment groups and binary response variables, i.e. NNT 
was defined as the number n=nT=nC such that n(πT - πC)=1. This means that in average, if 
NNT patients are treated with each treatment, one additional patient will benefit from being 
treated with test treatment compared to control treatment. 

It is not obvious how NNT is best defined when we have more than two ordinal response 
categories or the response is continuous. However, as described in section 2.2, Somers� D is 
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the net gain P(T < C) � P(T > C), and its reciprocal can be viewed as a number needed to 
treat, defined in terms of random pairs (T, C), with success and failure corresponding to the 
outcome T < C and T > C, respectively. For ordinal categorical (and continuous) response 
variables we recommend that NNT is defined in this manner as the inverse of Somers� D, i.e. 
NNTD = 1/D, which has also been proposed by Kraemer and Kupfer [8]. 

In therapeutic areas where ordinal data is common, such as pain, psychiatry, stroke, multiple 
sclerosis, and rheumatism, it is not unusual that an NNT estimate is given alone. However, 
an estimate of the precision should also be given, as for any other estimated effect measure. 

2.3.1 Joint outcome table specification technique 

One objection to effect measures in trials with parallel treatment groups, is that they reflect  
an effect on a population level, and not what is truly desired, namely the expected effect for 
an individual patient. However, we can never observe a single individual both with test and 
control treatment in a trial with parallel groups, so it is not possible to estimate a truly 
individual treatment effect. In spite of this fact, attempts have been made to translate a 
treatment effect at the population level into an expected effect in the individual patient. Saver 
[10] has recently developed a joint outcome table specification technique. He hypothetically 
assumes that each patient receives both treatments, and obtains a joint (T, C)-distribution, 
seeking to create a sort of crossover situation. The approach developed is to ask disease 
experts to complete �the biologically most reasonable� joint distribution table of individual 
patient outcomes, given the observed marginal distributions from the parallel treatment 
groups [11]. The table is completed by iterative redistribution of individual patients from their 
destined outcomes under control therapy to their destined outcomes under test treatment. 
Saver introduced a number needed to treat, NNT, and a number needed to harm, NNH, 
separately. Saver�s NNT, NNTSaver, is based on the bivariate distribution and defined as  
1/P(T ≤ C � d), where d is a selected non-negative integer. Similarly, Saver�s NNH, NNHSaver 
is defined as 1/P(T ≥ C + d).  

In addition to the biologically most plausible NNT, where he lets disease experts specify the 
distribution, he refers to the minimum and maximum possible NNT. Saver denotes his NNT 
as minimum possible when it is assumed that test treatment cannot harm the patient, i.e. 
NNHSaver = ∞ , and the potential response of a patient under test treatment can only be either 
equal to, or at most one score lower than, that under the control treatment, i.e. Saver�s 
minimum possible NNT equals 1/P(T ≤ C � 1) = 1/P(T = C �1) under these restrictions on the 
(T, C)-distribution (see example in section 4.1). Saver�s maximum possible NNT is derived by 
completing the joint outcome table under the assumption that every patient who improves 
does so by the largest number of steps compatible with the marginal distributions. In the 
same way as the biologically most plausible NNT, both the minimum possible NNT and the 
maximum possible NNT are derived given the observed marginal distributions from the test 
and control treatment, but the joint distributions will be different. 

Saver�s approach can be criticised. In a clinical trial with parallel treatment groups the 
comparison of the test and control treatment is at group level and the responses in the 
treatment groups are assumed to be independent. The crucial weakness is that the joint 
distribution depends on judgment of the participating experts. Results in clinical trials should 
be built on evidence from outcome data and not on personal judgements. Other experts will 
probably come to other conclusions and the reproducibility of the result can be questioned. 
The value of NNTSaver will not only vary with the opinion of the disease experts, but also 
depends on the choice of d and whether or not to take NNHSaver into account. This leads to 
more than one definition of NNTSaver and more than one value of NNT can be calculated. 
With more than one definition, there is also more than one interpretation. This can be 
confusing. It would be interesting to get the view of the regulatory authorities on the joint 
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outcome table specification technique. Saver�s estimate of the biologically most plausible 
NNT will not be the same as Somers� D. This is not surprising, because: (a) the estimated 
quantities are quite different in nature, so their values have different meanings and thus are 
not comparable; and (b) the methods used to estimate these quantities are quite different, 
with Saver�s method being based on expert�s judgment of the joint distribution of responses. 

2.3.2 Reciprocal of mean score difference 

An alternative definition of NNT is the reciprocal of the mean score difference (msd) between 
the two compared groups. This NNT (denoted NNTmsd) is equal to the number of patients 
needed in each group for the total sum of scores in the test group to be at least 1 unit less 
than the total sum of scores in the control group. This can be compared with the original 
definition of NNT; number of patients needed per group to get one additional patient with 
favourable outcome in the test group than in the control group. With binary outcome data, 
NNTmsd is equal to NNTD, but not for ordinal data and with continuous response it would be 
unnatural to invert the difference of the mean values. 

The mean score difference is related to Saver�s NNT-measures. We will now show, in terms 
of true rates, that the minimum possible NNT is equal to the reciprocal of mean score 
difference. Under the assumption for the minimum NNT (see 2.3.1), the bivariate distribution 
for an ordinal scale with m different categories can be found in Table II. Here k∆ is the 
difference kTkC π−π , where kCπ  is the marginal rate of patients in category k in the control 
group and kTπ is the rate of patients in the same category for patients treated with test drug.  
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Table 2 Bivariate distribution for an ordinal scale assuming outcome in test  
treatment group is equal or one score lower than in control group 
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Now Saver�s minimum possible NNT equals 1/ )1CT(P −=  in this particular bivariate 
distribution, and 
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kTkC )(k = msd, it follows that Saver�s 

minimum possible NNT, 1/ )1CT(P −= , equals the reciprocal of mean score difference, 
1/msd. 

This means that Saver�s minimum possible NNT can be obtained directly from the mean 
score difference, without having to go through the bivariate distribution in Table 2. However, 
due to the underlying assumptions, Saver�s minimum possible NNT is not useful in practice. 
In addition to the problem of translating a study with two parallel independent treatment 
groups into a crossover situation, it is unrealistic to assume that the only alternatives are that 
the response of a patient after receiving test treatment is equal or one score lower than after 
receiving control treatment for that patient. 
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In the binary case NNTmsd equals the original definition of NNT. For other response variables, 
due to the definition of NNTmsd, the interpretation depends on the scale used. Different scales 
will lead to more than one interpretation, not comparable with the original definition. An 
example of a misinterpreted NNTmsd is discussed in section 4.1 below. 

2.3.3 Dichotomisation of outcome variable before NNT estimation 

In therapeutic areas where ordinal data is common, such as pain, psychiatry, stroke, multiple 
sclerosis, and rheumatism, it is common to dichotomise the outcome variable and perform a 
so-called responder analysis. The definition of a responder varies depending on the used 
outcome scale. A responding patient can be a patient achieving a pre-specified score on an 
improvement scale or having a reduction of, for example, 50% after treatment compared to 
baseline. The proportion of responders in each treatment group is then reported, together 
with the corresponding inverse of the success rate difference, i.e. NNT. What all these 
definitions of a responder have in common is that they need to be sanctioned by the 
clinicians working in the therapeutic area and the regulatory authorities. NNT is then used to 
compare studies and to compare competing drugs with each other. It can be questioned if its 
possible to compare NNTs based on different responder definitions. Originally NNT was 
suggested for binary outcome variables, and this may be one reason for the dichotomisation 
of the response variable before the NNT is calculated. Another possible explanation is that 
NNT is easier to derive from a dichotomised endpoint. A dichotomised outcome scale 
reduces the computational complexity, but discards substantial outcome information. There 
is no reason to waste outcome information by dichotomising before calculating NNT.  

2.3.4 Criticism of NNT 

A problem with NNT concerns the calculation of a confidence interval (CI), irrespectively of 
the distribution of the outcome variable. The CI for NNT based on Somers� D is calculated as 
the inverse of the CI for Somers� D. The null hypothesis of equal treatment effect, i.e.  
P(T < C) � P(T > C) = 0 (or πT = πC, in the binary case) corresponds to both -∞ and ∞ on the 
NNT scale, see Figure 1.  
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Figure 1 Somers’ D versus number needed to treat 

 

Statistically non-significant results correspond to confidence regions being a union of two 
disjoint intervals. This situation is easily misinterpreted. As an example, assume there is a 
success rate difference of 0.1 with the confidence interval �0.05 to 0.25. This leads to an 
NNT = 10 with the confidence limits �20 and 4. How can this be interpreted and what is the 
meaning of a negative NNT? As a means of resolving this, Altman [12] introduced NNTH, 
number of pairs of patients, one patient from each treatment group, needed for one 
additional patient to be harmed from test treatment, and NNTB, number of pairs needed for 
one additional patient to benefit. Using these descriptors, Altman suggests that the 
confidence interval is rewritten as NNTH 20 to ∞ to NNTB 4. This emphasises the continuity 
and combines the interval for NNTH from 20 to ∞ and the interval for NNTB from 4 to ∞. 
When the introduction of NNTB and NNTH is accepted, the confidence interval in the non-
significant situation has a better chance to be understood and misinterpretations can 
hopefully be avoided. Altman�s NNTH is not equivalent to Saver�s NNH, NNHSaver = 
1/P(T ≥ C + d), whose value depends on the choice of d and the opinions of the disease 
experts. Sometimes Saver assumes that the test drug cannot harm the patients and just 
ignores the number needed to harm. 

Usually, NNT is presented without decimals and is rounded upwards to the closest integer. 
This can make NNT too blunt or seriously biased. The classical advertise slogan: �9 out of 10 
cover girls prefer �� cannot be described in terms of an integer NNT in a satisfactory way. 
Such an NNT will simply be 2. More precisely, any Somers� D of 0.50 to 0.99 will correspond 
to NNT=2, see Figure 2. There is no reason for NNT to be presented as an integer. NNT is 
an value in the same way as any mean value, and should be presented with decimals. 
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Figure 2 Somers’ D versus number needed to treat, where NNT is an integer 

 

The use of NNT as a clinically easily understood measure has been challenged, for example 
in a paper by Grieve [13]. He states: �The estimated NNT is biased, the estimate has no finite 
moments, the simplicity of the method of calculating a CI has unhelpful properties and doubts 
about the basic definition.� The paper considers binary response data, but the criticism is 
valid more generally.  

Senn�s view [14] is that NNT is an extremely misleading way to summarize the results of 
individual trials. He argues that the collection of patients in a clinical trial is heterogeneous, 
and therefore it is highly unlikely that a single NNT applies to them. One could always expect 
to find subgroups for which the NNT was different. However, this argument is probably true 
also for other efficacy measures.   

2.4 Mann-Whitney’s U 

Mann-Whitney�s U or Mann-Whitney rank measure of association, allowing for ties, 
normalized by the product of the sample sizes, U/nTnC = P(T < C) + ½P(T = C), is the 
probability that the outcome for a random patient given test treatment (T) is better (lower) 
than the outcome for another randomly chosen patient receiving control (C), + half the 
probability that the two patients have equal outcomes. The last term takes care of possible 
ties, which in the continuous case is not needed, since P(T = C) = 0. We estimate Mann-
Whitney�s U/nTnC as  
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The relationship between Somers� D and Mann-Whitney�s U/nTnC is interesting. We write D = 
P(T < C) - P(T > C) and U/nTnC = P(T< C) + ½P(T = C). Since P(T < C) + P(T = C) + P(T > C) 
= 1, U/nTnC can be expressed as (D + 1) / 2. With the Wilcoxon-Mann-Whitney�s test we have 
the null hypothesis H0: U/nTnC = 0.5, i.e. when 2 random patients (one from each treatment 
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group) are compared, none of them is more likely to have better outcome than the other. In 
other words, the treatment effect is equal in both groups and this is identical to the null 
hypothesis H0: D = 0.  
 
The Mann-Whitney�s U statistic is widely recommended as an effect measure. Here are 
some examples: 
 
- Ryu and Agresti [15] refer to the effect measure as a simple and useful way to describe 

the difference between two distributions of ordinal categorical variables. 
- The measure is called probability of superiority in a paper by Grissom [16] and is referred 

to as �An intuitively appealing indicator of magnitude of effect in applied research is an 
estimate of the probability of the superior outcome of one treatment over another�.  

- Vargha and Delaney [17] call P(T < C) + ½P(T = C) a measure of stochastic superiority of 
C over T. 

- The parameter P(T < C) is found to be �easily understood by our clinical colleagues� in a 
paper by Hauck et al. [18].  

- Zhou [19] discusses P(T < C) in the situation where T and C are two independent 
normally distributed variables.  

- The common language effect size indicator expresses how often a score sampled from 
one normal distribution will be greater than a score sampled from another normal 
distribution. The effect measure is described in a paper by McGraw and Wong [20].  

- Acion et al. [21] compare Cohen’s d for ordinal or continuous response measures with 
P(T < C). Cohen’s d is the same as standardized mean difference, i.e. the difference 
between the T and C group means, divided by the within-group standard deviation. Acion 
et al. characterize P(T < C) �as a measure that presents good qualities of meaning, 
simplicity, and robustness� and provide examples with real data where its performance is 
contrasted with Cohen�s d. Senn [22] does not agree that P(T < C) is a measure that 
presents good qualities of meaning, simplicity, and robustness, and gives examples when 
it is not. 

- There is an immediate identity between Mann-Whitney�s U/nTnC and the area under the 
curve (AUC) measure in procedures for receiver operator characteristic (ROC) curve 
comparing responses of two treatments. If we sample a T patient and an independent C 
patient, AUC is the probability that the T patient has a treatment outcome preferable to 
the C patient (where we toss a coin to break any ties), symbolically: AUC = P(T < C) + 
½P(T = C). This has been pointed out by Bamber [23], and more information can be 
found in a paper by Hanley and McNeil [24]. 

For the Mann-Whitney statistic, Newcombe [2] has written an extensive work where he 
compares eight different ways to calculate a confidence interval. The methods treat the 
distributions of T and C as continuous, but he states that they also apply to ordinal 
categorical responses. He recommends a pseudo-score-type confidence interval that 
assumes exponential distributions for T and C. Recently, Ryu and Agresti [15] compared 
Newcombe´s method with six other existing confidence interval methods for U/nTnC for 
categorical outcome data. Since U/nTnC = (D + 1) / 2 there is an unambiguous equivalence 
between the CI for normalized Mann-Whitney�s U and the CI for Somers� D. To calculate a CI 
for P(T < C), when T and C are normally distributed, see Zhou [19]. The authors mentioned 
have only considered rather small sample sizes, less than 100 per treatment group, and 
unbalanced treatment groups. For non-parametric tests for proving non-inferiority in clinical 
trials with ordinal categorical data, see Munzel and Hauschke [25].  

3 ADJUSTING FOR COVARIATES 

In clinical trials covariates must be planned for and specified before the treatment code is 
broken. Here, we will not consider the choice of such covariates, but only assume that they 
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are pre-specified prognostic variables, presumably correlated with the response variable. In 
particular, we will consider prognostic factors used in the randomisation process when 
patients are allocated to treatment. If prognostic factors are important enough to be included 
in the randomisation process, these prognostic factors should also be included as covariates 
in the statistical model used for analysis. A statistical analysis can be adjusted for prognostic 
factors that were not used in the randomisation procedure, provided that they were 
predefined. The identification of prognostic factors can be done in a blind review of data. 
Whenever there are prognostic factors correlated with the response variable, the use of an 
effect measure adjusted for the prognostic factors should be considered. If the assumption of 
proportional odds may be violated, the adjusted Somers� D should be used. 

When the odds ratio is estimated by use of logistic regression under the assumption of 
proportional odds, covariates can simply be added to the model described in section 2.1, 
whether they are binary, categorical or continuous. The model then becomes of the form 

( ) pp2211tk
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For the test treatment group xt=1, whereas xt=0 in the control group, and θ  = log OR. The 
regression coefficients β1 to βp correspond to the covariates x1 to xp. Since we assume 
proportional odds, θ  and OR = exp(θ ) do not depend on the choice of cut points, k=1, �,  
m-1, nor do the other regression coefficients. In this model it is assumed that the odds are 
proportional in all strata for categorical covariates and over the whole scale for a continuous 
variable. Hence, the risk for violating the assumption of proportional odds increases with the 
number of covariates. There are alternative regression models for ordinal responses, see 
Ananth and Kleinbaum [26] for a review of methods and applications. However, none of the 
suggested alternative models provides us with an overall measure of the treatment effect. 

A method proposed when the assumption of proportional odds is not trusted is to form a 
Somers� D adjusted for stratification variables. This has been described by Stokes, Davis and 
Koch [27]. No assumption of proportional odds is needed. An adjusted Somers� D can be 
estimated by  
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where S is the number of strata, hD̂ is the estimated within-strata Somers� D value, and sh is 
the within-strata standard error. The weights, wh, have been chosen to be functions of the 
number of patients within strata and are calculated as nhT⋅nhC / (nhT+nhC).  

When the non-parametric Cochran-Mantel-Haenszel test is performed, the difference 
between the means in the two treatment groups is formed within strata and a weighted sum 
of these differences is used to combine information across strata. The weights are usually 
proportional to nhT⋅nhC / (nhT+nhC) which is the same as the weights used in the calculation of 
the adjusted Somers� D. O´Gorman et al. [28] have compared two methods of estimating a 
risk difference in a stratified analysis. More to be read regarding stratified U can be found in 
the work of Koch et al. [29], where issues in clinical trials with ordinal categorical outcome 
are addressed.  
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A common value for the hD s is not required. When the stratum-specific theoretical quantities 

hD = P(Th < Ch) � P(Th > Ch), estimated by the hD̂ s, have a common value, then adjD�  

estimates this common value; otherwise adjD�  estimates a weighted mean of the stratum-
specific theoretical quantities with weights. If the effect measures differ from stratum to 
stratum, subgroup analyses may be relevant. A homogeneity test, to test if the effect is 
constant over strata, can be performed. The null hypothesis that there is a common value in 

all strata, i.e. H0: D1 = D2 = � =DS can be tested with the test statistic ( )∑
=

′−
=

S

1h
2
h

2
h

s
D�D�H , 

where ∑∑
==

=′
S

1h

2
h

S

1h

2
hh s1sD�D� . The test statistic H is 2χ -distributed with S-1 degrees of 

freedom. For general information regarding this homogeneity test for large samples, see Rao 
[30]. 

When the sample size for each treatment within each stratum is sufficiently large (≥ 10) we 
will have an approximately normal distribution via the central limit theorem. A 95% 
confidence interval corresponding to D� adj is then (D� adj + 1.96 DV� ).  

After computation of the estimated D adj with the confidence interval (DL, DU), a similarly 
adjusted Mann-Whitney�s U/nTnC is simply calculated as ( adjD�  + 1) / 2, and the confidence 
interval as (UL, UU) where UL = (DL + 1) / 2 and UU = (DU + 1) / 2. Similarly, if the NNT is of 
interest it can simply be calculated as NNT adj = 1/D adj with the confidence interval  
(1/DU, 1/DL). Again, a non-significant effect leads to a union of two disjoint confidence 
intervals, here as in the unadjusted case, with analogous interpretation problems.  

4 EXAMPLE 

As an illustration we will use data from an acute stroke study, SAINT I [31], which was a 
randomised, double blind, placebo controlled, multi-centre study with two parallel treatment 
groups. The primary outcome in SAINT I was disability after 3 months treatment, as 
measured according to a 6-category ordinal scale, the modified Rankin Scale (mRS), ranging 
from 0 (no symptoms) to 5 (severe disability), where deaths are merged with the latter 
category. There were 1699 patients included to evaluate efficacy, 850 were randomised to 
received active drug (test) and 849 were allocated to placebo (control). We will first neglect 
that several prognostic factors were used when treatment was allocated to patients in the 
study. 

4.1 Analysis without stratification 

In Table 3 we can see the distribution of mRS after active and placebo treatment in SAINT I, 
and the odds ratio at each cut point. 
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Table 3 Distribution of mRS after active and placebo treatment in SAINT I 

 mRS  
Treatment 0 1 2 3 4 5 
Active 15.4% 18.0% 11.4% 14.2% 16.9% 24.0% 

Placebo 11.0% 20.0% 11.7% 12.7% 20.6% 24.0% 

Odds ratio 1.47 1.12 1.09 1.16 1 

Fitting a proportional odds model to the data resulted in an estimated odds ratio of 1.13 with 
a confidence interval of (0.96, 1.33). The odds ratios at each cut point range from 1 to 1.47 
and the assumption of proportionality can be questioned. However, a score test for the 
proportional odds assumption is not quite statistically significant (p = 0.059) at a significance 
level of 5%. 

For the calculation of Somers� D, the estimate of P(T < C) and P(T > C) is 0.432 and 0.393, 
respectively, resulting in Somers� D�  = 0.039, Mann-Whitney�s U� /nTnC = 0.52 and NNTD = 
25.6. The variance for Somers� D is obtained through the statistical software SAS® , see 
Goodman and Kruskal [7] for a description, which leads to DV�  = 0.01592 and a 95% 
confidence interval given by 0.039 + 1.96⋅0.0159, that is (0.008, 0 .070). After transformation 
we get the CI for Mann-Whitney�s U/nTnC (0.504, 0.535) and NNTD (14.3, 127.6). Here, the 
validity of the inferences does not rely on the assumption of proportional odds. 

In section 2.3.1 the joint outcome table specification technique was described, where Saver 
[10] simulates a crossover situation, given the marginal distributions under active and 
placebo. Saver has applied his technique to SAINT I data in Table 3. When Saver calculated 
what he refers to as the minimum possible NNT, he assumes that no patients were harmed 
by treatment with active drug and a patient receiving active substance will score equal or one 
unit lower, as compared to after receiving placebo. Saver obtains the estimated bivariate 
distribution in Table 4, and a minimum possible NNT of 7.9. Note that this value 7.9 can be 
obtained directly as an estimate of 1/msd without having to go through the bivariate 
distribution in Table 4; because of the relationship derived in section 2.3.2. 

Table 4 Estimated bivariate distribution for the mRS scale assuming outcome 
in active group equal or one score lower than placebo, SAINT I data 

 Active  
 

Placebo 
0 1 2 3 4 5/death Placebo 

distribution 
0 0.110 0 0 0 0 0 0.110 
1 0.044 0.156 0 0 0 0 0.200 
2 0 0.024 0.093 0 0 0 0.117 
3 0 0 0.021 0.106 0 0 0.127 
4 0 0 0 0.036 0.169 0 0.206 

5/death 0 0 0 0 0.001 0.240 0.240 
Active 

distribution 
0.154 0.180 0.114 0.142 0.169 0.240  

Saver�s maximum possible NNT is derived by completing the joint outcome table under the 
assumption that every patient who improves does so by the largest number of steps 
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compatible with the marginal distributions. For SAINT I data this maximum possible NNT is 
16.7. Saver�s biologically most plausible NNT, having disease experts specify (in their 
opinion) the biologically most reasonable joint distribution of responses under active and 
control treatment. Saver estimates the biologically most plausible NNT in SAINT I to be 9.8. 
The method is described in the paper by Saver [11], but without confidence intervals. 
However, in an earlier published paper [32], the confidence interval for the biologically most 
plausible NNT is given as 8.7 to 10.9, based on the variability across 10 experts� estimates of 
the most plausible joint distribution of responses. In all of the three different NNTs calculated 
by Saver, he assumes that the active drug cannot harm so that NNHSaver is infinity. 

In a paper by Lees et al. describing the stroke study SAINT I [31], the reciprocal mean score 
difference (see section 2.3.2) was used as effect measure, with the following comment: �The 
benefit amounts to an average improvement of 0.13 points on the modified Rankin Scale per 
patient, which suggests that about eight patients would need to be treated to achieve 
improvement equal to 1 point on the scale for one patient.� This is not completely true. It is 
the expected total sum of scores that will be one unit lower, and not one patient scoring one 
unit lower, when 8 patients are treated with active drug and compared to placebo.  

4.2 Analysis with adjustment for covariates 

The stratification variables used in SAINT I were three important prognostic variables 
identified at study planning: 
- total NIHSS score at baseline 
- side of infarct (right or left side) 
- treatment with or intent to treat with a competing drug (rt-PA).  
Total NIHSS score at baseline is a variable with 4 categories, and the two others are binary 
variables, leading to 16 strata. The within-stratum estimates of Somers� Dh and standard 
error sh can be provided by the statistical software SAS®  in the PROC FREQ procedure. 
The estimates in SAINT I are listed in Table 5.  
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Table 5  Somers’ D within each stratum in SAINT I 

NIHSS 
score at 
baseline, 
category 

Side of 
infarction 

Treated/ 
Intention 
to treat 

with rt-PA 

Dh sh No. of 
patients in 

active 
group 

No. of 
patients in 

placebo 
group 

1 Left side No -0.0366 0.0744 114 115 

1 Left side Yes 0.0143 0.1824 20 21 

1 Right side No 0.1035 0.0652 144 150 

1 Right side Yes 0.1252 0.1488 27 29 

2 Left side No 0.0686 0.0957 71 71 

2 Left side Yes 0.2526 0.1449 30 26 

2 Right side No 0.0710 0.0816 93 101 

2 Right side Yes 0.1028 0.1101 52 55 

3 Left side No 0.0983 0.1206 40 45 

3 Left side Yes 0.0043 0.1457 24 39 

3 Right side No 0.0758 0.0902 82 60 

3 Right side Yes 0.1198 0.1153 44 48 

4 Left side No 0.0761 0.1057 46 40 

4 Left side Yes 0.0542 0.1464 28 29 

4 Right side No 0.0033 0.1714 15 20 

4 Right side Yes 0.0600 0.2206 10 10 

In some strata, some of the categories of the mRS scale were not observed in any treatment 
group. When that occurred, the scale was collapsed, i.e. the number of categories was 
reduced, in that stratum.  

For these data we get D� adj = 0.058, and the corresponding 95% confidence interval  
D̂ adj + 1.96 V� D  is found to be (0.005, 0.110). We can also compute a stratified Mann-
Whitney�s measure as a function of the Somers� D measure as Uadj = (Dadj + 1) / 2. With the 
data from SAINT I we get Uadj = 0.529 and the corresponding adjusted 95% confidence 
interval (0.502, 0.555). We can now use the reciprocal of the stratified Somers� D to calculate 
a stratified NNT for SAINT I and when that is done we directly get an estimated value of 17.4 
patients with the 95% confidence interval (9.1, 212.8). 

The results from the unadjusted and adjusted statistical analyses are the same, the 
treatment effect of active drug is small. Somers� D (CI) is 0.039 (0.008, 0.070) in the 
unadjusted case and 0.058 (0.005, 0.110) when we have adjusted for the three stratification 
variables. In the latter case the treatment effect is slightly greater than the estimate when we 
ignore the stratification variables. However, the uncertainty is greater and the confidence 
interval is wider. When we apply a logistic regression model to data under the assumption of 
proportional odds an estimate of the odds ratio is 1.13 with a confidence interval of  
(0.96, 1.33). When the model is expanded to include the 3 covariates the estimate is 1.20 for 
the odds ratio and (1.01, 1.42) for the confidence interval. Here the result is only just 
statistically significant, but the hypothesis of proportionality is rejected (p < 0.05). This means 
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that the use of a logistic regression adjusted for covariates can be questioned, due to 
violation of the assumption of proportional odds.  

5 CONCLUSION 

For ordinal categorical outcome variables, a logistic regression analysis is valid under the 
assumption of proportional odds. The requirement of proportional odds can never be 
completely fulfilled, but an odds ratio based on proportional odds can always be estimated 
and used as a measure of treatment effect, even when odds are not proportional. However, 
when the model can be questioned it is likely to give us unreliable results. When there are 
prognostic factors in the study that are included as covariates in the statistical model, the risk 
is higher that the assumption of proportionality is not satisfied. Odds ratios have been 
criticised as being difficult to interpret. Odds ratio gained popularity in an effort to salvage 
retrospective case-control studies, not primarily in randomised controlled trials, according to 
Kraemer and Kupfer [8]. Kraemer [33] points out that odds ratios often yield results that are 
puzzling or misleading and should not be considered as �gold standard�.  

Instead of an odds ratio as effect measure, we recommend Somers� D or an equivalent effect 
measure, such as Mann-Whitney�s U/nTnC or the corresponding number needed to treat. 
These effect measures do not require an assumption of proportional odds. Somers� D is a 
widely recommended effect measure that has good qualities of meaning and simplicity. In the 
binary case Somers� D reduce to success rate difference, which is one of the most commonly 
used measures for binary response. Somers� D can directly be adjusted for covariates and 
can be inverted to give a number needed to treat.  

One should be cautious regarding number needed to treat. A problem with NNT concerns the 
associated confidence intervals. A statistically non-significant result leads to two disjoint 
intervals difficult to interpret. Also, there is disagreement on how to define NNT. Saver uses a 
joint outcome table specification technique for calculation of an NNT. The reciprocal of mean 
score differences is a related suggestion. Sometimes the response variable has been 
dichotomised before an NNT is calculated. That is not necessary and collapsing an ordinal or 
continuous variable into a binary variable reduces outcome information. Somers� D 
represents the net gain, P(T < C) � P(T > C), and its reciprocal is a natural definition of NNT, 
which reduces to the original definition of NNT in the binary case. 

Standard statistical software, such as SAS®, makes the use of logistic regression easy. It is 
simple to get an estimate of the odds ratio, also when prognostic factors are added to the 
model. At the present time, when there are prognostic factors that need to be adjusted for, 
the estimation of Somers� D and Mann-Whitney�s U/nTnC is not as convenient. However, in 
this article a suggestion has been given for how an estimate of an adjusted Somers� D and 
corresponding confidence interval can be obtained.  

Wilcoxon-Mann-Whitney (WMW) and its extension Cochran�Mantel-Haenszel (CMH) tests 
should be supplemented by an effect measure. A natural measure, corresponding to the 
WMW test, is Somers� D or Mann-Whitney�s U/nTnC. Accordingly, the adjusted versions of  
Somers� D or Mann-Whitney�s U/nTnC should be used when a CMH test is used. In all 
randomised clinical trials with categorical ordinal outcome variables, along with the p-value 
comparing T with C, we recommend to report Somers� D or Mann-Whitney�s U/nTnC, as well 
as the corresponding standard error and a confidence interval. It can be optional to also 
report an NNT estimate (with decimals), but if reported, a corresponding confidence interval 
has to be given, and NNT should be defined as the reciprocal of Somers� D. 
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