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Chapter 1

Introduction

1.1 Constructivism: critique of classical logic in math-

ematics

Constructivism has a history well before the advent of interest in computability in
mathematics. Around the turn of the century 1899-1900 there arised doubts about the
consistency of the axiomatic and logical foundations for the abstract mathematics that
had started to develop with the support of set theory. Bertrand Russell had 1903 with
his well-known paradox shown that unrestricted formation of sets from concepts may
lead to outright contradictions. (Is there a set that consists of all sets that are not
members of themselves? Answer: No.) Also other principles in use, such as the Axiom
of Choice, had been discovered to have unintuitive and unnatural consequences, even
though no paradoxes where known to arise from them. Ernst Zermelo showed 1908
that the set of real numbers may be well-ordered. It was among many mathematicians
considered as a serious scientific crisis of the subject, known as the Grundlagenkrisis.
In that mood of time the outstanding Dutch mathematician, and founder of modern
topology, L.E.J. Brouwer started a critical examination and reconstruction of the foun-
dations for mathematics, which went further than previous attempts, and included the
very logic and not only the axioms. By the introduction of his intuitionistic mathe-
matics he wanted to put mathematics on a secure and intuitive footing. His idea was
that every proof must built on a so-called mental construction. At that time (1910)
there were no of course programming languages, and not even a mathematical notion of
algorithm, but it turned out that his notion of mental construction could be interpreted
as algorithmic construction in a precise way. This requirement led Brouwer to reject
a logical law that had been taken for granted since Aristotle, namely the Principle of
Excluded Middle or Tertium Non Datur. This states that for every proposition A, either
A is true or A is false, in logical symbols:

A ∨ ¬A (PEM).
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For concrete, finitely checkable, propositions there was no reason to doubt the law.
The problematic case, according to Brouwer, is when A contains quantification over an
infinite set, for instance the set of integers.

Brouwer demonstrated that it was possible to develop mathematics also without the
principle of excluded middle, and that it in many cases lead to more informative and
insightful proofs. The immediate followers of Brouwer were not very numerous, and his
use of the theory of choice sequences, which is inconsistent with classical logic, repelled
many mathematicians from his philosophy. Later developments of constructive mathe-
matics avoid this theory, and its results are immediately understandable and acceptable
to mainstream mathematics (see Bishop-Bridges 1985, Bridges-Richman 1987).

1.2 Non-constructive proofs

We shall illustrate how the principle of excluded middle is used in some non-constructive
existence proofs, and how this may lead to the loss of algorithmic content. Here is a
famous standard example, chosen for its simplicity rather than mathematical interest.

Proposition 1.2.1. There are irrational numbers a and b such that ab is an rational
number.

Proof. The number
√

2 is irrational (non-rational). Consider the number
√

2
√

2
. By the

principle of excluded middle it is either rational or irrational. If it is rational, we may

finish the proof by exhibiting a = b =
√

2. If it is irrational, let a =
√

2
√

2
and b =

√
2.

Then ab is rational, indeed we have

ab = (
√

2
√

2
)
√

2 = (
√

2)2 = 2.

Note that in this existence proof it was not decided which of the numbers a =
√

2

or a =
√

2
√

2
, with b =

√
2, that actually gives the intended example. One may actually

show, using deeper mathematical theory, that
√

2
√

2
is irrational, but the standard proof

requires several pages. An alternative example could be given by the numbers a = e
and b = ln 2, but the proofs of their irrationality are far more complicated than that
for
√

2.
Many classical existence proofs are indirect, and start “Suppose that there is no

object x such that . . . ”. The rest of the proof is devoted to show that a contradiction
arises from this assumption. Here is a simple example involving infinite sequences.

Proposition 1.2.2. Each infinite sequence of natural numbers

a1, a2, a3, . . . , ak, . . .

has a minimal term, i.e. there is some n such that an ≤ ak for all k.
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Proof. Suppose that there is no minimal term in the sequence. For every index k we
may then find k′ > k with ak > ak′ . Let k1 = 1. By assumption there is then k2 > k1

with ak1 > ak2 . Again, by the assumption, we find k3 > k2 such that ak2 > ak3 .
Continuing in this manner we obtain an infinite sequence k1 < k2 < k3 < · · · such that

ak1 > ak2 > ak3 > · · · .

This sequence of natural numbers decrease by at least one unit for every step, so

akn ≤ a1 − (n− 1).

Putting n = a1 + 2, we thereby find a term in the sequence less than 0, which is
impossible.

This existence proof gives no information whatsoever where the minimal term is to
be found. Not only the proof of this result is non-constructive, but the result is essen-
tially non-constructive. Consider for example the sequence obtained in the following
way: given a description of a Turing machine and an input string, let ak be 0 if the
machine has terminated after k steps, and 1 otherwise. If we would be able to find
the minimum of this sequence, algorithmically, we could also solve the general halting
problem algorithmically. However this is known to be impossible.

This kind of “information-less” existence proofs are not uncommon in mathematical
analysis. For instance certain results on the existence of solutions to differential equa-
tions build on such proofs (Cauchy-Peano existence proof). There are rather simple
examples of ordinary differential equations, whose solutions cannot computed from the
parameters, though there are theoretical solutions (see Beeson 1985)

Constructive mathematics and logic are founded on the idea that existence is taken
more seriously than in classical mathematics: to prove that a certain object exists is
the same as giving a method for constructing it.

1.2.1 Exercises

1. Recall that an algebraic real number is a real number which is a root of a polyno-
mial with integer coefficients. Such numbers are closed under the usual arithmeti-
cal operations. Any real number which is not algebraic, is called transcendental.
The numbers e and π are transcendental. Prove, using only these facts, that e+π
or e− π is transcendental. (It is unknown which one it is, or if whether both are
transcendental).

2. (König’s lemma). A finite string over the alphabet {l, r} is regarded as describing
a path in a binary tree, starting from the root. Suppose that P is an infinite set
of such paths. Show that there is an infinite string

d1d2d3 · · ·
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such that for every n, the string d1d2 · · · dn is an initial segment of some path in
P .

3. (Brouwer’s Fan Theorem). Consider a set of paths P such that if w is in P , then
so is each of its initial segments, i.e. if w = uv ∈ P , then u ∈ P . An infinite path
d = d1d2d3 · · · is said to be barred by P, if there is some n such that d1 · · · dn /∈ P .
Show that if every infinite path d is barred by P , then P must be finite.

1.3 Constructive interpretation of the logical con-

stants

According to Brouwer’s idea every mathematical theorem A must rest on a (mental)
construction a. The construction a may be regarded as a witness to the truth of A. This
basic constructive interpretation was further clarified by Arend Heyting (a student of
Brouwer) and by A.N. Kolmogorov (the founder of modern probability theory). Hence
it is called the Brouwer-Heyting-Kolmogorov-interpretation, or BHK-interpretation for
short.

It should be pointed out that there are some limits on what may be regarded as a
construction. One may be lead to think that this is a construction

f(n) =

{
1 there are n consecutive 7’s in the decimal expansion of π,
0 otherwise.

This is, a priori, not a constructive function as no one has (yet) found an algorithm
that can decide whether there are n consecutive 7’s in the decimal expansion of π or
not. Case distinction is allowed only if it can be decided effectively which case is true,
for given parameters.

BHK-interpretation. We explain what it means that a is a witness to the truth of
the proposition A, by induction on the form of A. This will be expressed more briefly
as a is a witness to A, or that a testifies A.

• ⊥ has no witnesses.

• p testifies A ∧B iff p is a pair (a, b) where a testifies A and b testifies B.

• p testifies A //B iff p is a method which to each witness a to A gives a witness
p(a) to B.

• p testifies A∨B iff p has the form inl(a), in which case a testifies A, or p has the
form inr(b), in which case b testifies B
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• p testifies (∀x ∈ S)A(x) iff p is a method which to each element d ∈ S, provides
a witness p(d) to A(d).

• p testifies (∃x ∈ S)A(x) iff p is a pair (d, q) consisting of d ∈ S and a witness q
to A(d).

We may add for numeral equations s = t the interpretation

• p testifies s = t iff p is 0 and s and t are computed to the same thing.

Remark 1.3.1. The witnesses p, q, . . . are commonly called proof constructions, proof
objects or simply proofs. We use initially the term witness to clearly distinguish from
derivation in a formal system.

Example 1.3.2. A witness p to a proposition of the form

(∀x ∈ S)(∃y ∈ T )R(x, y)

is thus a method p which to each a ∈ S assigns a witness p(a) to

(∃y ∈ T )R(a, y).

This witnesss in turn is a pair p(a) = (p1(a), p2(a)) where p1(a) ∈ T and p2(a) is witness
to

R(a, p1(a)).

Thus
a 7→ p1(a)

is a method for computing a y ∈ T from x ∈ S, to satisfy R(x, y).

Remark 1.3.3. The Principle of Excluded Middle (PEM)

A ∨ ¬A

is not obviously valid under the BHK-interpretation, since we would need to find a
method, which given the parameters in A, decides whether A is valid or not. If we
restrict the possible constructions to computable functions, we may actually show that
PEM is not constructively true. It is known that there is a primitive recursive function
T such that T (e, x, t) = 1 in case t describes a terminating computation (t is, so to
say, the complete “trace” of the computation) for the Turing machine e with input x,
and having the value T (e, x, t) = 0 otherwise. By a suitable coding, the arguments to
T may be regarded as natural numbers. The halting problem for e and x may now be
expressed by the formula

H(e, x) =def (∃t ∈ N)T (e, x, t) = 1.
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According to PEM
(∀e ∈ N)(∀x ∈ N)H(e, x) ∨ ¬H(e, x).

If this proposition were to have a computable witness, then we could decide the halting
problem, contrary to Turing’s well-known result that this is algorithmically undecidable.
The principle of indirect proof, reductio ad absurdum (RAA)

¬¬A // A

can be shown to be equivalent to PEM within intuitionistic logic, so it is not valid
under the BHK-interpretation either.

8



Chapter 2

Martin-Löf type theory

In this chapter we follow the exposition of (Martin-Löf 1984) quite closely regarding
the foundations of type theory.

2.1 Fundamental notions of Martin-Löf type theory

In Martin-Löf (1984) a general philosophy of logic is presented which revives the notion
of judgement. A judgement is an act of knowledge, for instance asserting that something
holds. When reasoning mathematically we are making a sequence of judgements about
mathematical objects. One kind of judgement may be to state that some mathematical
statement is true, another kind of judgement may be to state that something is a
mathematical object, is a set, for instance. The logical rules give a method for producing
correct judgements from earlier judgements. The judgements obtained by such rules
may be presented in tree form

J1 J2

J3

r1

J4

J5

r5
J6

J7

r3

J8

r4

or in sequential form

(1) J1 axiom
(2) J2 axiom
(3) J3 by rule r1 from (1) and (2)
(4) J4 axiom
(5) J5 by rule r2 from (4)
(6) J6 axiom
(7) J7 by rule r3 from(5) and (6)
(8) J8 by rule r4 from (3) and (7)
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The latter form is common in mathematical arguments, but we will prefer using the
less verbose tree form. Such a tree formed by logical rules from axioms is a derivation.
We have presented a very abstract and general notion of derivation here, mainly to give
an idea of the shape of things to come.

2.1.1 Judgements in first-order logic

First-order reasoning may be presented using a single kind of judgement

the propositionB is true under the hypothesis that the propositionsA1, . . . , An
are all true.

We write this as a so-called Gentzen sequent (not to be confused with derivability)

A1, . . . , An ` B

When n = 0, then ` B states that B is true without any assumptions.
The familiar rule for conjunctive introduction then becomes

A1, . . . , An ` B A1, . . . , An ` C
A1, . . . , An ` B ∧ C

(∧I)

Usually the sequence of assumption A1, . . . , An are abbreviated by some Greek capital
letter Γ,∆, . . . when presenting the rules.

The rule for implicational introduction is

Γ, B ` C
Γ ` B → C

(→ I)

and implicational elimination (modus ponens)

Γ ` B → C Γ ` B
Γ ` C (→ E)

.

Moreover for any sequence of well-formed formulas A1, . . . , An and any 1 ≤ i ≤ n there
is an assumption axiom

A1, . . . , An ` Ai
(as. i)

The full system will be presented later, but for now we give an example of a derivation:

A ∧B → C,A,B ` A ∧B → C
(as. 1)

A ∧B → C,A,B ` A (as. 2)
A ∧B → C,A,B ` B (as. 3)

A ∧B → C,A,B ` A ∧B (∧I)

A ∧B → C,A,B ` C (→ E)

A ∧B → C,A ` B → C
(→ I)

A ∧B → C ` A→ (B → C)
(→ I)
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One may regard this as a standard natural deduction proof, only that the open assump-
tions have been listed explicitly to the left of `. For comparison the standard proof
is

A ∧B → C
A

1 ∧B 2

A ∧B (∧I)

C
(→ E)

B → C
(→ I, 2)

A→ (B → C)
(→ I, 1)

.

The sequent-style formulation will be especially useful in type theory.
Martin-Löf type theory is a much more complicated system than first-order logic.

One reason is that more information is carried around in the derivations due to the
identification of propositions and types. Another reason is that the syntax is more
involved. For instance, the well-formed formulas have to be generated simultaneously
with the provably true formulas.

2.1.2 Judgement forms in type theory

The type theory of (Martin-Löf 1984, p.5) has four basic forms of judgements

1. A is a set (abbreviated A set)

2. A and B are equal sets (abbreviated A = B)

3. a is an element of the set A (abbreviated a : A)

4. a and b are equal elements of the set A (abbreviated a = b : A)

Note: Martin-Löf (1984) uses the term set instead of the more widely used term
type.

We recall three diverse interpretations of the judgement forms from (Martin-Löf
1984, p.5):

A set a : A
A is a set a is an element of the set A A is non-empty (or in-

habited)
A is a proposi-
tion

a is a proof (construction) of
the proposition A

A is true

A is a problem
(task)

a is a method of solving the
problem (doing the task) A

A is solvable

The first two lines indicates the so-called Propositions-as-Sets (or Propositions-as-
Types) principle. Sometimes it is also known as the Curry-Howard correspondence (or
Curry-Howard isomorphism). A proposition A can thus be regarded as the set of all
possible proof constructions of A.
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2.1.3 Explanation of the judgement forms

We start with a quote from E. Bishop (1967, Chapter 1) in which he defines a construc-
tive notion of set (Bishop set, now sometimes known as a setoid):

A set is not an entity which has an ideal existence: a set exists only when
it has been defined. To define a set we prescribe, at least implicitly, what
we (the constructing intelligence) must do in order to construct an element
of the set, and what we must do to show that two elements of the set are
equal.

We recount Martin-Löf’s explanation of the judgments forms and in particular that
of a set. Note that these are explanations of the closed versions (no free variables) of
the judgement forms. Later we give the explanation of the hypothetical versions.

1. The meaning of the judgement form A set

As Martin-Löf (1984, p. 8) writes, a set A “is defined by prescribing how a canonical
element of A is formed as well as how two equal canonical elements of A are formed”.

Example. The canonical elements of the set of natural numbers are formed by the
introduction rules

0 : N

a : N

S(a) : N.

and equality of canonical elements are given by

0 = 0 : N

a = b : N

S(a) = S(b) : N

Elements that are formed directly by introduction rules are called canonical. (In func-
tional computer languages constants such as 0 and S are often called constructors.)
There may however be non-canonical elements in N: S(0) + S(0) does not arise di-
rectly from an introduction rule, but can be calculated to a canonical element, viz.
S(S(0) + 0).

Example. Another example is the disjoint union A+B of two sets A and B whose
introduction rules are

a : A

inl(a) : A+B

b : B

inr(b) : A+B.

The equality of canonical elements is given by

a = c : A

inl(a) = inl(c) : A+B

b = d : B

inr(b) = inr(d) : A+B
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2. The meaning of the judgement form A = B: Two sets A and B are equal if
each canonical element a of A is also a canonical element of B, and vice versa, if each
canonical element a of B is also a canonical element of A:

a : B
a : A and

a : A
a : B

and moreover if for all canonical a and b:

a = b : B
a = b : A and

a = b : A
a = b : B.

Note that this judgement form presupposes that A and B are sets.

3. The meaning of the judgement form a : A is: An element of a set is a method
(or a program) which, when executed, yields a canonical element in A as a result.

This judgement form presupposes that A is a set.

4. The meaning of the judgement form a = b : A is: Two elements a and b of A are
equal if when they are executed yield equal canonical elements as results.

This judgement form presupposes that a : A and b : A.

This gives the general meanings to the judgement forms. When introducing a new
set we check that it makes sense by verifying that its rules are valid under the above
interpretations. However, in general, we need also to make use of the extension of these
explanations to hypothetical judgements.

We can already now verify the validity of some general rules for equality using this
meaning explanation, namely the equivalence relation rules

A set
A = A

A = B
B = A

A = B B = C
A = C

and
a : A

a = a : A
a = b : A
b = a : A

a = b : A b = c : A
a = c : A

and the set-equality rules

a : A A = B
a : B

a = b : A A = B
a = b : B .

Let us verify the left set-equality rule. Suppose a : A and A = B holds. The
judgement a : A means that a is a method that computes to a canonical element c of
A. According to the meaning of A = B, c is thus also a canonical element of B. But
since a computes to c, this means that a : B.

For the remaining rules see (Martin-Löf 1984, pp. 14–15).
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2.2 Metamathematical intermezzo: abstract com-

putation relations

The following considerations may be helpful to understand the notion of computation
referred to in (Martin-Löf 1984). These will be developed more fully when we come to
the study of λ-calculus.

Let S be a set and let ; be a binary relation on S. We shall think of S as a set
of abstract expressions and a ; b as the relation a may be computed, or reduced to b.
The pair (S,;) is called an abstract computation relation (ACR). An element a ∈ S is
normal if for any b ∈ S

a; b implies a = b.

We may think of this as saying that a cannot be computed further, or computes only
to it self. A normal element may be regarded as a value or end-result. If a ; b, and b
is normal, we say that b is a value of a.

An important property satisfied by some ACRs is confluence. (S,;) is confluent
(or Church-Rosser) if for any a, b, c ∈ S with a; b and a; c, there is d ∈ S such that
b; d and c; d.

Proposition 2.2.1. Let (S,;) be a confluent ACR. If a computes to normal b and c,
then b = c.

Proof. Suppose a; b and a; c. By confluence there is d with b; d and c; d. But
since b is normal, b = d, and since c is also normal, c = d.

Thus in a confluent ACR, values of elements are unique if they exist. Another
important property of confluent ACRs is the following. For an ACR (S,;) define a
new binary relation a is convertible to b, written a ≈ b, to hold if there is c ∈ S with
a; c and b; c.

Theorem 2.2.2. If (S,;) is confluent and ; is total and transitive as a relation, then
≈ is an equivalence relation.

Proof. The relation ≈ is obviously symmetric. It is reflexive since for any a with there
is some b with a ; b, so a ≈ a. Suppose that a ≈ b and b ≈ c, so there are x and y
with a ; x, b ; x, b ; y and c ; y. By confluence there is z such that x ; z and
y ; z. Hence by transitivity a; z and c; z, so a ≈ c as required.

Let (S,;) be an ACR. We say that a ∈ S is normalizable or has normal form, if
there is some normal b with a; b. There is stronger notion, a ∈ S strongly normalizable
if for any infinite sequence (an) starting with a contains a normal element, i.e. for some
n

a = a1 a2 a3 · · · an−1 an = an+1 = an+2 = . . .
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An ACR is normalizing if every element is normalizable, and strongly normalizing
if every element is strongly normalizable.

2.2.1 Lazy evaluation

We give an extended example involving so-called lazy evaluation of arithmetical expres-
sions. The evaluation of an expression e generally only divulges whether its value is 0 or
of the form S(e′), that is whether it is 0 or greater than 0. In the latter case evaluation
can be applied to e′ to reveal whether its value is S(0) (one) or greater than one. The
process can be repeated as long as necessary to figure out the result.

Let A be the set of arithmetical expressions that can be formed from 0, + and S( )
(add one). Formally we define A as the smallest set that satisfies

(a) 0 ∈ A

(b) if x ∈ A, then S(x) ∈ A

(c) if x, y ∈ A, then (x+ y) ∈ A.

Note well that ((x+y)+z) is different from (x+(y+z)). Otherwise we drop parentheses
when possible.

Let C ⊆ A be the subset of expressions of canonical form (direct results of intro-
duction rules for N) defined by

C = {0} ∪ {S(a) : a ∈ A}.

Define ; to be smallest binary relation on A such that

a ∈ C
a; a (ref) (2.1)

b; 0 a; c

(a+ b) ; c
(base)

(2.2)

b; S(d)

(a+ b) ; S(a+ d)
(succ)

(2.3)

That the relation is the smallest is the same as saying that a; b is true if and only if
it witnessed by a finite derivation of this fact. For instance S(0) + S(0) ; S(S(0) + 0)
holds since

S(0) ∈ C
S(0) ; S(0)

(ref)

S(0) + S(0) ; S(S(0) + 0)
(succ)

.
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Another example: (0 + S(0)) + 0 ; S(0 + 0) is true because

0 ∈ C
0 ; 0

S(0) ∈ C
S(0) ; S(0)

(ref)

0 + S(0) ; S(0 + 0)
(succ)

(0 + S(0)) + 0 ; S(0 + 0)
(base)

Let Alazy = (A,;) — the ACR of lazy sums. This computation rule have several good
and expected properties

Proposition 2.2.3. If x; y, then y ∈ C.

Proof. We do induction on the height of derivations of x; y. If x; y is the conclusion
of a derivation ending with a (ref)– or a (succ)–rule, then y ∈ C by definition. Consider
the remaining case where x; y has been derived by a (base)–rule, with x = (a+ b),

b; 0 a; y

(a+ b) ; y
(base)

.

Then clearly a; y has been derived by a shorter derivation, so by inductive hypothesis
y ∈ C as desired.

Proposition 2.2.4. For every x ∈ A, there is y ∈ C with x; y.

Proof. Induction on the build-up of expressions in A. If x = 0 or x = S(a) for some
a ∈ A, then x ∈ C, so x ; x by the (ref)–rule. Suppose that x = a + b. By inductive
hypothesis, a; y and b; z for some y, z ∈ C. If z = 0, we may derive:

b; 0 a; y

(a+ b) ; y
(base)

.

Hence (a + b) ; y with y ∈ C. On the other hand, if z = S(d) for some d ∈ A, then
we may derive

b; S(d)

(a+ b) ; S(a+ d)
(succ)

Thus (a+ b) ; S(a+ d) and obviously S(a+ d) ∈ C. In both cases for z we obtain a
canonical expression y such that x; y.

The computation rule is indeed deterministic:

Proposition 2.2.5. If x; u and x; v, then u = v.
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Proof. We prove this by a double induction on the derivations of x; u and x; v. In
case x ∈ C, then the only rule that can result in these conclusions is (ref), so u = v.
Suppose instead that x = (a+b). The two conclusions may be the result of four different
combinations of rules (base)-(base), (base)-(succ), (succ)-(base) and (succ)-(succ). The
first combination looks like this

b; 0 a; u

(a+ b) ; u
(base)

b; 0 a; v

(a+ b) ; v
(base)

.

By inductive hypothesis u = v, since a ; u and a ; v have shorter derivations. The
second combination would be

b; 0 a; u

(a+ b) ; u
(base)

b; S(d)

(a+ b) ; v
(succ)

.

By inductive hypothesis 0 = S(d), since b ; 0 and b ; S(d) have shorter derivations.
This is impossible. The third case is similarly ruled out. As for the final case it looks
like this, with u = S(a+ d) and v = S(a+ d′):

b; S(d)

(a+ b) ; S(a+ d)
(succ)

b; S(d′)

(a+ b) ; S(a+ d′)
(succ)

.

Thus S(d) = S(d′) by the inductive hypothesis, since b ; S(d) and b ; S(d′). Hence
also d = d′, and it follows that u = v.

Corollary 2.2.6. ; is confluent.

Proof. Suppose x ; u and x ; v. Then u = v by (2.2.5). Since v ∈ C by (2.2.3), we
have v ; v and thus also u; v. Hence ; is confluent

Corollary 2.2.7. ; is transitive.

Proof. Suppose x ; y and y ; z. Then y ∈ C, so y ; y. Hence y = z by (2.2.5).
Thus x; z as required.

We conclude thus by Theorem 2.2.2 that ≈ defines an equivalence relation on A,
and moreover that for any a ∈ A there is c ∈ C with a ≈ c.

Proposition 2.2.8. For any a ∈ A, a is normal with respect to ; if and only if a ∈ C.

Proof. Left as an exercise.

Finally the computation rules are correct:

Proposition 2.2.9. For any expressions x, y ∈ S, if x ; y, then x and y are equal
when evaluated to natural numbers in the usual recursive way.

Proof. Straightforward induction on derivations.
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2.2.2 Exercises

1. Complete the proofs of Propositions 2.2.8 and 2.2.9.

2. Investigate what happens to the above results, if the rule

a; b

S(a) ; S(b)
(S − ξ)

is added to the definition of ; above. Clearly, we then have S(0 + 0) ; S(0). In
particular, S(0 + 0) is not normal any more.
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2.3 Dependent Types and Hypothetical Judgements

2.3.1 Families of Sets

A central notion in Martin-Löf type theory is the notion of a dependent type or set.
This is a type-theoretic version of the notion of a family of sets, which is often used in
mathematics and usually written in the notation

{Ai}i∈I or possibly, Ai is a set (i ∈ I)

Here I is an index set, and A(−) assigns to each index i ∈ I a set Ai. There are some
well-known constructions associated with families of sets: the generalized cartesian
product of the family∏

i∈I

Ai = {f : I // ∪i∈I Ai : for all i ∈ I, f(i) ∈ Ai}

and the disjoint union of the family∑
i∈I

Ai = {(i, a) : i ∈ I, a ∈ Ai}.

Note that if ai ∈ Ai for each i ∈ I, then the function f defined by f(i) = ai is an
element of

∏
i∈I Ai.

These constructions also have type-theoretic counterparts and turns out to be two
of the main building blocks for both the logic and the objects of the theory.

Note that if Ai = C for all i ∈ I, that is the family is constant, then as sets∏
i∈I

Ai = (I // C)
∑
i∈I

Ai = I × C, (2.4)

2.3.2 Exercises

1. Verify the equations in (2.4).

2. Suppose that {Ai}i∈I is a family of sets, and suppose that {Bi,j}i∈I,j∈Ai is a doubly
indexed family of set. Prove (in informal set theory) that there is a function from
the set ∏

i∈I

∑
j∈Ai

Bi,j

to the set ∑
f∈(

∏
i∈I Ai)

∏
i∈I

Bi,f(i).

(Did you use the axiom of choice?)

19



2.3.3 Hypothetical judgements

For each of the four basic judgement forms J above we need to consider its hypothetical
version

J (x1 : A1, x2 : A2, x3 : A3, . . . , xn : An). (2.5)

The general idea of its interpretation is that J should hold for any instantiation of the
parameters x1, . . . , xn to elements belonging to the appropriate sets, and that appropri-
ate equalities between elements in the parameters should be respected in the judgement
instances. This will be made precise below.

The part (x1 : A1, x2 : A2, . . . , xn : An) of (2.5) is called the context in which
the judgement J is made. By the propositions-as-sets principle the context may be
regarded as a sequence of hypotheses that certain propositions are true or as a sequence
of declarations of to which sets certain variables belong, or even a mix of the two
interpretations.

There are complications to this picture. In general sets/types of the context may
depend on each other, so that A2 depends on the parameter x1, we write this as A2(x1),
moreover A3 depend on the two previous parameters x1 and x2, and finally An may
depend on all the previous parameters, which we write as An(x1, . . . , xn−1). The general
form of the hypothetical judgement thus looks like

J (x1, . . . , xn) (x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1)). (2.6)

An alternative notation for hypothetical judgements will be the sequent notation

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1) ` J (x1, . . . , xn). (2.7)

A note on substitutions. In (Martin-Löf 1984) an informal notion of substitution
is employed. If A(x) and a(x) is a set respectively an element then A(b) and a(b) are the
results of substituting b for the variable x in these entities, respectively. More generally
if A(x1, . . . , xn) and a(x1, . . . , xn) is a set respectively an element, then A(b1, . . . , bn)
and a(b1, . . . , bn) are the results of simultaneously substituting b1, . . . , bn for the vari-
ables x1, . . . , xn in these entities respectively. It is assumed that substitution renames
bound variables so that no clashes occurs. There several ways to make this notation
precise: use syntactic substitution when formulating rules, use a logical framework with
syntactic substitution on the type level, or use explicit substitution. We will return to
these refinements later.

We start with a detailed analysis of the one parameter hypothetical judgements as
in (Martin-Löf 1984). We distinguish again four forms of judgements

1. B(x) set (x : A)

2. B(x) = C(x) (x : A)
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3. b(x) : B(x) (x : A)

4. b(x) = c(x) : B(x) (x : A)

The meaning of the judgement forms are the following.

1. The meaning of the hypothetical judgement

B(x) set (x : A)

is that for each element a of A, B(a) is a set, and moreover if a and b are two equal
elements of A, then B(a) = B(b).

This justifies two substitution rules:

` a : A x : A ` B(x) set

` B(a) set

` a = b : A x : A ` B(x) set

` B(a) = B(b) .

2. The meaning of the hypothetical judgement

B(x) = C(x) (x : A)

is that for any element a of A, B(a) and C(a) are equal sets.
This justifies the substitution rule:

` a : A x : A ` B(x) = C(x)

` B(a) = C(a) .

3. The meaning of the hypothetical judgement

b(x) : B(x) (x : A)

is that for any element a of A, b(a) is an element of B(a), and whenever a and c are
equal elements of A, then b(a) and b(c) are equal elements of B(a).

By this we justify the two substitution rules

` a : A x : A ` b(x) : B(x)

` b(a) : B(a)

` a = c : A x : A ` b(x) : B(x)

` b(a) = b(c) : B(a) .

4. The meaning of the hypothetical judgement

b(x) = c(x) : B(x) (x : A)

is that for any element a of A, b(a) and c(a) are equal elements of B(a).
This justifies the substitution rule

` a : A x : A ` b(x) = c(x) : B(x)

` b(a) = c(a) : B(a) .
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2.3.4 General hypothetical judgements

The general hypothetical judgements forms are:

1. B(x1, . . . , xn) set (x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

2. B(x1, . . . , xn) = C(x1, . . . , xn)

(x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

3. b(x1, . . . , xn) : B(x1, . . . , xn)

(x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

4. b(x1, . . . , xn) = c(x1, . . . , xn) : B(x1, . . . , xn)

(x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

Notice that these are instances of (2.6).

Now we need to instantiate all the hypothesis at once, that is, to make a simul-
taneous substitution for all the variables x1, x2, . . . , xn with some elements a1, . . . , an
respectively. Because of the dependencies we need the following n judgements

a1 : A1

a2 : A2(a1)
a3 : A3(a1, a2)

...
an : An(a1, . . . , an−1)

(2.8)

to substitute correctly into the variables. We write this also as

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` an : An(a1, . . . , an−1)

1. The judgement

B(x1, . . . , xn) set (x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

means that for any sequence a1, . . . , an of elements such that

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` an : An(a1, . . . , an−1)

we have
B(a1, . . . , an) set

and moreover for any other sequence c1, . . . , cn of elements with

` c1 : A1,` c2 : A2(c1),` a3 : A3(c1, c2), . . . ,` cn : An(c1, . . . , cn−1)
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and

` a1 = c1 : A1,` a2 = c2 : A2(a1),` a3 = c3 : A3(a1, a2), . . . ,` an = cn : An(a1, . . . , an−1)

we have
B(a1, . . . , an) = B(c1, . . . , cn).

2. The judgement

B(x1, . . . , xn) = C(x1, . . . , xn)

(x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

means that for any sequence a1, . . . , an of elements such that

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` an : An(a1, . . . , an−1)

we have
B(a1, . . . , an) = C(a1, . . . , an).

3. The judgement

b(x1, . . . , xn) : B(x1, . . . , xn)

(x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))

means that for any sequence a1, . . . , an of elements such that

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` an : An(a1, . . . , an−1)

we have
b(a1, . . . , an) : B(a1, . . . , an)

and moreover for any other sequence c1, . . . , cn of elements with

` c1 : A1,` c2 : A2(c1),` a3 : A3(c1, c2), . . . ,` cn : An(c1, . . . , cn−1)

and

` a1 = c1 : A1,` a2 = c2 : A2(a1),` a3 = c3 : A3(a1, a2), . . . ,` an = cn : An(a1, . . . , an−1)

we have
b(a1, . . . , an) = b(c1, . . . , cn) : B(a1, . . . , an).

4. The judgement

b(x1, . . . , xn) = b(x1, . . . , xn) : B(x1, . . . , xn)

(x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1))
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means that for any sequence a1, . . . , an of elements such that

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` an : An(a1, . . . , an−1)

we have
b(a1, . . . , an) = c(a1, . . . , an) : B(a1, . . . , an).

As in the one parameter case we can justify some substitutions laws.
From 1:

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1) ` B(x1, . . . , xn) set
` a1 : A1 ` a2 : A2(a1) ` a3 : A3(a1, a2) · · · ` an : An(a1, . . . , an−1)

` B(a1, . . . , an) set

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1) ` B(x1, . . . , xn) set
` a1 = c1 : A1 ` a2 = c2 : A2(a1) ` a3 = c3 : A3(a1, a2) · · · ` an = cn : An(a1, . . . , an−1)

` B(a1, . . . , an) = B(c1, . . . , cn)

From 2:

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1) ` B(x1, . . . , xn) = C(x1, . . . , xn)
` a1 : A1 ` a2 : A2(a1) ` a3 : A3(a1, a2) · · · ` an : An(a1, . . . , an−1)

` B(a1, . . . , an) = C(a1, . . . , an)

From 3:

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1) ` b(x1, . . . , xn) : B(x1, . . . , xn)
` a1 : A1 ` a2 : A2(a1) ` a3 : A3(a1, a2) · · · ` an : An(a1, . . . , an−1)

` b(a1, . . . , an) : B(a1, . . . , an)

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1) ` b(x1, . . . , xn) : B(x1, . . . , xn)
` a1 = c1 : A1 ` a2 = c2 : A2(a1) ` a3 = c3 : A3(a1, a2) · · · ` an = cn : An(a1, . . . , an−1)

` b(a1, . . . , an) = b(c1, . . . , cn) : B(a1, . . . , an)

From 4:

x1 : A1, x2 : A2(x1), x3 : A3(x1, x2), . . . , xn : An(x1, . . . , xn−1)
` b(x1, . . . , xn) = c(x1, . . . , xn) : B(x1, . . . , xn)

` a1 : A1 ` a2 : A2(a1) ` a3 : A3(a1, a2) · · · ` an : An(a1, . . . , an−1)

` b(a1, . . . , an) = c(a1, . . . , an) : B(a1, . . . , an)
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The assumption rule. Then the following assumption rule is justified: For any
k = 1, . . . , n we can bring out the kth variable

` A1 set
x1 : A1 ` A2(x1) set
x1 : A1, x2 : A2(x1) ` A3(x1, x2) set

...
x1 : A1, . . . , xn−1 : An−1(x1, . . . , xn−2) ` An(x1, . . . , xn−1) set

x1 : A1, . . . , xn : An(x1, . . . , xn−1) ` xk : Ak(x1, . . . , xk−1)
(as.k)

(2.9)

Suppose that

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` an : An(a1, . . . , an−1)

Thus in particular
ak : Ak(a1, . . . , ak−1).

Moreover if

` a1 = c1 : A1,` a2 = c2 : A2(a1),` a3 = c3 : A3(a1, a2), . . . ,` an = cn : An(a1, . . . , an−1)

we have in particular
ak = ck : Ak(a1, . . . , ak−1).

This justifies (2.9).

2.3.5 General Substitution Rules

The above rules can be further generalized and justified by the meaning of the hypo-
thetical judgments forms. A sequence of assumptions

Γ = x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1)

is called a context. Suppose that ∆ is another context

y1 : D1, y2 : D2(y1), . . . , ym : Dm(y1, . . . , ym−1).

An element of A1 in this context is

∆ ` a1(y1, . . . , ym) : A1.

Generalizing (2.8) we get

∆ ` a1(y1, . . . , ym) : A1

∆ ` a2(y1, . . . , ym) : A2(a1(y1, . . . , ym))
...

∆ ` an(y1, . . . , ym) : An(a1(y1, . . . , ym), . . . , an−1(y1, . . . , ym))

(2.10)
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The substitution rules now take their most general form as follows. Write ȳ =
y1, . . . , ym where ∆ = y1 : D1, y2 : D2(y1), . . . , ym : Dm(y1, . . . , ym−1).

From 1:

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ` B(x1, . . . , xn) set
∆ ` a1(ȳ) : A1

∆ ` a2(ȳ) : A2(a1(ȳ))
...

∆ ` an(ȳ) : An(a1(ȳ), . . . , an−1(ȳ))

∆ ` B(a1(ȳ), . . . , an(ȳ)) set

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ` B(x1, . . . , xn) set
∆ ` a1(ȳ) = c1(ȳ) : A1

∆ ` a2(ȳ) = c2(ȳ) : A2(a1(ȳ))
...

∆ ` an(ȳ) = cn(ȳ) : An(a1(ȳ), . . . , an−1(ȳ))

∆ ` B(a1(ȳ), . . . , an(ȳ)) = B(c1(ȳ), . . . , cn(ȳ))

From 2:

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ` B(x1, . . . , xn) = C(x1, . . . , xn)
∆ ` a1(ȳ) : A1

∆ ` a2(ȳ) : A2(a1(ȳ))
...

∆ ` an(ȳ) : An(a1(ȳ), . . . , an−1(ȳ))

∆ ` B(a1(ȳ), . . . , an(ȳ)) = C(a1(ȳ), . . . , an(ȳ))

From 3:

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ` b(x1, . . . , xn) : B(x1, . . . , xn)
∆ ` a1(ȳ) : A1

∆ ` a2(ȳ) : A2(a1(ȳ))
...

∆ ` an(ȳ) : An(a1(ȳ), . . . , an−1(ȳ))

∆ ` b(a1(ȳ), . . . , an(ȳ)) : B(a1(ȳ), . . . , an(ȳ))
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x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ` b(x1, . . . , xn) : B(x1, . . . , xn)
∆ ` a1(ȳ) = c1(ȳ) : A1

∆ ` a2(ȳ) = c2(ȳ) : A2(a1(ȳ))
...

∆ ` an(ȳ) = cn(ȳ) : An(a1(ȳ), . . . , an−1(ȳ))

∆ ` b(a1(ȳ), . . . , an(ȳ)) = b(c1(ȳ), . . . , cn(ȳ)) : B(a1(ȳ), . . . , an(ȳ))

From 4:

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1)
` b(x1, . . . , xn) = c(x1, . . . , xn) : B(x1, . . . , xn)

∆ ` a1(ȳ) : A1

∆ ` a2(ȳ) : A2(a1(ȳ))
...

∆ ` an(ȳ) : An(a1(ȳ), . . . , an−1(ȳ))

∆ ` b(a1(ȳ), . . . , an(ȳ)) = c(a1(ȳ), . . . , an(ȳ)) : B(a1(ȳ), . . . , an(ȳ))

2.3.6 Weakening of judgements

The general idea of weakening a hypothetical judgement is that we may insert an extra
assumption and still be able to judge the same conclusion.

Suppose that

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1) ` J (x1, . . . , xn) (2.11)

is an arbitrary hypothetical judgement. Now assuming that B(x1, . . . , xk) is a set that
depends only on the first k variables of the context of (2.11):

x1 : A1, x2 : A2(x1), . . . , xk : Ak(x1, . . . , xk−1) ` B(x1, . . . , xk) set. (2.12)

If y is a variable different from x1, . . . , xn, then

x1 : A1, x2 : A2(x1), . . . , xk : An(x1, . . . , xk−1),

y : B(x1, . . . , xk),

xk+1 : An(x1, . . . , xk), . . . , xn : An(x1, . . . , xn−1) ` J (x1, . . . , xn)

(2.13)

is the weakening of (2.11) by (2.12). We can justify this as a general rule: Suppose that
for any sequence a1, . . . , ak, b, ak+1, . . . , an of elements such that

` a1 : A1,` a2 : A2(a1),` a3 : A3(a1, a2), . . . ,` ak : Ak(a1, . . . , ak−1)

` b : B(a1, . . . , ak)

` ak+1 : An(a1, . . . , ak), . . . ,` an : An(a1, . . . , an−1)
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By the meaning of (2.11) we immediately obtain

` J (a1, . . . , an)

as required. We have justified the following weakening rule for any form of judgement
J and variable y not free in Γ,∆

Γ ` B(x1, . . . , xk) set Γ,∆ ` J (x1, . . . , xn)

Γ, y : B(x1, . . . , xk),∆ ` J (x1, . . . , xn)
(weakening)

Having adopted the weakening rule a simple assumption rule suffices: for any vari-
able y not free in Γ,

Γ ` A(x1, . . . , xn) set

Γ, y : A(x1, . . . , xn) ` y : A(x1, . . . , xn)
(as.last)

(2.14)

Suppose that

` A1 set
x1 : A1 ` A2(x1) set
x1 : A1, x2 : A2(x1) ` A3(x1, x2) set

...
x1 : A1, . . . , xn−1 : An−1(x1, . . . , xn−2) ` An(x1, . . . , xn−1) set

(2.15)

Then the assumption rule (2.9) may be proved from (2.14): For any k = 1, . . . , n we
can bring out the kth variable

x1 : A1, . . . , xn : An(x1, . . . , xn−1) ` xk : Ak(x1, . . . , xk−1) (2.16)

Indeed we get

x1 : A1, . . . , xk : Ak(x1, . . . , xk−1) ` xk : Ak(x1, . . . , xk−1)

by (2.14). Then weakening this by

x1 : A1, . . . , xk : Ak(x1, . . . , xn−1) ` Ak+1(x1, . . . , xk) set

we get

x1 : A1, . . . , xk : Ak(x1, . . . , xk−1), xk+1 : Ak+1(x1, . . . , xk) ` xk : Ak(x1, . . . , xk−1).

We can continue weakening with sets from the list (2.15), until we get (2.16).

The following assumption rule is easily derived using weakening

` A1 set · · · ` An set
x1 : A1, . . . , xn : An ` xk : Ak

(as.k)
(2.17)

28



Chapter 3

Type Constructions

In this chapter we consider the basic set (type) constructions of Martin-Löf type theory.
The rules axiomatizing the sets in the theory follows a general pattern. Just as in a
natural deduction system there are introduction rules and elimination rules, and the
elimination rules are essentially determined by the introduction rules. In addition there
are computation rules fixing the relation between these rule. Moreover since the syntax
of theory, is extensible, there are also formation rules.

In summary, defining a set in type theory requires

1. Formation rule: names the new set to be defined, possibly in terms of earlier
defined sets.

2. Introduction rules: shows how canonical elements of the set are built and when
they are equal.

3. Elimination rule: shows how to define a function on the set in terms of the
canonical elements, by introducing an elimination operator.

4. Computation rule: Shows how the elimination operator acts on canonical ele-
ments.

In functional programming parlance, the canonical elements are given by construc-
tors and elimination operator are called destructors.

Martin-Löf (Nordström et al. 1990) distinguishes between sets and types where the
former are supposed to be constructed according to rules as above, whereas in the case
of types, the elimination rules are not necessarily determined by the introduction rule.
An alternative term for set could be inductive type.
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3.1 Π-sets — generalized cartesian products

The Π-set construction presented here is a type theory version of the generalized carte-
sian product of ordinary set theory mentioned above.

If we display all the possibly free variables, the Π-formation rule is this pair of rules.
Suppose Γ = z1 : C1, . . . , zn : Cn(z1, . . . , zn−1) and writing z̄ = z1, . . . , zn,

Γ ` A(z̄) set Γ, x : A(z̄) ` B(z̄, x) set

Γ ` (Πx : A(z̄))B(z̄, x) set

Γ ` A(z̄) = C(z̄) set Γ, x : A(z̄) ` B(z̄, x) = D(z̄, x) set

Γ ` (Πx : A(z̄))B(z̄, x) = (Πx : C(z̄))D(z̄, x) set

However, we prefer to suppress both the common context Γ and its variables z̄ when
giving the rules. So we write the rule as follows, and similarly for all the other rules.

1. Π-formation:

` A set x : A ` B(x) set

` (Πx : A)B(x) set

` A = C set x : A ` B(x) = D(x)

` (Πx : A)B(x) = (Πx : C)D(x) set

2. Π-introduction:

x : A ` b(x) : B(x)

` (λx)b(x) : (Πx : A)B(x)

x : A ` b(x) = c(x) : B(x)

` (λx)b(x) = (λx)c(x) : (Πx : A)B(x)

The constructor of Π is the so-called λ-abstraction, which creates a name for b(x)
as a function of x. In ordinary mathematical texts one may see the notation x 7→ b(x)
which in essence is (λx)b(x). The rule on the right above is in λ-calculus known as the
ξ-rule.

3. Π-elimination:

` c : (Πx : A)B(x) ` a : A

` Ap(c, a) : B(a)

` c = d : (Πx : A)B(x) ` a = b : A

` Ap(c, a) = Ap(d, b) : B(a)

In this rule Ap(c, a) is the method which first calculates c to a canonical element
(λx)b(x), and then substitutes a into b(x) and continues to compute b(a) to a canonical
element. Then we can justify the following rule relating the elimination operator Ap to
the canonical element (λx)b(x).

4. Π-computation:

x : A ` b(x) : B(x) ` a : A

` Ap((λx)b(x), a) = b(a) : B(a)

In λ-calculus this rule is better known as the β-rule.
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Remark 3.1.1. In Martin-Löf (1984, p. 29) the η-rule

` c : (Πx : A)B(x)

c = (λx)Ap(c, x)

is also considered. However, it does not belong to the intensional version of type theory
and can be avoided in applications.

3.1.1 Function set

A noteworthy special case of the above is when the family B(x) is constant C. Then
defining

A→ C =def (Πx : A)B(x) = (Πx : A)C

we have the following rules:

1. →-formation:

` A set ` C set
` A→ C set

` A = D set ` C = E
` A→ C = D → E set

2. →-introduction:

x : A ` c(x) : C

` (λx)c(x) : A→ C

x : A ` c(x) = d(x) : C

` (λx)c(x) = (λx)d(x) : A→ C

3. →-elimination:

` c : A→ C ` a : A
` Ap(c, a) : C

` c = d : A→ C ` a = b : A
` Ap(c, a) = Ap(d, b) : C

4. →-computation:

x : A ` b(x) : C ` a : A

` Ap((λx)b(x), a) = b(a) : C

Example 3.1.2. Given that A, B and C are sets, find some h(x) such that

x : A→ B ` h(x) : (B → C)→ (A→ C).

Working from this goal up to axioms, it seems reasonable to use (→)-introduction twice
at the end. Thus we have the unfinished derivation:

?
x : A→ B, y : B → C, z : A ` ? : C

x : A→ B, y : B → C ` (λz) ? : A→ C
(→ i)

x : A→ B ` (λy)(λz) ? : (B → C)→ (A→ C)
(→ i)
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We can use (→)-elimination and hypotheses to obtain an element of C. Writing Γ =
x : A→ B, y : B → C, z : A, we have

?
Γ ` y : B // C

?
Γ `? : B

x : A→ B, y : B → C, z : A ` Ap(y, ?) : C
(→ e)

x : A→ B, y : B → C ` (λz)Ap(y, ?) : A→ C
(→ i)

x : A→ B ` (λy)(λz)Ap(y, ?) : (B → C)→ (A→ C)
(→ i)

An element of B may be obtained in a similar way:

?
Γ ` y : B → C

?
Γ ` x : A→ B

?
Γ ` z : A

Γ ` Ap(x, z) : B
(→ e)

x : A→ B, y : B → C, z : A ` Ap(y,Ap(x, z)) : C
(→ e)

x : A→ B, y : B → C ` (λz)Ap(y,Ap(x, z)) : A→ C
(→ i)

x : A→ B ` (λy)(λz)Ap(y,Ap(x, z)) : (B → C)→ (A→ C)
(→ i)

At the top we can now apply assumptions rules.

D1 D2 ` A set
Γ ` y : B → C

(as.2)

D1 D2 ` A set
Γ ` x : A→ B

(as.1)
D1 D2 ` A set

Γ ` z : A
(as.3)

Γ ` Ap(x, z) : B
(→ e)

x : A→ B, y : B → C, z : A ` Ap(y,Ap(x, z)) : C
(→ e)

x : A→ B, y : B → C ` (λz)Ap(y,Ap(x, z)) : A→ C
(→ i)

x : A→ B ` (λy)(λz)Ap(y,Ap(x, z)) : (B → C)→ (A→ C)
(→ i)

where D1 and D2 are respectively

` A set ` B set
` A→ B set

(→ f) ` B set ` C set
` B → C set

(→ f)
.

This completes the proof.
By a further →-introduction we may obtain

` (λx)(λy)(λz)Ap(y,Ap(x, z)) : (A→ B)→ ((B → C)→ (A→ C)) (3.1)

Example 3.1.3. Suppose that A and B are sets and that x : A, y : B ` R(x, y) set.
Find some k such that

` k : (Πx : A)(Πy : B)R(x, y)→ (Πy : B)(Πx : A)R(x, y). (3.2)

Let us first check that the type is well-formed. We have by Π-formation twice

x : A, y : B ` R(x, y) set

x : A ` (Πy : B)R(x, y) set
(Π− f)

` (Πx : A)(Πy : B)R(x, y) set
(Π− f)

.
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Call this derivation D1. How do we show that (Πy : B)(Πx : A)R(x, y) is a set? We can
not use the same derivation, since the parameters of x : A, y : B ` R(x, y) set are in the
wrong order. We employ the substitution rule to permute them. By the assumption
rules we get

` B set ` A set
y : B, x : A ` x : A

` B set ` A set
y : B, x : A ` y : B x : A, y : B ` R(x, y) set

y : B, x : A ` R(x, y) set
(subst).

Call this derivation D2. From this we get as above ` (Πy : B)(Πx : A)R(x, y) set. It
follows by an application of →-formation that the type of (3.2) is well-formed.

Now we try to derive (3.2) by ending with two Π-introduction rules and a →-
introduction rule

? ?
p : (Πx : A)(Πy : B)R(x, y), y : B, x : A ` ? : R(x, y)

p : (Πx : A)(Πy : B)R(x, y), y : B ` (λx)? : (Πx : A)R(x, y)
(Π− i)

p : (Πx : A)(Πy : B)R(x, y) ` (λy)(λx)? : (Πy : B)(Πx : A)R(x, y)
(Π− i)

` (λp)(λy)(λx)? : (Πx : A)(Πy : B)R(x, y)→ (Πy : B)(Πx : A)R(x, y)
(→ −i)

Let Γ = p : (Πx : A)(Πy : B)R(x, y), y : B, x : A. Applying p to x we get Ap(p, x) :
(Πy : B)R(x, y) and this to y, we get Ap(Ap(p, x), y) : R(x, y). I.e by adding Π-
elimination rules at the top, we can finish the proof:

D2 ` B set ` A set

Γ ` p : (Πx : A)(Πy : B)R(x, y)
(as.1)

D2 ` B set ` A set
Γ ` x : A

(as.3)

Γ ` Ap(p, x) : (Πy : B)R(x, y)
(Π− e)

D2 ` B set ` A set
Γ ` y : B

(as.2)

p : (Πx : A)(Πy : B)R(x, y), y : B, x : A ` Ap(Ap(p, x), y) : R(x, y)
(Π− e)

p : (Πx : A)(Πy : B)R(x, y), y : B ` (λx)Ap(Ap(p, x), y) : (Πx : A)R(x, y)
(Π− i)

p : (Πx : A)(Πy : B)R(x, y) ` (λy)(λx)Ap(Ap(p, x), y) : (Πy : B)(Πx : A)R(x, y)
(Π− i)

` (λp)(λy)(λx)Ap(Ap(p, x), y) : (Πx : A)(Πy : B)R(x, y)→ (Πy : B)(Πx : A)R(x, y)
(→ −i)

(3.3)

3.1.2 Propositions-as-sets interpretation

The set (Πx : A)B(x) will be regarded as a proposition in two ways. The first is when
both A and B(x) are viewed as propositions, and where B(x) is constant C. This will
interpret the implicational proposition A ⊃ B. The second is when A is still viewed as
a set, but B(x) is regarded as a proposition depending on x. This will interpret the
universal quantified proposition (∀x : A)B(x).

Recall that any set A has a dual existence as a proposition A. Then a : A reads as
a is a proof construction for A. That A is true means there the is some a such that
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a : A. We can understand this as a new judgement

` A true means there there is some a such that ` a : A

. To do logical deduction we need a hypothetical version of this judgement

B1 true, . . . , Bn true ` A true.

means that there is some a(x1, . . . , xn) such that

x1 : B1, . . . , xn : Bn ` a(x1, . . . , xn) : A. (3.4)

Note that we are considering arbitrary proof constructions for B1, . . . , Bm in the an-
tecedent, and we are required find a proof construction a(x1, . . . , xn) of A depending
on those.

Now we can interpret the implication rules writing

A ⊃ B =def A→ B.

(This is not to be confused with the subset notation.)

1. (⊃)-formation follows from (→)-formation:

` A prop ` C prop

` A ⊃ B prop

2. (⊃)-introduction follows from (→)-introduction

x : A ` b(x) : B

` (λx)b(x) : A ⊃ B

Suppressing proof constructions as in (3.4) this reads as the usual introduction rule
in intuitionistic logic (save for the annotation ”true”):

A true ` B true
` A ⊃ B true

3. (⊃)-elimination (or modus ponens) follows from (→)-elimination:

` c : A ⊃ B ` a : A
` Ap(c, a) : B

Again suppressing proof constructions we get the familiar modus ponens rule of intu-
itionistic logic

` A ⊃ B true ` A true
` B true
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Second application: regard A as a set and B(x) as a proposition. Define

(∀x : A)B(x) =def (Πx : A)B(x)

Then we have from the Π-formation rule:
1. ∀-formation :

` A set x : A ` B(x) prop

` (∀x : A)B(x) prop

2. ∀-introduction follows from the Π-introduction rule:

x : A ` b(x) : B(x)

` (λx)b(x) : (∀x : A)B(x)

Suppressing proof constructions for propositions as before we have the familiar intro-
duction rule

x : A ` B(x) true

` (∀x : A)B(x) true

3. ∀-elimination follows from Π-elimination:

` c : (∀x : A)B(x) ` a : A

` Ap(c, a) : B(a)

Suppressing proof constructions for propositions as before we have the familiar elimi-
nation rule

` (∀x : A)B(x) true ` a : A

` B(a) true

Thus the intuitionistic logical rules of ∀ and ⊃ are valid. In both cases it is clearly
reasonable to call (λx)b(x) a method, so these rules are also valid under the BHK-
interpretation.

3.2 Σ-sets — general disjoint unions

The Σ-sets constructions presented here is a type-theoretic version of the disjoint union
of family of sets in set theory as recalled above.

1. Σ-formation:

` A set x : A ` B(x) set

` (Σx : A)B(x) set

` A = C set x : A ` B(x) = D(x) set

` (Σx : A)B(x) = (Σx : C)D(x) set

2. Σ-introduction:

` a : A ` b : B(a)

` (a, b) : (Σx : A)B(x)

` a = c : A ` b = d : B(a)

` (a, b) = (c, d) : (Σx : A)B(x)
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The canonical elements will thus be of the form (a, b).

3. Σ-elimination:

z : (Σx : A)B(x) ` C(z) set ` c : (Σx : A)B(x) x : A, y : B(x) ` d(x, y) : C((x, y))

` E(c, (x, y)d(x, y)) : C(c)

and moreover

z : (Σx : A)B(x) ` C(z) set ` c = e : (Σx : A)B(x) x : A, y : B(x) ` d(x, y) = f(x, y) : C((x, y))

` E(c, (x, y)d(x, y)) = E(e, (x, y)f(x, y)) : C(c)

This is one of the more complicated rules. Here (x, y)d(x, y) indicates that the
variables x and y are bound in the expression.

Any element c of (Σx : A)B(x) can be calculated to a canonical element of the form
(a, b) where a : A and b : B(a). We let E(c, (x, y)d(x, y)) be the method which performs
this calculation and then substitutes a and b in to d as d(a, b) and continue calculating
this element to a canonical one in C((a, b)). This also justifies the computation rule
below.

4. Σ-computation:

z : (Σx : A)B(x) ` C(z) set ` a : A ` b : B(a) x : A, y : B(x) ` d(x, y) : C((x, y))

` E((a, b), (x, y)d(x, y)) = d(a, b) : C((a, b))

Derived rules for projections. Let A be a set and B(x) set (x : A) be a family of
sets. Then C(z) = A is a constant family of sets over (Σx : A)B(x), i.e.

z : (Σx : A)B(x) ` A set

and by the assumption rule
x : A, y : B(x) ` x : A

Now letting d(x, y) = x, we get by Σ-elimination, for c : (Σx : A)B(x)

` E(c, (x, y)x) : C(c)

Also by the Σ-computation rule:

E((a, b), (x, y)x) = a.

Define
π1(c) =def E(c, (x, y)x).

In summary:
` c : (Σx : A)B(x)

` π1(c) : A
(proj1)

(3.5)
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and
` a : A ` b : B(a)

` π1((a, b)) = a : A
(proj1− c)

.

Now we can see that by substitution

z : (Σx : A)B(x) ` B(π1(z)) set.

Let C(z) =def B(π1(z)). Moreover, since

x : A, y : B(x) ` B(x) = B(π1((x, y)))

we have
x : A, y : B(x) ` y : B(π1((x, y)))

Let d(x, y) =def y and we get by Σ-elimination and Σ-computation

` c : (Σx : A)B(x)

` π2(c) : B(π1(c))
(proj2)

(3.6)

and
` a : A ` b : B(a)

` π2((a, b)) = b : A
(proj2− c)

.

Again an important special case is when the family B(x) is constant, say B(x) = D.
Then defining

A×D =def (Σx : A)B(x) = (Σx : A)D.

The rules then becomes

1. ×-formation:

` A set ` D set
` A×D set

` A = A′ set ` D = D′ set
` A×D = A′ ×D′ set

2. ×-introduction:

` a : A ` b : D
` (a, b) : A×D

` a = c : A ` b = d : D
` (a, b) = (c, d) : A×D

3. ×-elimination:

z : A×D ` C(z) set ` c : A×D x : A, y : D ` d(x, y) : C((x, y))

` E(c, (x, y)d(x, y)) : C(c)

and moreover

z : A×D ` C(z) set ` c = e : A×D x : A, y : D ` d(x, y) = f(x, y) : C((x, y))

` E(c, (x, y)d(x, y)) = E(e, (x, y)f(x, y)) : C(c)
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4. ×-computation:

z : A×D ` C(z) set ` a : A ` b : D x : A, y : D ` d(x, y) : C((x, y))

` E((a, b), (x, y)d(x, y)) = d(a, b) : C((a, b))

The projection rules take the form

` c : A×D
` π1(c) : A

(proj1)
` c = d : A×D
` π1(c) = π1(d) : A

(proj1)

` c : A×D
` π2(c) : D

(proj2)
` c = d : A×D
` π2(c) = π2(d) : D

(proj2)

and
` a : A ` b : D
` π2((a, b)) = b : D

(proj2− c) ` a : A ` b : D
` π1((a, b)) = a : A

(proj1− c)
.

3.2.1 Propositions-as-sets interpretation

The set (Σx : A)B(x) may be regarded as a proposition in two ways. The first is when
both A and B(x) are viewed as propositions, and where B(x) is constant C. This will
interpret the conjunctional proposition A ∧ C. The second is when A is still viewed as
a set, but B(x) is regarded as a proposition depending on x. This will interpret the
existentially quantified proposition (∃x : A)B(x).

Defining (∃x : A)B(x) =def (Σx : A)B(x) we get

1. ∃-formation:

` A set x : A ` B(x) prop

` (∃ : A)B(x) prop

2. ∃-introduction:
` a : A ` b : B(a)

` (a, b) : (∃x : A)B(x)

3. ∃-elimination:

z : (Σx : A)B(x) ` C(z) prop ` c : (∃x : A)B(x) x : A, y : B(x) ` d(x, y) : C((x, y))

` E(c, (x, y)d(x, y)) : C(c)

The latter is actually a stronger elimination rule than the standard ∃-elimination
rule in intuitionistic logic, since C may depend on x (and y).

Next define
A ∧B =def A×B

we get
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1. ∧-formation:

` A prop x : A ` B prop

` A ∧B prop

2. ∧-introduction:
` a : A ` b : B
` (a, b) : A ∧B

Now taking the projections of × in the non-dependent form we get

3. ∧-elimination:
` z : A ∧B
` π1(z) : A

` z : A ∧B
` π2(z) : B.

This shows as well that the BHK-interpretation verifies the rules for ∃ and ∧ in
intuitionistic logic.

3.2.2 Type-theoretic axiom of choice

For S and T sets and a predicate x : S, y : T ` R(x, y) the following proposition is often
called the type-theoretic axiom of choice:

(∀x : S)(∃y : T )R(x, y) ⊃ (∃f : S → T )(∀x : S)R(x,Ap(f, x)) (3.7)

It is true in type theory, which may come as a surprise, as it is one of the axioms
considered non-constructive in ordinary set theory ZF. The proof is essentially that of
Example 1.3.2. See (Martin-Löf 1984) for a proof in type theory.

Why doesn’t this axiom have non-constructive consequences? The reason is that
sets in type theory do in general not have quotients. Instead a set A have to be equipped
with an explicit equivalence relation =A in case we want to identify elements. Compare
the Bishop 1967 quote above. Now to obtain something comparable to the strength of
the axiom of choice in ZF would require that the choice function f of (3.7) to respect
the equivalence relations of S and T in the sense that

x =S y =⇒ Ap(f, x) =T Ap(f, y).

There is nothing that guarantees this property however. We refer to Martin-Löf (2004)
for a further discussion on the axiom of choice in relation to type theory.

3.3 +-sets

The binary disjoint union is treated separately from the general disjoint union.

1. +-formation:
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` A set ` B set
` A+B set

` A = C set ` B = D set
` A+B = C +D set

2. +-introduction

a : A
inl(a) : A+B

b : B
inr(b) : A+B

a = c : A
inl(a) = inl(c) : A+B

b = d : B
inr(b) = inr(d) : A+B

3. +-elimination

z : A+B ` C(z) set ` c : A+B x : A ` d(x) : C(inl(x)) y : B ` e(y) : C(inr(y))

D(c, (x)d(x), (y)e(y)) : C(c)

z : A+B ` C(z) set
` c = c′ : A+B x : A ` d(x) = d′(x) : C(inl(x)) y : B ` e(y) = e′(y) : C(inr(y))

D(c, (x)d(x), (y)e(y)) = D(c′, (x)d′(x), (y)e′(y)) : C(c)

D(c, (x)d(x), (y)e(y)) is a method which first computes c to canonical form, which is
either inl(a), with a : A or inr(b) with b : B. In the former case it makes a substitution
and continues to evaluate d(a) to canonical form. In the latter case it makes the
substitution e(b) and continues to evaluate this element to canonical form.

Thus we can justify the computations rules:

+-computation

z : A+B ` C(z) set ` a : A x : A ` d(x) : C(inl(x)) y : B ` e(y) : C(inr(y))

D(inl(a), (x)d(x), (y)e(y)) = d(a) : C(inl(a))

z : A+B ` C(z) set ` b : B x : A ` d(x) : C(inl(x)) y : B ` e(y) : C(inr(y))

D(inr(b), (x)d(x), (y)e(y)) = e(b) : C(inr(b))

Example 3.3.1. Given sets A and C and that x : A ` B(x) set, find h(z) such that

z : (Σx : A)(B(x) + C) ` h(z) : (Σx : A)B(x) + C.

A standard tactic in this situation is to try is to apply Σ-elimination to z. Write
H =def (Σx : A)(B(x) + C) and G =def (Σx : A)B(x) + C.

form. & weaken.
z : H ` G set

form. & weaken.
z : H ` z : H

(as.1)
?

z : H, x : A, y : B(x) + C ` d(x, y) : G

z : H ` E(z, (x, y)d(x, y)) : G
Σe

(3.8)
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Write Γ = z : H, x : A, y : B(x) + C.

D
form. & weaken.
Γ ` y : B(x) + C

(as)

form. & weaken.
Γ, u : B(x) ` x : A

(as) form. & weaken.
Γ, u : B(x) ` u : B(x)

(as)

Γ, u : B(x) ` (x, u) : (Σx : A)B(x)
Σi

Γ, u : B(x) ` inl((x, u)) : G
+i

form. & weaken.
Γ, v : C ` v : C

(as)

Γ, v : C ` inr(v) : G
+i

Γ ` D(y, (u)inl((x, u)), (v)inr(v)) : G
+e

Here D is some derivation of Γ, w : B(x) + C ` G set. Now letting d(x, y) =
D(y, (u)inl((x, u)), (v)inr(v)) we can complete the derivation (3.8) and obtain

h(z) = E(z, (x, y)D(y, (u)inl((x, u)), (v)inr(v)))

as the desired proof construction. Note

h((x, inl(u))) = inl((x, u))

h((x, inr(v))) = inr(v).

3.3.1 Propositions-as-sets interpretation

We define
A ∨B =def A+B

and obtain the following interpretation of the sets as propositions.

1. ∨-formation:

` A prop ` B prop

` A ∨B prop

2. ∨-introduction

a : A
inl(a) : A ∨B

b : B
inr(b) : A ∨B

3. ∨-elimination

z : A ∨B ` C(z) prop ` c : A ∨B x : A ` d(x) : C(inl(x)) y : B ` e(y) : C(inr(y))

D(c, (x)d(x), (y)e(y)) : C(c)

This verifies the rules for ∨ in intuitionistic natural deduction. In fact rule 3 above
is slightly stronger than the ordinary elimination rule, since it allows that C depends
on z.

We can now conclude that the BHK-interpretation verifies the ∨-rules.
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3.4 Empty Set

The empty set N0 is not supposed to have elements so there are only formation and
elimination rules.

N0-formation:

` N0 set ` N0 = N0

N0-elimination:

z : N0 ` C(z) set c : N0

R0(c) : C(c)

z : N0 ` C(z) set c = d : N0

R0(c) = R0(d) : C(c)

R0(c) is the method which is such that if c computes to a canonical element in N0,
it computes a canonical element in C(c). (Since there is no canonical elements in N0,
this promise can trivially be kept!)

3.4.1 Propositions-as-sets interpretation

Define
⊥ =def N0

and we get

⊥-formation:

⊥ prop ⊥ = ⊥ prop

⊥-elimination:

z : N0 ` C(z) prop c : ⊥
R0(c) : C(c)

z : N0 ` C(z) prop c = d : ⊥
R0(c) = R0(d) : C(c)

This interprets the ex-falso quod libet rule in intuitionistic logic.

Thus we may conclude that the BHK-interpretation verifies all the rules of intution-
istic logic.

Negation is defined in terms of ⊥ and ⊃, i.e.

¬A =def A ⊃ ⊥.

Exercises For any propositions A and B find proof constructions for the following
proposition:

1. (A ⊃ B) ⊃ (¬B ⊃ ¬A).
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2. A ⊃ ¬¬A.

3. ¬¬¬A ⊃ ¬A.

4. ¬(A ∨B) ⊃ ¬A ∧ ¬B.

5. ¬A ∧ ¬B ⊃ ¬(A ∨B).

Exercises Let A be a set and x : A ` B(x) prop. Prove

1. ¬(∃x : A)B(x) true ` (∀x : A)¬B(x) true

2. (∀x : A)¬B(x) true ` ¬(∃x : A)B(x) true
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Chapter 4

Simple inductive types

4.1 Finite Sets

For each natural number k we introduce a set Nk that is to consist of the k elements

0k, 1k, . . . , (k − 1)k.

The set Nk is sometimes called the canonical k-element set.

Nk-formation:

` Nk set ` Nk = Nk.

Nk-introduction:

` 0k : Nk ` 1k : Nk
··· ` (k − 1)k : Nk

` 0k = 0k : Nk ` 1k = 1k : Nk
··· ` (k − 1)k = (k − 1)k : Nk

Nk-elimination:

z : Nk ` C(z) set ` c : Nk ` d0 : C(0k) · · · ` dk−1 : C((k − 1)k)

` Rk(c, d0, . . . , dk−1) : C(c)

z : Nk ` C(z) set ` c = c′ : Nk ` d0 = d′0 : C(0k) · · · ` dk−1 = d′k−1 : C((k − 1)k)

` Rk(c, d0, . . . , dk−1) = Rk(c
′, d′0, . . . , d

′
k) : C(c)

Here Rk(c, d0, . . . , dk−1) is the method that calculates c to canonical form, that is
one of the constants 0k, . . . , (k−1)k, and if the result is ik, then it continues to calculate
di to canonical form. This justifies:

Nk-computation: for each i = 0, . . . , k − 1,

z : Nk ` C(z) set ` d0 : C(0k) · · · ` dk−1 : C((k − 1)k)

` Rk(ik, d0, . . . , dk−1) = di : C(ik)
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Remark 4.1.1. N0 is the empty set introduced earlier. N1 is also known as the unit
set. It can be used to interpret the propositional constant > for true. N2 may be used
to represent Boolean values for instance with ff = 02 and tt = 12 for ”false” respectively
”true”. We define

Bool =def N2

and the programming construct if-then-else:

if c then d1 else d0 =def R2(c, d0, d1). (4.1)

The following addition to type theory is useful as this stage.

a : N2

` Tr(a) set

Tr(02) = N0 Tr(12) = N1 (4.2)

This construction allows us to relate the truth value symbols of N2 to propositions. It
is in fact definable using R2 once we have access to type universes.

4.2 Natural Numbers

The natural numbers are represented in the Dedekind-Peano way using a base element
0 (zero) and a successor operation S, so that

S(S(· · ·S︸ ︷︷ ︸
n

(0) · · · ))

represents the number n.

N-formation:

` N set ` N = N

N-introduction:

` 0 : N

` a : N

` S(a) : N

` 0 = 0 : N

` a = b : N

` S(a) = S(b) : N

N-elimination:

z : N ` C(z) set ` c : N ` d : C(0) x : N, y : C(x) ` e(x, y) : C(S(x))

` R(c, d, (x, y)e(x, y)) : C(c)
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z : N ` C(z) set ` c = c′ : N ` d = d′ : C(0) x : N, y : C(x) ` e(x, y) = e′(x, y) : C(S(x))

` R(c, d, (x, y)e(x, y)) = R(c′, d′, (x, y)e′(x, y)) : C(c)

N-computation:

z : N ` C(z) set ` d : C(0) x : N, y : C(x) ` e(x, y) : C(S(x))

` R(0, d, (x, y)e(x, y)) = d : C(0)

z : N ` C(z) set ` a : N ` d : C(0) x : N, y : C(x) ` e(x, y) : C(S(x))

` R(S(a), d, (x, y)e(x, y)) = e(a,R(a, d, (x, y)e(x, y))) : C(S(a))

Remark 4.2.1. The N-elimination rule may as well be interpreted as an induction
rule:

z : N ` C(z) prop ` c : N ` C(0) true x : N, C(x) true ` C(S(x)) true

` C(c) true

Example 4.2.2. Addition of natural numbers may be defined using recursive equations

u+ 0 = u

u+ S(v) = S(u+ v).

To do this in type theory we need to find a function f(a, b) so that

u : N, v : N ` f(u, v) : N

and
u : N ` f(u, 0) = u : N (4.3)

u : N, a : N ` f(u, S(a)) = S(f(u, a)) : N (4.4)

Inspecting the N-elimination and computation rule it seems that we could possibly
achieve this with constant C(z) = N. We take u as parameter and try to define

f(u, v) =def R(v, d(u, v), (x, y)e(u, v, x, y))

for some suitable d(u, v) and e(u, v, x, y) in the rule application

Γ, z : N ` N set Γ ` v : N Γ ` d(u, v) : N Γ, x : N, y : N ` e(u, v, x, y) : N

Γ ` R(v, d(u, v), (x, y)e(u, v, x, y)) : N
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Here Γ = u : N, v : N. By substituting 0 for v and using the N-computation rule, we
have

R(0, d(u, 0), (x, y)e(u, 0, x, y))︸ ︷︷ ︸
f(u,0)

= d(u, 0) (4.5)

and substituting S(a) for v, the computation rule then gives

R(S(a), d(u, S(a)), (x, y)e(u, S(a), x, y))︸ ︷︷ ︸
f(u,S(a))

= e(u, S(a), a,R(a, d(u, S(a)), (x, y)e(u, S(a), x, y))︸ ︷︷ ︸
f(u,a)

).

(4.6)
Now (4.3) can be solved by letting

d(u, v) =def u,

and (4.4) can solved by setting

e(u, v, x, y) =def S(y)

in (4.5) and (4.6) above. We need to verify that R(v, d(u, v), (x, y)e(u, v, x, y)) =
R(v, u, (x, y)S(y)) is well typed with these definitions. Indeed we have

` N set
N−f

(appl. of weakening)

Γ, z : N ` N set
` N set · · ·
Γ ` v : N

(as.2) ` N set · · ·
Γ ` u : N

(as.1)

` N set · · ·
Γ, x : N, y : N ` y : N

(as.4)

Γ, x : N, y : N ` S(y) : N
(N−i)

Γ ` R(v, u, (x, y)S(y)) : N
(N−e)

Thus
u+ v =def f(u, v) =def R(v, u, (x, y)S(y))

is the method that adds u and v.

Exercise Multiplication, exponential and the tower operation (∗) on natural num-
bers are defined by recursive equations

u · 0 = 0

u · S(a) = u · a+ u

u0 = S(0)

uS(a) = ua · u

u ∗ 0 = S(0)

u ∗ S(a) = u(u∗a)

Modify the above construction for addition and show that these operations can be
defined in type theory.
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Example 4.2.3. We need an equality testing function eq : N → N → Bool satisfying
the recursive equations

Ap(Ap(eq, 0), 0) = tt
Ap(Ap(eq, 0), S(y)) = ff
Ap(Ap(eq, S(x)), 0) = ff
Ap(Ap(eq, S(x)), S(y)) = Ap(Ap(eq, x), y)

(4.7)

To do this we first define isz : N→ Bool by letting

isz =def (λu)R(u, tt, (x, y)ff)

Then
Ap(isz, 0) = tt and Ap(isz, S(a)) = ff

by β-equality and N-computation. This function decides whether a natural number is
zero. It is clear than if we find eq such that Ap(eq, 0) = isz then the first two equations
of (4.7) are satisfied. For any f : N→ Bool define

e(f) =def (λu)R(u,ff, (v, z)Ap(f, v))

Now if eq satisfies
Ap(eq, S(x)) = e(Ap(eq, x)) (4.8)

then the last two equations of (4.7) are also satisfied. This follows easily from β-equality
and N-computation. Our problem has now been reduced to solving the recursion equa-
tions

Ap(eq, 0) = isz
Ap(eq, S(x)) = e(Ap(eq, x))

(4.9)

Let eq =def (λn)R(n, isz, (x, f)e(f))). Then by β-equality and N-computation

Ap(eq, 0) = isz

Ap(eq, S(x)) = R(S(x), isz, (x, f)e(f))) = e(R(x, isz, (x, f)e(f))) = e(Ap(eq, x))

If we expand all the definitions above we obtain

eq =def (λn)R(n, (λu)R(u, tt, (x, y)ff), (x, f)(λu)R(u,ff, (v, z)Ap(f, v))))

The predicate defined by

E(m,n) =def Tr(Ap(Ap(eq,m), n)).

may now be defined as the equality relation on natural numbers, which in view of (4.2)
and (4.7) satisfies
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` E(0, 0) true

` (∀y : N)¬E(0, S(y)) true

` (∀x : N)¬E(S(x), 0) true

` (∀x : N)(∀y : N)(E(x, y) ⊃ E(S(x), S(y))) true

` (∀x : N)(∀y : N)(E(S(x), S(y)) ⊃ E(x, y)) true

Example 4.2.4. The recursion operation R may be used to define also objects of more
complicated type. Suppose we are interested to define an operation (·)n that takes a
function f on a set A and gives the function fn which is the nth iterate of that function,
i.e. so that

Ap(fn, a) = Ap(f,Ap(f, · · ·Ap(f︸ ︷︷ ︸
n

, a) · · · )).

This satisfies the recursion equations

Ap(f 0, a) = a,

Ap(fS(n), a) = Ap(f,Ap(fn, a)).

Now fn should be an element of A→ A, so we let C(z) be constant A //A. We wish
to find d, e so that

fn =def R(n, d(n, f), (x, y)e(n, f, x, y)) : C(n)

solves the equation above. Let us make this our ”ansatz”. Now we need the second
equation here

Ap(f 0, a) =def Ap(d(0, f), a) = a : A.

Putting d(n, f) = (λx)x will solve this equality by β-equality. By N-computation we
have the first equality and we need to satisfy the second equality

Ap(fS(n), a) = Ap(e(S(n), f, n, fn), a) = Ap(f,Ap(fn, a)).

Letting e(n, f, x, y) = (λv)Ap(f,Ap(y, v)) solves this equation by the β-equality. Now
it remains to check that fn is well typed:

f : A→ A, n : N ` fn : A // A.

Let Γ = f : A→ A, n : N. It suffices to show that the following derivation tree can be
completed:

` A set ` A set
` A→ A set

(→ f)

(weakenings)

Γ, z : N ` A→ A set
· · ·

Γ ` n : N
as.1

?
Γ ` d(n, f) : A→ A

?
Γ, x : N, y : A→ A ` e(n, f, x, y) : A→ A

Γ ` R(n, d(n, f), (x, y)e(n, f, x, y)) : A→ A
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The third branch can be completed as

· · ·
x : A ` x : A

as.3

Γ ` (λx)x : A→ A
(→ i)

The fourth branch is completed as indicated (abbreviating Γ′ = Γ, x : N, y : A→ A)

· · ·
Γ′, v : A ` f : A→ A

(as.2)

· · ·
Γ′, v : A ` y : A→ A

(as.4) · · ·
Γ′, v : A ` v : A

(as.5)

Γ′, v : A ` Ap(y, v) : A
(→ e)

Γ′, v : A ` Ap(f,Ap(y, v)) : A
(→ e)

Γ′ ` (λv)Ap(f,Ap(y, v)) : A→ A
(→ i)

Exercise. It is known that the Ackermann function a : N× N // N, defined by

a(0, n) = S(n)

a(S(m), 0) = a(m,S(0))

a(S(m), S(n)) = a(m, a(S(m), n)),

grows more quickly than any primitive recursive function. Prove that it nevertheless
may be defined in type theory with the help of the recursion operator R. [Hint 1:
expand the definition of a(S(m), n) in the third line of the definition. Hint 2: define a
function b : N→ (N→ N) such that Ap(a, (m,n)) = Ap(Ap(b,m), n). The example fn

above may also be useful.]

4.3 Home Grown Example: Binary Trees

T2-formation:

` T2 set ` T2 = T2

T2-introduction:

` leaf : T2

` a : T2 ` b : T2

` branch(a, b) : T2

` leaf = leaf : T2

` a = c : T2 ` b = d : T2

` branch(a, b) = branch(c, d) : T2

T2-elimination:
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z : T2 ` C(z) set
` c : T2 ` d : C(leaf) x : T2, y : C(x), u : T2, v : C(u) ` e(x, y, u, v) : C(branch(x, u))

` TR(c, d, (x, y, u, v)e(x, y, u, v)) : C(c)

z : T2 ` C(z) set
` c = c′ : T2

` d = d′ : C(leaf)
x : T2, y : C(x), u : T2, v : C(u) ` e(x, y, u, v) = e′(x, y, u, v) : C(branch(x, u))

` TR(c, d, (x, y, u, v)e(x, y, u, v)) = TR(c′, d′, (x, y, u, v)e′(x, y, u, v)) : C(c)

T2-computation:

z : T2 ` C(z) set
` d : C(leaf) x : T2, y : C(x), u : T2, v : C(u) ` e(x, y, u, v) : C(branch(x, u))

` TR(leaf, d, (x, y, u, v)e(x, y, u, v)) = d : C(leaf)

z : T2 ` C(z) set
` a : T2 ` b : T2

` d : C(leaf) x : T2, y : C(x), u : T2, v : C(u) ` e(x, y, u, v) : C(branch(x, u))

` TR(branch(a, b), d, (x, y, u, v)e(x, y, u, v)) =
e(a,TR(a, d, (x, y, u, v)e(x, y, u, v)), b,TR(b, d, (x, y, u, v)e(x, y, u, v)))

: C(branch(a, b))

Exercise. Using TR define count such that z : T2 ` count(z) : N and

` count(leaf) = S(0) : N

a : T2, b : T2 ` count(branch(a, b)) = count(branch(a)) + count(branch(b)) : N.
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Chapter 5

Type Theory in the Proof Assistant
Coq

Proof assistants are computer programs that check and help construct formal mathe-
matical proofs, often in an interactive way. The first to use dependent type theory was
AUTOMATH (1968), but was using classical logic. Some later proof assistant based on
constructive dependent type theory are Nuprl, Coq, LEGO, Alf and Agda. The proof
assistant Coq (1988-) uses several variants of dependent type theory as its background
theories. One theory is pCiC, predicative calculus of constructions, which may be re-
garded as an extension of Martin-Löf type theory. All the theories are expressed using
the GALLINA specification language.

The basic part of pCiC builds up all its sets (types) using the (generalized cartesian)
product construction and various inductive set constructions. We examine here how
the type theory of previous chapters is expressed in Coq.

That a : A is expressed is Coq as a: A. We use this special font (teletype) for
syntax in Coq. That A is a set is expressed in Coq by A : Set, i.e. that A is an
element of Set. Set is in turn an element of Type. The equality judgements are hidden
in Coq’s proof engine and will not be visible. The set formation judgement will be
treated as membership judgement.

The proofs in Coq are usually built in the fashion indicated in Chapter 3 starting
from the goal and working backwards to the axioms or assumptions. This is done using
commands called tactics. We shall below revisit some the examples of previous chapters
and show how to do them in Coq.

5.1 The product construction

The generalized cartesian product (Πx : A)B is in Coq written (forall x:A, B).
Application of a function to an element is written f a instead of Ap(f, a). Repeated
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application Ap(Ap(f, a), b) is written as f a b etc. The notation for function abstrac-
tion is also different: (λx)b is written (fun x => b) or if the type of x is included (fun

x:A => b). The function set A→ B is written as A -> B.

Revisiting some examples. We may formulate the last result from Example 3.1.2 by
submitting the following to the Coq system (CoqIde). First we declare some variables
to be sets in the section named Example

Section Example.

Variable A B C:Set.

and then enter

Theorem Contra: (A -> B) ->((B -> C) -> (A -> C)).

This generates a goal to prove

(A -> B) -> (B -> C) -> A -> C

under the assumptions A:Set, B:Set, C:Set. In CoqIde this is indicated as

1 subgoal

A : Set

B : Set

C : Set

______________________________________(1/1)

(A -> B) -> (B -> C) -> A -> C

in the goal window. Above the line is the present context. Giving the command to use
an introduction rule to obtain the goal, where the new assumption is called x:

intro x.

yields the new goal:

1 subgoal

A : Set

B : Set

C : Set

x : A -> B

______________________________________(1/1)

(B -> C) -> A -> C
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Two further introduction rule applications in succession

intro y.

intro z.

gives

1 subgoal

A : Set

B : Set

C : Set

x : A -> B

y : B -> C

z : A

______________________________________(1/1)

C

Then we can achieve C by applying y to some proof of B

apply y.

gives the new goal B

1 subgoal

A : Set

B : Set

C : Set

x : A -> B

y : B -> C

z : A

______________________________________(1/1)

B

Then applying x to try to obtain B

apply x.

gives the new goal

1 subgoal

A : Set

B : Set

C : Set
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x : A -> B

y : B -> C

z : A

______________________________________(1/1)

A

The goal can be proved by the assumption rule

assumption.

The goal window now says: Proof completed. We save the proof by giving the com-
mand

Qed.

To print the witness, or proof construction, we type

Print Contra.

and get in the output window

Contra =

fun (x : A -> B) (y : B -> C) (z : A) => y (x z)

: (A -> B) -> (B -> C) -> A -> C

Reading this back in type theory it says

Contradef = (λx)(λy)(λz)Ap(y,Ap(x, z)) : (A→ B)→ (B → C)→ A→ C

which is just the proof construction in (3.1). If we close the section by giving the
command

End Example.

all the variables A B C are abstracted on, and we get a general proof that can applied
to any sets which is shown by printing Contra again.

Print Contra.

and get in the output window
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Contra =

fun (A B C : Set) (x : A -> B) (y : B -> C) (z : A) => y (x z)

: forall A B C : Set, (A -> B) -> (B -> C) -> A -> C

The complete proof script of the above is

Section Example.

Variable A B C:Set.

Theorem Contra:

(A-> B) -> ((B -> C) -> (A -> C)).

intro x.

intro y.

intro z.

apply y.

apply x.

assumption.

Qed.

Print Contra.

End Example.

Print Contra.

Example 3.1.3 may be solved quickly using the script

Section Example2.

Variable A B:Set.

Variable R:A -> B -> Set.

Theorem Switch:

(forall x:A, (forall y: B, R x y))

->

(forall y:B, (forall x: A, R x y)).

intros p y x.

apply p.

Qed.

Print Switch.

End Example2.
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The command intros p y x makes three (named) intros in one go. After this the
goal window displays:

1 subgoal

A : Set

B : Set

R : A -> B -> Set

p : forall (x : A) (y : B), R x y

x : B

y : A

______________________________________(1/1)

R y x

Note the abbreviated expression for the product type after p. The command apply p

now finishes the proof by applying p to y and x in succession. The proof printed at the
end is

Switch =

fun (p : forall (x : A) (y : B), R x y) (x : B) (y : A) => p y x

: (forall (x : A) (y : B), R x y) -> forall (y : B) (x : A), R x y

Translated back to M-L type theory this just the conclusion of (3.3).

All other sets introduced in the last two chapter are inductive types or sets in Coq
terminology, as we shall see in the next section.

5.2 Inductive sets

5.2.1 Finite sets and binary disjoint union

We may define each of the sets Nk of Section 4.1 using the construction Inductive.

Inductive N 2: Set := zero 2 : N 2 | one 2 : N 2. (5.1)

This command defines an inductive set N 2 having two constructors zero 2 and one 2.
In the output window we see

N_2 is defined

N_2_rect is defined

N_2_ind is defined

N_2_rec is defined

In addition a number of elimination rules have been generated automatically from the
introduction rule (5.1). The one of interest to us can be displayed with
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Print N_2_rect.

which gives the output:

N_2_rect =

fun (P : N_2 -> Type) (f : P zero_2) (f0 : P one_2) (n : N_2) =>

match n as n0 return (P n0) with

| zero_2 => f

| one_2 => f0

end

: forall P : N_2 -> Type,

P zero_2 -> P one_2 -> forall n : N_2, P n

N 2 rec narrows down N 2 rect to families in Set.

In fact a two element set (bool) is already defined and used in the standard library of
Coq

Inductive bool : Set := true : bool | false : bool.

The empty set is defined by

Inductive N_0: Set := .

Note that there are no constructors in this set.

Binary disjoint union. The +- construction is already defined in the standard library
as sum, but we shall here define a copy of it sum’ to be able to investigate it closer.

Inductive sum’ (A B:Set):Set :=

inl’: A -> sum’ A B | inr’: B -> sum’ A B.

Here inl’ and inr’ are the two constructors which forms the canonical elements in
sum’ A B from elements in A and B respectively.

To follow M-L type theory closely we can define the elimination operator
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Definition D (A B : Set)(C: sum’ A B -> Set)

(c: sum’ A B)

(d: (forall x:A, C (inl’ A B x)))

(e: (forall y:B, C (inr’ A B y))): C c :=

match c as c0 return C c0 with

| inl’ x => d x

| inr’ y => e y

end.

The defining part agrees well with the meaning explanation of +-elimination in above
in Chapter 3. It computes the main argument c to canonical form c 0 which is matched
against the possible canonical forms inl’ x and inr’ y. Depending on which it is d

x or e y is returned in the set C c 0.
One can check that D defined here is essentially a notational variant of the automat-

ically generated elimination operator sum’ rect.

5.2.2 Sigma-sets

The Σ-set has just one constructor, the pairing operation Spair:

Inductive Sigma (A:Set)(B:A -> Set) : Set :=

Spair : forall a : A, B a -> Sigma A B

The elimination operator is then defined guided by the meaning explanation, which
is again a notational variant of the automatically generated eliminator (Sigma rect).

Definition E (A:Set)(B:A -> Set)

(C: Sigma A B -> Set)

(c: Sigma A B)

(d: (forall x:A, forall y:B x,

C (Spair A B x y))): C c :=

match c as c0 return (C c0) with

| Spair a b => d a b

end.

Remark 5.2.1. The library version of Sigma is called sigT. The non-dependent Sigma
is in the library under the name prod.

5.2.3 Natural numbers and recursively inductive sets

The natural numbers are recursively inductively defined
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Inductive N:Set := zero: N | succ : N -> N.

Remark 5.2.2. The library version of N is called nat

The elimination operator R is defined using the fixed point construction of Coq which
enables (well-founded) recursive definitions. Here a function in (forall n:N, C n) is
defined.

Definition R

(C:N -> Set)

(d: C zero)

(e: (forall x:N, C x -> C (succ x))): (forall n:N, C n) :=

fix F (n: N): C n :=

match n as n0 return (C n0) with

| zero => d

| succ n0 => e n0 (F n0)

end.

The addition function of Example 4.2.2 may now be defined

Definition add (m n:N) : N :=

R (fun z=> N) m (fun x y => succ y) n.

We see how it works by adding the numbers 2 and 2:

Eval compute in

add (succ (succ zero)) (succ (succ zero)).

This is displayed in the output window

= succ (succ (succ (succ zero))) : N

The equality testing function of Example 4.2.3 may be defined as

Definition eq (m : N): N -> bool :=

R (fun z=> N -> bool)

(fun u => R (fun z: N => bool)

true (fun x y => false) u)

(fun x f =>

(fun u => R (fun z:N => bool)

false (fun v z => f v) u))

m.

60



Trying it out with

Eval compute in

eq zero (succ zero).

yields

= false : bool.

Remark 5.2.3. A more direct definition of the equality tester may be given in Coq as
follows

Definition eq’: N -> N -> bool :=

fix F (m :N)(n: N) : bool :=

match m as m0 with

| zero => match n as n0 with

| zero => true

| succ n0 => false

end

| succ m0 => match n as n0 with

| zero => false

| succ n0 => F m0 n0

end

end.

The binary tree set of Section 4.3 can be rendered as an inductive set in Coq

Inductive T2:Set := leaf: T2 | branch : T2 -> T2 -> T2.

The automatically generated elimination operator is interesting to compare to TR of
Section 4.3:

T2_rect =

fun (P : T2 -> Type) (f : P leaf)

(f0 : forall t : T2, P t -> forall t0 : T2, P t0 -> P (branch t t0)) =>

fix F (t : T2) : P t :=

match t as t0 return (P t0) with

| leaf => f

| branch t0 t1 => f0 t0 (F t0) t1 (F t1)

end

: forall P : T2 -> Type,

P leaf ->

(forall t : T2, P t -> forall t0 : T2, P t0 -> P (branch t t0)) ->

forall t : T2, P t
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A common feature of the inductive sets considered above is that they are all of the
form

Inductive newsetname [ possibly some parameters] : Set :=

constructor1 : someset_1

| constructor2 : someset_2

...

| constructorN : someset_N.

there are some positivity conditions on the types somesetk in that possible recursive
invocations of newsetname must occur only strictly positive. More about this in later
chapters. See Reference Manual.
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Chapter 6

Identity Types and Equality

6.1 Equivalence Relations

According to the proposition-as-sets principle a binary relation R on a set A is the same
as a family of sets

R(x, y) set (x : A, y : A)

The relation is reflexive if
(∀x : A)R(x, x) true

It is symmetric if
(∀x, y : A)(R(x, y) ⊃ R(y, x)) true.

We call it transitive if

(∀x, y, z : A)(R(x, y) ⊃ R(y, z) ⊃ R(x, z)) true.

As usual an equivalence relation is a binary relation which satisfies all these conditions.
A set A together with an equivalence relation =A on A is called a setoid or a Bishop1

set. If (A,=A) and (B,=B) are setoids, a function f : A //B is called extensional if

(∀x, y : A)(x =A y ⊃ Ap(f, x) =B Ap(f, y)) true.

A binary relation R is smaller than the binary relation S on A if

(∀x, y : A)(R(x, y) ⊃ S(x, y)) true.

Theorem 6.1.1. Suppose that R is a reflexive binary relation on A which is smaller
than any reflexive binary relation S on A. Then

(i) R is an equivalence relation.

1after Errett Bishop
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(ii) for any set B, any equivalence relation =B on B, and any function f : A → B,
the function f : (A,R)→ (B,=B) is extensional.

Proof. Part (i): The following relation is easily seen to be reflexive

S(x, y) =def R(y, x).

Hence by the minimality property of R

(∀x, y : A)(R(x, y) ⊃ S(x, y)) true.

i.e.
(∀x, y : A)(R(x, y) ⊃ R(y, x)) true.

so R is symmetric. Similarly noting that the relation

T (x, y) =def (∀z : A)(R(y, z) ⊃ R(x, z)).

is reflexive gives

(∀x, y : A)(R(x, y) ⊃ (∀z : A)(R(y, z) ⊃ R(x, z))) true.

which is a logically equivalent to definition of transitivity (check!).

Part (ii): To prove extensionality we need only to note that

F (x, y) =def (Ap(f, x) =B Ap(f, y))

defines a reflexive relation on A. Hence by minimality

(∀x, y : A)(R(x, y) ⊃ Ap(f, x) =B Ap(f, y)) true,

which proves the extensionality of f .

6.2 Identity Types

Martin-Löf type theory has also a standard propositional equality for each set, given
by the so-called identity type construction. This gives a smallest equivalence relation
on each set A (identifying fewest elements).

I-formation:

` A set ` a : A ` b : A
` I(A, a, b) set

` A set ` a = c : A ` b = d : A
` I(A, a, b) = I(A, c, d)
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I-introduction:

` a : A
` r(a) : I(A, a, a)

` a = b : A
` r(a) = r(b) : I(A, a, a)

I-elimination:

x : A, y : A, z : I(A, x, y) ` C(x, y, z) set
` a : A ` b : A ` c : I(A, a, b) x : A ` d(x) : C(x, x, r(x))

` J(c, (x)d(x)) : C(a, b, c)

x : A, y : A, z : I(A, x, y) ` C(x, y, z) set
` a = a′ : A ` b = b′ : A ` c = c′ : I(A, a, b) x : A ` d(x) = d′(x) : C(x, x, r(x))

` J(c, (x)d(x)) = J(c′, (x)d′(x)) : C(a, b, c)

I-computation:

x : A, y : A, z : I(A, x, y) ` C(x, y, z) set ` a : A x : A ` d(x) : C(x, x, r(x))

` J(r(a), (x)d(x)) = d(a) : C(a, a, r(a))

We have immediately the following relation between the judgemental equality of
elements and the propositional equality given by the I-types.

Proposition 6.2.1. If Γ ` a = b : A, then Γ ` r(a) : I(A, a, b).

Proof. Suppose a = b : A. We have a = a : A, so by I-formation equality

I(A, a, a) = I(A, a, b).

Now since r(a) : I(A, a, a), the set-equality rule gives r(a) : I(A, a, b) as required.

Remark 6.2.2. Unlike in (Martin-Löf 1984) we assume no axioms that for drawing
the conclusion Γ ` a = b : A from Γ ` c : I(A, a, b). The theory of that book is called
extensional type theory, while we are presenting the nowadays standard intensional type
theory as in (Nordström et al. 1990).

Theorem 6.2.3. For any A, the relation I(A, ·, ·) is the smallest reflexive relation on
A.

Proof. This is immediate from the I-elimination rule. Suppose that

x, y : A ` R(x, y) set

and
` p : (∀x : A)R(x, x).
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We let C(x, y, z) =def R(x, y) and d(x) =def Ap(p, x). Then applying I-elimination in
the context Γ = u : A, v : A,w : I(A, u, v) we get

...
Γ ` u : A

...
Γ ` v : A

...
Γ ` w : I(A, u, v)

Γ ` p : (∀x : A)R(x, x)
...

Γ ` x : A

Γ, x : A ` Ap(p, x) : R(x, x))
Πe

Γ ` J(w, (x)Ap(p, x)) : R(u, v)
Ie

Thus by applications of Π-introduction we get

(∀u, v : A)(I(A, u, v) ⊃ R(u, v)) true

as required.

Corollary 6.2.4. For any sets A,B, any equivalence relation =B on B, and any func-
tion f : A→ B, the function f : (A, I(A, ·, ·))→ (B,=B) is extensional. In particular,
f : (A, I(A, ·, ·))→ (B, I(B, ·, ·)) is extensional.

Proposition 6.2.5. (Peano’s third axiom)

(∀x, y : N)(I(N, S(x), S(y)) ⊃ I(N, x, y)) true.

Proof. Define the function

pd =def (λu)R(u, 0, (x, y)x) : N→ N.

Note that
Ap(pd, S(a)) = R(S(a), 0, (x, y)x) = a. (6.1)

Suppose I(N, S(x), S(y)) holds. Then by the extensionality of pd provided by Corollary
6.2.4, we get

I(N,Ap(pd, S(x)),Ap(pd, S(y))) true.

and hence by (6.1)
I(N, x, y) true

as required.

The I-equality on N is in fact the same as the equality given by the equality tester
eq and Tr

Lemma 6.2.6. For all x, y : N

I(N, x, y)↔ Tr(eq(x, y)).
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Proof. Since Tr(eq(x, x)) holds for all x : N the direction (⊃) follows from Theorem
6.2.3. It remains to prove

(∀x, y : N)(Tr(eq(x, y)) ⊃ I(N, x, y)) true

This is proved by induction on x and then y. For x = 0, it follows readily since
Tr(eq(0, 0)) = N1 and r(0) : I(N, 0, 0), and since Tr(eq(0, S(u))) = N0 = ⊥. Suppose as
inductive hypothesis

(∀y : N)(Tr(eq(x, y)) ⊃ I(N, x, y)) true. (6.2)

We show that
(∀y : N)(Tr(eq(S(x), y)) ⊃ I(N, S(x), y)) true.

by induction on y. For y = 0, this is trivial by ⊥-elimination since Tr(eq(S(x), 0)) =
⊥. Assume Tr(eq(S(x), S(u))). But eq(S(x), S(u)) = eq(x, u) so Tr(eq(x, u)). Hence
by (6.2) I(N, x, u). Then using the function (λx)S(x) we get by Corollary 6.2.4 that
I(N,Ap((λx)S(x), x),Ap((λx)S(x), u)) holds. But by β-equality this the same as that
I(N, S(x), S(u)) holds, as required.

Corollary 6.2.7. (Peano’s fourth axiom)

(∀x : N)¬I(N, S(x), 0) true.

Proof. Suppose x : N and p : I(N, S(x), 0). Then by the Lemma 6.2.6, Tr(eq(S(x), 0))
is true. But by the definition of eq we have the set equality Tr(eq(S(x), 0)) = ⊥. Hence
⊥ is true. We have shown ¬I(N, S(x), 0) is true.

6.3 Axiom of Choice and Related Principles

Recall that the type-theoretic axiom of choice is provable in type theory.

Theorem 6.3.1. (Type-theoretic axiom of choice.) For any sets S and T , and any
relation R(x, y) set (x : S, y : T ) we have

(∀x : S)(∃y : T )R(x, y) ⊃ (∃f : S → T )(∀x : S)R(x,Ap(f, x)) true (6.3)

Proof. See Martin-Löf (1984).

This version of the axiom of choice is much weaker in type theory than in ordinary
set theory, since there are no quotient types. Quotients may however be simulated using
setoids, and accordingly the axiom of choice may be reformulated using setoids. Suppose
that (S,=S) and (T,=T ) are setoids and that the relation R(x, y) set (x : S, y : T ) is
extensional with respect to these setoids, that is

(∀x, u : S)(∀y, v : T )[R(x, y) ∧ x =S u ∧ y =T v ⊃ R(u, v)].

What could be called Zermelo’s axiom of choice (AC) (Martin-Löf 2004) is then fol-
lowing:
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(AC) If (∀x : S)(∃y : T )R(x, y), then there is an extensional function f :
(S,=S) // (T,=T ) such that (∀x : S)R(x,Ap(f, x)).

This axiom is known to be non-constructive in general — it implies PEM (Diaconescu’s
theorem). However special cases of (AC) are provable in type theory, for instance when
(S,=S) is (S, I(S, ·, ·)).

Theorem 6.3.2. Let R(x, y) set (x : S, y : T ) be a relation, which need not be exten-
sional with respect to the setoids (S,=S) and (T,=T ). If (∀x : S)(∃y : T )R(x, y),
then there is an extensional function f : (S, I(S, ·, ·)) → (T,=T ) such that (∀x :
S)R(x,Ap(f, x)).

Proof. By Theorem 6.3.1 we get a function f : S → T such that (∀x : S)R(x,Ap(f, x)).
Now by Corollary 6.2.4 f is in fact extensional.

Another important form of choice is the Axiom of Unique Choice, which is also
provable in type theory. It relates extensional functions to total functional relations.

Theorem 6.3.3. (Axiom of Unique Choice) Let R(x, y) set (x : S, y : T ) be a relation
which is extensional with respect to (S,=S) and (T,=T ). If for each x : S, there exists a
unique y : T , up to =T equality, such that R(x, y), then there is an extensional function
f : (S,=S) // (T,=T ) such that (∀x : S)R(x,Ap(f, x)).

Proof. By Theorem 6.3.1 we have a function f : S → T such that (∀x : S)R(x,Ap(f, x)).
We show that it is extensional. Suppose x =S u. ThusR(x,Ap(f, x)) andR(u,Ap(f, u)).
By the extensionality of R in the first argument we get R(x,Ap(f, u)). By the unique-
ness assumption Ap(f, x) =T Ap(f, u). Hence f is extensional.

Exercise. Prove constructively the Dependent Choice Axiom in the form: for every
set A and every binary relation R on A,

(∀x : A)(∃y : A)R(x, y) ⊃
(∀x : A)(∃f : N→ A)I(A,Ap(f, 0), x) ∧ (∀n : N)R(Ap(f, n),Ap(f, S(n))).

6.4 Decidable identity

Identity of A is decidable if

(∀x, y : A)(I(A, x, y) ∨ ¬I(A, x, y)) true

Theorem 6.4.1. Identity of Nk is decidable, for each k.
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Proof. We prove this for k = 2 and leave the remaining cases as exercises. By N2-
elimination on x it is enough to prove the case where x = 02 and x = 12

(∀y : N2)(I(N2, 02, y) ∨ ¬I(N2, 02, y)) true (6.4)

(∀y : N2)(I(N2, 12, y) ∨ ¬I(N2, 12, y)) true (6.5)

To prove (6.4) it is by another N2-elimination on y enough to prove

I(N2, 02, 02) ∨ ¬I(N2, 02, 02)) true (6.6)

and
I(N2, 02, 12) ∨ ¬I(N2, 02, 12) true. (6.7)

Now r(02) : I(N2, 02, 02), so (6.6) follows by +-introduction. We prove (6.7) using
I-elimination. Let C(x, y, z) = Tr(y) ⊃ Tr(x) for x, y : N2, z : I(N2, x, y). Then
(λu)u : C(x, x, r(x)) for any x : N2. Suppose c : I(N2, 02, 12). Then by I-elimination,

J(c, (x)(λu)u) : C(02, 12, c).

Thus using the set equalities

C(02, 12, c) = (Tr(12) ⊃ Tr(02)) = (N1 ⊃ ⊥)

we get
J(c, (x)(λu)u) : N1 ⊃ ⊥.

But 01 : N1, so Ap(J(c, (x)(λu)u), 01) : ⊥. Hence (λc)Ap(J(c, (x)(λu)u), 01) : ¬I(N2, 02, 12).
An application of +-introduction the yields (6.7).

This establishes (6.4). The proof of (6.5) is similar, taking instead C(x, y, z) =
Tr(x) ⊃ Tr(y).

Theorem 6.4.2. Identity of N is decidable.

Proof. This follows by Theorem 6.4.1 and Lemma 6.2.6 and intuitionistic logic.

6.4.1 Decidable predicates and characteristic functions

Let A be a set. A family of sets P (x) (x : A) may be regarded as a predicate on A. We
say that it is a decidable predicate if

(∀x : A)(P (x) ∨ ¬P (x)) true.

In this case we have

(∀x : A)(∃y : N2)(P (x) ∧ I(N2, y, 12) ∨ ¬P (x) ∧ I(N2, y, 02)) true.
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By the type-theoretic axiom of choice there is f : A→ N2 such that

(∀x : A)(P (x) ∧ I(N2,Ap(f, x), 12) ∨ ¬P (x) ∧ I(N2,Ap(f, x), 02)) true.

Thus it follows by intuitionistic logic

(∀x : A)(P (x)↔ I(N2,Ap(f, x), 12)).

We have thus obtained a characteristic function for the predicate, which is computable
as well.

6.5 Peano Arithmetic and Heyting Arithmetic

In the course of the previous chapters and sections it turns out that we have verified
the axioms of Peano Arithmetic with intuitionistic logic, commonly called Heyting
Arithmetic. In summary we have

(1a) a+ 0 = a : N

(1b) a+ S(b) = S(a+ b) : N (where a+ b =def R(b, a, (x, y)S(y)).)

(2a) a · 0 = 0 : N

(2b) a · S(b) = a · b+ a : N (where a · b =def R(b, 0, (x, y)y + a).)

(3) I(N, S(a), S(b)) ⊃ I(N, a, b) true

(4) ¬I(N, S(a), 0) true

(5) For any predicate P (x) on N,

P (0) ⊃ (∀x : N)(P (x) ⊃ P (S(x))) ⊃ (∀x : N)P (x) true.

Note that for the axioms (1a,1b,2a,2b) we have the stronger judgmental equalities.
They imply according to Proposition 6.2.1 the corresponding propostional equality, e.g.

(1a’) I(N, a+ 0, a) true

and so on.

The coding power of Peano and Heyting arithmetic is known to be enormous with
respect to finite structures. An early witness of this is Gödel’s incompleteness theorem
(1931) which relies on the possibility of those systems to code proofs in any axioma-
tizable formal system. However for practical work in proof assistants such as Coq it
is usually far more convenient to explicitly define the finite structures required using
inductive types.
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6.5.1 Exercises

1. Prove using Peano’s axioms and intuitionistic logic that

(∀xy : N)(I(N, x, y) ∨ ¬I(N, x, y)) true

How can you use the proof construction to decide whether two numbers are equal
or not?

2. Write 1 = S(0) and 2 = S(1). Define multiplication by

m · n =def R(n, 0, (x, y)y +m).

Prove
(∀x : N)(∃y : N)(I(N, 2 · y, x) ∨ I(N, 2 · y + 1, x))

What does your proof construction do?

3. We have defined a+ b =R (b, 0, (x, y)S(y)) so by the N-computation rules we have
the definitional equalities x + 0 = x : N (x : N) and x + S(y) = S(x + y) : N
(x, y : N). However, we do not have 0 + x = x : N (x : N). For this we need the
propositional equality given by the I-type. Prove that the following are true:

(a) (∀x : N)I(N, 0 + x, x)

(b) (∀x, y : N)I(N, S(x) + y, S(x+ y))

(c) (∀x, y : N)I(N, x+ y, y + x)

4. Prove that (∀x, y, z : N)I(N, (x+ y) + z, x+ (y + z)) holds.

5. The predecessor function

pd =def (λu)R(u, 0, (x, y)x) : N→ N.

satisfies the following equations definitionally Ap(pd, 0) = 0 and Ap(pd, S(a)) =
a. The modified subtraction function a .− b (a monus b) is given by the term
R(b, a, (x, y)Ap(pd, y)). Prove that

(a) (∀x : N)I(N, x .− 0, x)

(b) (∀x : N)I(N, 0 .− S(x), 0)

(c) (∀x, y : N)I(N, S(x) .− S(y), x .− y)
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6.6 Alternative elimination rule for identity types

We present an alternative elimination rule due to Christine Pauline (1992). We may
view this as say that for a fixed a : A the predicate

I(A, a, x) (x : A)

is the smallest predicate P (x) on A for which P (a) holds. That is if P (a) and I(A, a, b)
holds, then P (b). As in the usual elimination rule P can be generalized to depend on
the proof object of I(A, a, x) as well.

I-elimination (variant)

` a : A
x : A, z : I(A, a, x) ` C(x, z) set
` b : A ` c : I(A, a, b) ` d : C(a, r(a))

Jpa(c, (x)d(x)) : C(b, c)

` a = a′ : A
x : A, z : I(A, a, x) ` C(x, z) set
` b = b′ : A ` c = c′ : I(A, a, b) ` d = d′ : C(a, r(a))

Jpa(c, d) = Jpa′(c
′, d′) : C(b, c)

I-computation (variant):

` a : A x : A, z : I(A, a, x) ` C(x, z) set ` d : C(a, r(a))

Jpa(r(a), d) = d : C(b, c)
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Chapter 7

Order and induction

7.1

Let ≺ be a binary relation on a set A, i.e. x ≺ y set (x, y : A). We say that a predicate
P (x) set (x : A) is progressive with respect to (A,≺) if

(∀a : A)((∀b : A)(b ≺ a ⊃ P (b)) ⊃ P (a)) true.

The binary relation (A,≺) is called well founded if for every progressive predicate P on
A, (∀x : A)P (x). Now this property states that there is an induction principle on the
set (A,≺).

Proposition 7.1.1. If ≺ is a well founded relation on A, then ¬x ≺ x for every x : A

Proof. Let P (x) =def ¬x ≺ x. It suffices to show that P is progressive. Assume

(∀b : A)(b ≺ a ⊃ ¬b ≺ b). (7.1)

To prove ¬a ≺ a assume a ≺ a. Letting b = a in (7.1) gives ¬a ≺ a which is a
contradiction. Hence ¬a ≺ a as required.

More generally, we have

Theorem 7.1.2. If ≺ is a well founded relation on A, then there is no f : N→ A such
that for all n : N, Ap(f, S(n)) ≺ Ap(f, n).

Proof. We prove that for each z : A

¬(∃f : N→ A)I(A,Ap(f, 0), z) ∧ (∀n : N)Ap(f, S(n)) ≺ Ap(f, n)

by showing that this property P (z) is progressive. Assume that

(∀y : A)(y ≺ z ⊃ P (y)) true (7.2)
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Assume for contradiction that f : N→ A is such that I(A,Ap(f, 0), z) and for all n : N ,
Ap(f, S(n)) ≺ Ap(f, n). By (7.2) we have P (Ap(f, S(0))) since Ap(f, S(0)) ≺ z. Let
g(n) = f(S(n)). Then clearly

I(A,Ap(g, 0),Ap(f, S(0))) ∧ (∀n : N)Ap(g, S(n)) ≺ Ap(g, n),

which is in contradiction to P (Ap(f, S(0))).

The converse to the theorem is in generally true only classically.

Remark 7.1.3. In the classical set theory ZF the Regularity Axiom may equivalently
be replaced by the Set Induction Axiom saying that ∈ is well-founded.

Let us show that the standard strict order relation on natural numbers is well
founded. Define the relation < on N by

x < y =def (∃z : N)I(N, x+ S(z), y).

Lemma 7.1.4. For all x, y : N,

x < S(y) ⊃ x < y ∨ I(N, x, y).

Proof. Suppose x < S(y). Hence there is z : N with

I(N, x+ S(z), S(y)).

Hence by (Peano 1b and 3)
I(N, x+ z, y). (7.3)

Define a predicate

Q(u) =def (I(N, x+ u, y) ⊃ x < y ∨ I(N, x, y)).

It is enough to show Q(z). We prove this by induction on z. To see Q(0), note that
if I(N, x + 0, y) holds then I(N, x, y) is true by (Peano 1a). Hence x < y ∨ I(N, x, y)
We prove Q(S(v)): suppose I(N, x+ S(v), y). This gives by definition x < y and hence
x < y ∨ I(N, x, y) also in this case. Now (Peano 5) gives Q(z) and by (7.3) we get
x < y ∨ I(N, x, y) as required.

Proposition 7.1.5. (N, <) is well founded.

Proof. Suppose that P (x) set (x : N) is a progressive predicate on N. Define

Q(x) =def (∀y : N)(y < x ⊃ P (y)).

It suffices to prove (∀x : N)Q(x), since then for any x : N we have x < S(x), and so
P (x). Now we may prove (∀z : N)Q(z) using (Peano 5). Q(0) follows by (Peano 4).
The inductive step (∀x : N)(Q(x) ⊃ Q(S(x)) follows by Lemma 7.1.4 and (Peano 1a
and 1b). We leave the details to the reader.
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This corresponds to so-called complete induction on N.

Recall some standard order-theoretic concepts: A binary relation≺ on A is transitive
if x ≺ y and y ≺ z implies x ≺ z. A transitive order ≺ is a linear order, if for all x, y : A,

x ≺ y ∨ I(A, x, y) ∨ y ≺ x.

If the relation ≺ is extensional with respect to an equivalence relation =A we require
only that for all x, y : A,

x ≺ y ∨ x =A y ∨ y ≺ x

for ≺ being linear with respect to =A.
A well founded linear order is called a well-order.

Lemma 7.1.6. (N, <) is a linear order.

Proof. We prove that < is transitive. Suppose x < y and y < z. Thus there are u, v :
such that

I(N, x+ S(u), y) true I(N, y + S(v), z) true.

By I-elimination this gives

I(N, (x+ S(u)) + S(v), z) true

Now associativity of + (Exercise) and (Peano 1b) gives

I(N, x+ S(S(u) + v), z) true

Thus x < z.
To prove that < is linear is an exercise.

Theorem 7.1.7. (N, <) is a well-order.

Proof. This follows by Proposition 7.1.5 and Lemma 7.1.6

7.1.1 Construction of orders

A new well-order may be built by juxtaposing two well-orders. If (A1,≺1) and (A2,≺2)
are two sets with relations, then we can form the juxtaposition of these (A1 +A2,≺1,2)
where we define:

inl(a) ≺1,2 inl(b) ⇔ a ≺1 b

inl(a) ≺1,2 inr(b) ⇔ >
inr(b) ≺1,2 inl(a) ⇔ ⊥
inr(a) ≺1,2 inr(b) ⇔ a ≺2 b
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Formally in type theory we define the type

(x ≺1,2 y) =def (∃a, b : A1)(I(A1 + A2, x, inl(a)) ∧ I(A1 + A2, y, inl(b)) ∧ a ≺1 b)

∨ (∃a : A1)(∃b : A2)(I(A1 + A2, x, inl(a)) ∧ I(A1 + A2, y, inr(b)))

∨ (∃a, b : A2)(I(A1 + A2, x, inr(a)) ∧ I(A1 + A2, y, inr(b)) ∧ a ≺2 b).

Theorem 7.1.8. If (A1,≺1) and (A2,≺2) are well-orders, so is (A1 + A2,≺1,2).

Another possibility for constructing a new well-order is by lexico-graphic combina-
tion. If (A1,≺1) and (A2,≺2) are two sets with relations, we can form (A1 × A2,≺1,2)
by

(a, b) ≺1,2 (c, d)⇔ a ≺1 c ∨ I(A1, a, c) ∧ b ≺2 d.

Theorem 7.1.9. If (A1,≺1) and (A2,≺2) are well-orders, so is (A1 × A2,≺1,2).

In general it is difficult to construct large linearly ordered sets without classical logic,
so the standard notion of ordinal becomes less powerful in constructive mathematics.
See however (Mines et al. 1988, p. 24).

For a binary relation R on A define its transitive closure R+ by

R+(x, y) =def(∃n : N)(∃f : N→ A)I(A,Ap(f, 0), x) ∧ I(A,Ap(f, S(n)), y)

∧ (∀k : N)(k < S(n) ⊃ R(Ap(f, k),Ap(f, S(k)))
(7.4)

Theorem 7.1.10. For any binary relation R on A, R+ is transitive and

(∀x, y : A)(R(x, y) ⊃ R+(x, y)) true.

If Q is a transitive relation on A with

(∀x, y : A)(R(x, y) ⊃ Q(x, y)) true

then
(∀x, y : A)(R+(x, y) ⊃ Q(x, y)) true

Proof. R+ is transitive. Suppose that R+(x, y) and R+(y, z) are witnessed by n, f and
m, g in (7.4) respectively. We claim that R+ is witnessed by n + m and by some h
such that I(h(k), f(k)) for k < S(n) and I(h(k), g(k .− S(n)) for I(k, S(n)) or k > S(n).
Details are left to the reader.

Suppose Q is a transitive relation on A with (∀x, y : A)(R(x, y) ⊃ Q(x, y)) true.
Suppose that n, f are witnesses to R+(x, y). Thus

(∀k : N)(k < S(n) ⊃ Q(Ap(f, k),Ap(f, S(k)))

where I(A,Ap(f, 0), x) and I(A,Ap(f, S(n)), y) holds. Using the transitivity of Q it
follows by induction that Q(x, y). Details are left to the reader.
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Corollary 7.1.11. Let R be binary relation on A. Then for all x, y : A

R+(x, y)⇐⇒ R(x, y) ∨ (∃z : A)R+(x, z) ∧R(z, y).

Proof. The direction (⇐) follows since R is included in R+ and since R+ transitive.
To prove the direction (⇒) we use the universal property of R+ established in

Theorem 7.1.10. Define

Q(x, y) =def R(x, y) ∨ (∃z : A)R+(x, z) ∧R(z, y).

Clearly R is included in Q. It suffices to show that Q is transitive, and then apply the
theorem. Suppose Q(x, y) and Q(y, w). Thus we have the following possibilities for
some z1 and z2:

1. R(x, y) ∧R(y, w)

2. R(x, y) ∧R+(y, z2) ∧R(z2, w)

3. R+(x, z1) ∧R(z1, y) ∧R(y, w)

4. R+(x, z1) ∧R(z1, y) ∧R+(y, z2) ∧R(z2, w)

Then using that R is included in R+ and R+ is transitive, we get in each of these cases
some z with R+(x, z) and R(z, w). Hence Q(x,w).

Theorem 7.1.12. For any binary relation R on A, R is well-founded if and only if R+

is well founded.

Proof. Suppose R+ is well-founded. If the predicate P on A is progressive with respect
to R, then it is also progressive with respect to R+. From this follows immediately that
R is well-founded.

Suppose now that R is well-founded. Assume that P is progressive with respect to
R+. We want to show that

(∀x : A)P (x). (7.5)

Consider the following predicate on A

S(x) =def (∀y : A)(R+(y, x) ⊃ P (y)) (7.6)

We claim that
(∀x : A)S(x). (7.7)

From this follows (7.5) immediately since P is progressive with respect to R+. We can
prove the claim (7.7) by demonstrating that S is progressive with respect to R, since
R is well-founded. Let us do that. Suppose that

(∀z : A)(R(z, x) ⊃ S(z)),
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that is
(∀z : A)(R(z, x) ⊃ (∀y : A)(R+(y, z) ⊃ P (y))) (7.8)

Now as P is progressive with respect to R+ this implies

(∀z : A)(R(z, x) ⊃ P (z)) (7.9)

To finally prove S(x), suppose that R+(y, x). By Corollary 7.1.11 we have either R(y, x)
in which case P (y) holds by (7.9), or we have some z : A with R+(y, z) and R(z, x),
in which case (7.8) also gives P (y). Hence S(x) holds, and we have showed that S is
progressive with respect to R.

If R is a binary relation on A, we define its reflexive transitive closure by

R∗(x, y) =def I(A, x, y) ∨R+(x, y).

Exercise. Find and prove a universal property for R∗ analogous to Theorem 7.1.10.

7.1.2 An application: Newman’s lemma

Well-founded sets have important applications in the study of termination in computa-
tion. Let ;1 be a binary relation on A which is supposed denote one-step computation.
The computation relation is strongly normalizing if the relation

R(x, y) =def (y ;1 x)

is well-founded. In particular, there are no infinite computation sequences (Theorem
7.1.2):

x1 ;
1 x2 ;

1 x3 ;
1 · · · .

Let ;∗ be the reflexive transitive closure of ;1, such that x;∗ y states that one can
reach y from x in zero or more one-step computations.

The relation (A,;1) is confluent, if for any x ;∗ u and x ;∗ v, there is y with
u;∗ y and v ;∗ y. A weaker notion which is usually easier to establish is: (A,;1) is
weakly confluent if whenever x;1 u and x;1 v, there is y with u;∗ y and v ;∗ y.

Theorem 7.1.13. (Newman’s Lemma). Let ;1 be a binary relation on A which is
strongly normalizing and weakly confluent. Then ;1 is confluent.

Proof. The proof goes by verifying that the predicate

P (x) =def (∀u, v : A)((x;∗ u) ∧ (x;∗ v) ⊃ (∃y : A)(u;∗ y ∧ v ;∗ y).)

is progressive with respect to the inverse (well-founded) relation R(y, x) = (x ;1 y).
This is to verify

(∀x : A)((∀y : A)(x;1 y ⊃ P (y)) ⊃ P (x)).

We leave this to the reader.
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7.2 W-types

As the usual set-theoretic ways of constructing higher ordinals or large well-orders are
not available in type theory, one has to turn to other means of construction. Brouwer
and Kleene proposed that infinite well founded trees could play much the same roles as
regular ordinals do in set theory for various inductive constructions. The W-types of
type theory (Martin-Löf 1984) are such constructions.

W-formation:
` A set x : A ` B(x) set

` (Wx : A)B(x) set

W-introduction:
` a : A ` f : B(a)→ (Wx : A)B(x)

` sup(a, f) : (Wx : A)B(x)

We should think of the canonical element sup(a, f) as a node in a tree, where f(x) gives
all the nodes immediately above that node, as x varies over B(a). In case B(a) is an
empty set there will be no nodes above that node, and it is considered as a leaf of the
tree. If B(a) is N2, then sup(a, f) has two nodes immediately above, namely f(02) and
f(12). In case B(a) is infinite, for instance is the set N , then sup(a, f) has infinitely
many nodes immediately above itself. The element a : A thus indicates what set B(a)
can be used for branching.

W-elimination. In this rule W abbreviates (Wx : A)B(x):

z : W ` C(z) set
` c : W x : A, h : B(x)→ W,k : (Πy : B(x))C(Ap(h, x)) ` d(x, h, k) : C(sup(x, g))

` T(c, (x, h, k)d(x, h, k)) : C(c)

W-computation:

z : W ` C(z) set
` a : A
` f : B(a)→ W
x : A, h : B(x)→ W,k : (Πy : B(x))C(Ap(h, x)) ` d(x, h, k) : C(sup(x, h))

` T(sup(a, f)), (x, h, k)d(x, h, k)) = d(a, f, (λy)T(Ap(f, y), (x, h, k)d(x, h, k))) : C(sup(a, f))

Remark 7.2.1. The W-type construction may be defined in Coq as

Inductive W (A:Set)(B:A -> Set):Set:=

sup : forall a : A, (B a -> W A B) -> W A B

There is one constructor sup which builds canonical elements in a set.
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Example 7.2.2. Brouwer’s second number class (Martin-Löf 1984). Suppose that
B(x) set (x : N3) is a family of sets such that B(03) = N0, B(13) = N1 and B(23) = N.
Then

O =def (Wx : A)B(x)

is the type theory counterpart of Brouwer’s second number class. The zero is given by
the tree with no branches:

0O =def sup(03, (λx)R0(x))

whereas the successor is obtained attaching a one branch node under the given tree
α : O

SO(α) =def sup(13, (λx)R1(x, α))

Suppose that f : N → O is an infinite sequence of trees, then its formal limit is
constructed as

lim f =def sup(23, f).

For every n : N we may define a corresponding number n∗ in O by recursion

0∗ = 0O

(S(n))∗ = SO(n∗)

(Put n∗ = R(n, 0O, (x, y)SO(y)) : O.) This sequence has a formal limit which we may
call

ω =def lim (λn)n∗.

Define the immediate subtree relation ≺ by

(α ≺ sup(a, f)) =def (∃x : B(a))I(O, α,Ap(f, x)). (7.10)

It is easily seen that
(∀n : N)n∗ ≺ ω

holds. Moreover for any f : N //O we have

(∀n : N)Ap(f, n) ≺ sup(23, f)

so O is uncountable in a strong sense.

The immediate subtree relation ≺ on O is well-founded. In fact, we have more
generally for the subtree relation on a general W-set

(α ≺ sup(a, f)) =def (∃x : B(a))I((Wx : A)B(x), α,Ap(f, x)) (7.11)

the following:

80



Theorem 7.2.3. For any set A and any family of sets B(x) (x : A) the immediate
subtree relation ≺ on (Wx : A)B(x) is well founded.

Proof. Write W = (Wx : A)B(x). Suppose that P (z) (z : W ) is progressive with
respect to ≺. We show that

(∀z : W )P (z) true

by W -elimination on z. Assume a : A and f : B(a)→ W and that

(∀t : B(a))P (Ap(f, t)) (7.12)

holds. According to the progressiveness of P , it suffices to show

(∀y : W )(y ≺ sup(a, f) ⊃ P (y)).

Suppose y : W and (∃x : B(a))I(W, y,Ap(f, x)). Let x : B(a) with I(W, y,Ap(f, x))
true. By (7.12) we get P (Ap(f, x)). Now I-elimination gives the desired P (y).
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Chapter 8

Universes

8.1 Type universes

A type universe is basically a collection of types which is closed under certain (already
existing) type constructions. We may make this precise by saying that it is family of
sets T (x) set (x : U) over a set U . This is a new kind of type construction which does
not follow the usual pattern of introduction and elimination rules. The elimination
rules are here weaker and do not guarantee that the universe is minimal with respect
to the introduction rules (as for instance the natural numbers are).

U -formation:
` U set ` U = U

T -formation:
a : U

T (a) set

a = b : U

T (a) = T (b)

For every type construction that we have considered so far we introduce coding in
U of that type construction. For instance we have

` A set ` B set
` A+B set

which is reflected in U as

` a : U ` b : U

` a+̂b : U

` a : U ` b : U

` T (a+̂b) = T (a) + T (b)

For basic types N and Nk we have

N̂ : U T (N̂) = N

and

N̂k : U T (N̂k) = Nk.
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For dependent constructions the reflection is a bit more involved. We wish to reflect

` A set x : A ` B(x) set

` (Πx : A)B(x) set .

We introduce

` a : U x : T (â) ` b(x) : U

` (Π̂x : a)b(x) : U

` a : U x : T (â) ` b(x) : U

` T ((Π̂x : a)b(x)) = (Πx : T (a))T (b(x))

The rules for Σ and W are identical replacing Π by these signs respectively. The identity
formation rule

` A set ` b : A ` c : A

` I(A, b, c) set

is reflected by

` a : U ` b : T (a) ` c : T (a)

` Î(a, b, c) : U

` a : U ` b : T (a) ` c : T (a)

` T (̂I(a, b, c)) = I(T (a), b, c)

We may consider yet another universe U ′, T ′ reflecting the type constructions so far.
Thus we introduce

U ′-formation:
U ′ set U ′ = U ′

T ′-formation:
a : U ′

T ′(a) set

a = b : U ′

T ′(a) = T ′(b)

Then two new constructors Û and T̂ with introduction rules

Û : U ′ T ′(Û) = U

and
a : U

T̂ (a) : U ′
a = b : U

T̂ (a) = T̂ (a) : U ′

a : U

T ′(T̂ (a)) = T (a)

For each type construction +,Π,Σ, . . . we introduces codes +̂
′
, Π̂′, Σ̂′, . . . analogously

as we did for U, T above. It is indeed possible to continue this process of building new
universes ad infinitum (Martin-Löf 1984) and also to internalize it (Palmgren 1998),
using so called super universes.
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8.2 Applications of universes

The dependent type Tr(x) set (x : N2) of (4.2) may now be defined by N2-elimination.
For x : N2, we have R2(x, N̂0, N̂1) : U so letting

Tr(x) =def T (R2(x, N̂0, N̂1)),

we get

Tr(02) = T (N̂0) = N0,

Tr(12) = T (N̂1) = N1

as required.

Transfinite sets: Let F (n) = T (R(n, N̂, (x, y)y → N̂)). Then

F (0) = N F (S(n)) = F (n)→ N,

and (Σn : N)F (n) is an example of a transfinite type which does not exists in standard
Martin-Löf type theory without a universe.

Aczel’s set-theoretic universe: Aczel’s model of constructive set theory CZF (Aczel
1978) uses the following set of trees as the universe of iterative sets;

V =def (Wx : U)T (x)

Equality of sets α =V β is T (Ap(eV , (α, β))) where eV : V × V → U is defined by
V -elimination in such a way that the bisimulation property is satisfied:

sup(a, f) =V sup(b, g)⇔
(∀x : T (a))(∃y : T (b))Ap(f, x) =V Ap(g, y)∧
(∀y : T (b))(∃x : T (a))Ap(f, x) =V Ap(g, y)

Then the membership relation is defined by as the immediate subtree relation (modulo
=V ):

(α ∈V sup(a, f)) =def (∃x : T (a))α =V Ap(f, x).

Restricted power sets: For a set X, let P(X) = X → U . This is essentially Russell’s
propositional functions on X, where we think of U as a set of truth values. For any
Q : P(X) and x : X we may define a membership relation

x ∈̇ Q =def T (Ap(Q, x)).

The natural inclusion relation for two P,Q : P(X) is then defined by

(P ⊆ Q) =def (∀x : X)(x ∈̇ P ⊃ x ∈̇ Q)
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In classical set theory the power set is a complete boolean algebra with respect to
inclusion. We have an analogous result for the restricted power set just introduced. A
lattice (L,∧,∨,>,⊥,≤) is a Heyting algebra if there is a binary operation (→) on L
such that for all a, b, c : L

a ∧ b ≤ c⇐⇒ a ≤ (b→ c). (8.1)

Theorem 8.2.1. For a set X, (P(X),⊆) is a Heyting algebra which is complete with
respect to suprema and infima indexed by sets of the form T (a) where a : U .

Proof. We define operations ∧,∨,→. For P,Q ∈ P(X),

P ∧Q =def (λx)(Ap(P, x) ×̂Ap(Q, x))

P ∨Q =def (λx)(Ap(P, x) +̂ Ap(Q, x))

P → Q =def (λx)(Ap(P, x) →̂Ap(Q, x))

To verify the condition (8.1): Let P,Q,R ∈ P(X). We need to check

P ∧Q ⊆ R⇐⇒ P ⊆ (Q→ R). (8.2)

Now

P ∧Q ⊆ R ⇐⇒ (∀x : X)(x ∈̇ (P ∧Q) ⊃ x ∈̇ R)

⇐⇒ (∀x : X)(T (Ap(P ∧Q, x)) ⊃ T (Ap(R, x)))

⇐⇒ (∀x : X)(T (Ap(P, x)) ∧ T (Ap(Q, x)) ⊃ T (Ap(R, x)))

⇐⇒ (∀x : X)(T (Ap(P, x)) ⊃ T (Ap(Q, x)) ⊃ T (Ap(R, x)))

⇐⇒ (∀x : X)(T (Ap(P, x)) ⊃ T (Ap((Q→ R), x))

⇐⇒ P ⊆ (Q→ R)

Let Pi : P(X) for i : T (a). The supremum and infimum may be defined by∨
i:T (a)

Pi =def (λx)(Σ̂i : a)Ap(Pi, x)

∧
i:T (a)

Pi =def (λx)(Π̂i : a)Ap(Pi, x)

The verification of their corresponding properties is left to the reader:∨
i:T (a)

Pi ⊆ Q⇐⇒ (∀i : T (a))(Pi ⊆ Q)

Q ⊆
∧
i:T (a)

Pi ⇐⇒ (∀i : T (a))(Q ⊆ Pi)
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8.3 Universes in Coq and Prop

We give a brief description of the universes in Coq, for a full account see (Coq Reference
Manual 2013).

In the Coq system there is an infinite hierarchy of type universes

Set : Type1 : Type2 : · · · : Typek : Typek+1 · · ·

Every object (term) in the system belongs to some universe. Each of the universes is
closed under the Π-construction (forall) and the construction of inductive types and
families (Inductive).

The universes are formulated in the ”Russell style” (cf. Martin-Löf 1984) so that
the decoding functions T are suppressed. Thus we have rules (writing Type0 for Set):

` Typek : Typek+1

` A : Typek
` A : Typek+1

` A = B : Typek
` A = B : Typek+1.

When working with Coq system, one generally sees only the distinction between Set

and Type, the indexes k of the higher universes are not shown.
Though we may use the propositions-as-sets principle in Coq just as in standard

Martin-Löf type theory, the Coq system provides a special type Prop of propositions
should not be understood as sets. We have

` Prop : Type1

Two main differences from all Typek is that Prop is not closed under construction of
inductive types, and in particular not under the usual Σ construction, and that it is
closed under Π in a stronger way than the universes or types:

` A : Typek x : A ` P (x) : Prop

` (Πx : A)P (x) : Prop .

One way to motivate this is to think of Prop like the classical truth-values. It has some
strong consequences that are not acceptable from a predicative point of view, and thus
not strict constructivists. It allows definition of non-restricted power sets

P(X) = X → Prop.

Though this leads to more powerful proof methods, a drawback is algorithms can only
be extracted indirectly from existence theorems which belongs to Prop. If

(∃̃x : A)P (x) : Prop

and
p : (∃̃x : A)P (x)
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we can in general not find a projection from (∃̃x : A)P (x) to A, i.e. find the witness x
from p. The reason is that the associated elimination rule for ∃̃ is weaker. We have the
following elimination rule for the weak existential quantifier

` C : Prop ` p : (∃̃x : A)P (x) x : X, y : P (x) ` d(x, y) : C

` Ẽ(p, (x, y)d(x, y)) : C

We see that the possibility to define the first projection as when Σ-elimination is blocked
since C can only be in Prop and not in Set. Note also that C does not depend on x
and y. This is just as for the usual existence elimination rule in first order logic.

The weak existential quantifier can in fact be defined in terms of the stronger Π
above:

(∃̃x : A)P (x) =def (ΠC : Prop)((Πx : A)(P (x) ⊃ C) ⊃ C).

Remark 8.3.1. The basic library of Coq uses Prop as the preferred way of interpreting
propositions. Most powerful tactics about logical reasoning deals only with Prop.
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Chapter 9

Setoids

A major drawback of the sets in type theory is that they do not admit quotients of
sets as in set theory. Instead one usually defines explicit equivalence relations on sets.
The combination of a set and an equivalence relation is called a setoid. For instance we
may be interested to define the integers Z as formal differences of two natural numbers
(a, b) : N × N. Two such numbers (a, b) and (c, d) are declared equivalent if their
difference is the same:

(a, b) =Z (c, d)⇐⇒def a+ d =N b+ c

This makes the definition of arithmetical operations algebraically smooth e.g.

−(a, b) =def (b, a),

(a, b) + (c, d) =def (a+ c, b+ d)

In this case it is strictly speaking not necessary to use an explicit equivalence relation.
We could chose a leaner coding, taking for instance as underlying set

N + N

where the elements of the form inr(n) denotes non-negative integers and elements of
the form inl(n) denotes negative number −(n+1). The arithmetical operations become
slightly more cumbersome, e.g.

−inr(0) = inr(0)

−inr(S(n)) = inl(n)

−inl(n) = inr(S(n))

but the equality would be given by the standard equality I(N + N, x, y). It is not
always possible to use the standard equality, for instance when want to consider equality
between real numbers or infinite sequences.

88



9.1 Setoids and extensional functions

A setoid X is a pair (|X|,=X) consisting of a set |X| and an equivalence relation =X

on |X|. An extensional function f from a setoid X to a setoid Y is a pair (|f |, extf )
consisting of a function |f | : |X| → |Y | and a proof construction witnessing extension-
ality

extf : (∀x, y : |X|)(x =X y ⊃ Ap(|f |, x) =Y Ap(|f |, y)). (9.1)

Below we use some overloading of notation so that x : X denotes x : |X| and Ap(f, x)
denotes Ap(|f |, x). We shall sometimes even write

f x for Ap(f, x).

Two extensional function f, g : X // Y between setoids are extensionally equal, in
symbols f =ext g, if

(∀x : X)f x =Y g x true.

Let X, Y and Z be setoids. The composition f ◦ g = (h, exth) of two extensional
functions f : X → Y , g : Y → Z is given by h = (λx)(f (g x)) : |X| → |Y | and exth
is the proof its extensionality which can be obtained by a suitable composition of the
proof construction extf and extg. For every X we define idX = ((λx)x, (λx)(λy)(λp)p)
which is the extensional identity function on X.

Lemma 9.1.1. 1. Let X, Y and Z be setoids. Then for all extensional functions
f, h : X → Y , g, k : Y → Z:

f =ext h ⊃ g =ext k ⊃ g ◦ f =ext k ◦ h.

2. Let X, Y , Z and U be setoids. Then for all extensional functions f : X → Y ,
g : Y → Z and h : Z → U :

h ◦ (g ◦ f) =ext (h ◦ g) ◦ f.

3. For all setoids X and Y and all extensional functions f : X // Y :

f ◦ idX =ext f idY ◦ f =ext f.

From this lemma it follows easily that the setoids and extensional functions form
a category (or to be precise an E-category1). For every pair of setoids X and Y , let

1An E-category is defined by a type (or set) of objects, without imposing any equality between
them. For any pair of objects A and B there is a setoid Hom(A,B) of arrows. There is an identity
arrow idA for each object A, and a extensional composition map Hom(B,C)×Hom(A,B)→ satisfying
the usual equalities.
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Hom(X, Y ) be the setoid whose underlying set are the extensional functions X → Y
with extensionality proofs

(Σf : |X| → |Y |)[(∀x, y : X)(x =X y ⊃ f x =Y f y)]

and whose equality relation is given by extensional equality

(f, p) =Hom(X,Y ) (g, q) =def (f =ext g).

Some standard definitions and results carry over from set theory to setoid theory:
For extensional f : X // Y :

f : X // Y is injective, if for all x, y : X, f x =Y f y implies x =X y,
f : X // Y is surjective, for every y : Y , there is x : X with f x =Y y,
f : X // Y is bijection, if it is both injective and surjective.

Using Unique Choice it is easy to show that

Lemma 9.1.2. An extensional f : X //Y is a bijection if and only if it has an inverse,
i.e. there is an extensional g : Y → X such that g ◦ f =ext idX and f ◦ g =ext idY .

9.1.1 Some constructions

For any set A, define the setoid A = (A, I(A, ·, ·)), the free setoid on A. Any predicate
P (x) set (x : A) or function f : A→ B is extensional with respect to A:

P (x) ∧ I(A, x, y) ⊃ P (y),

I(A, x, y) ⊃ f x =B f y.

This is an easy consequence of I-elimination.

If A and B are setoids, then their cartesian product setoid is

A×B =def (|A| × |B|,=A×B)

where
(x, y) =A×B (u, v)⇐⇒def x =A u ∧ y =B v.

The two projections from |A| × |B| form extensional functions π1 : A × B → A and
π2 : A×B → B that satisfy the following property

Lemma 9.1.3. Let A and B be setoids. If x : A and y : B then there is a unique
u : A×B (up to =A×B) with π1 u =A x and π2 u =B y.
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Let A and B be setoids. Their disjoint union setoid is

A+B =def (|A|+ |B|,=A+B)

where

u =A+B v ⇐⇒def (∃a, c : A)(I(A+B, u, inl(a)) ∧ I(A+B, v, inl(c)) ∧ a =A c)∨
(∃b, d : B)(I(A+B, u, inr(b)) ∧ I(A+B, v, inr(d)) ∧ b =B d).

The two injections into |A| + |B| form extensional functions inl : A → A + B and
inr : B → A+B that satisfy the following property

Lemma 9.1.4. Let A and B be setoids. If u : A + B, then there is a unique a : A
(up to =A) such that inl(a) =A+B u, or there is a unique b : B (up to =B) such that
inr(b) =A+B u.

Free setoids are convenient to work with as they do not require extensionality proofs.
They behave well with respect to the construction × and +:

Theorem 9.1.5. Let A and B be sets. Then

1. I(A×B, (x, y), (u, v)) if and only if I(A, x, u) and I(B, y, v),

2. I(A+B, inl(x), inl(u)) if and only if I(A, x, u).

3. I(A+B, inr(y), inr(v)) if and only if I(B, y, v).

4. ¬I(A+B, inl(x), inr(y)).

5. ¬I(A+B, inr(y), inl(x)).

Proof. The first three items are proved by straightforward applications of I-elimination.
As for (4), define f : A + B → N, by f = (λu)D(u, (x)0, (y)S(0)). Then if I(A +
B, inl(x), inr(y)), we obtain by extensionality on free setoids,

I(N,Ap(f, inl(x)),Ap(f, inr(y))) true.

Evaluating the function f on these arguments we get

I(N, 0, S(0)) true

which contradicts Peano’s fourth axiom (verified above). Item (5) follows by symmetry.

Corollary 9.1.6. For sets A and B we have the following isomorphisms of setoids

1. A×B ∼= A×B,

2. A+B ∼= A+B.
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9.2 Quotients

A quotient of a setoid X is a setoid Q and an extensional function q : X → Q satisfying
the following universal property: for any extensional function f : X → Y such that

(∀x, y : X)(q x =Q q y ⊃ f x =Y f y)

there exist a unique extensional function f̄ : Q→ Y with f̄ ◦ q =ext f .

Theorem 9.2.1. Let X be a setoid. Then an extensional function q : X → Q is a
quotient if and only if it is surjective.

Proof. (⇐) Suppose that q is surjective. Then by the type-theoretic axiom of choice
we find g : |Q| → |X| such that

(∀y : Q)q (g y) =Q y. (9.2)

Note that g need not be extensional. Let f : X → Y such that

(∀x, y : X)(q x =Q q y ⊃ f x =Y f y) (9.3)

Define |f̄ | = (λu)(f (g u)). Suppose y =Q y
′. Thus by (9.2),

q (g y) =Q y =Q y
′ =Q q (g y′).

and thus by the property (9.3) of f ,

f (g y) =Y f (g y′).

Thus |f̄ | is extensional Q→ Y . Now

f̄ (q x) =Y f (g (q x)) =Y f x

where the last equality follows from (9.3) since, according to (9.2), with y = q x,

q (g (q x)) =Q q x.

If f̂ : Q→ Y is another extensional function with

f̂ (q x) =Y f x (x : X).

We get by the surjectivity of q that f̂ and f̄ are extensionally equal as required.
(⇒) Suppose that q : X → Q is a quotient of X. The following argument is essen-

tially in (Mines et al. 1998, Theorem I.4.1). We use a more elementary construction of
(Wilander 2010, p. 565) and build the following setoid Y . Let

|Y | =def N2 × |Q|
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and
((m,u) =Y (n, v)) =def (C(m,u)⇔ C(n, v))

and using
C(m,u) =def (Tr(m) ⊃ (∃x : X)(q x =Q u).

Define f : X // Y by f =def (λx)(02, q x). This is an extensional (and constant)
function since C(02, q x) is true for all x : X. Define f̄ =def (λu)(02, u) This is a
constant and extensional function Q → Y and f̄ ◦ q =ext f . Construct a different
function f̂ = (λu)(12, u). It is also extensional Q → Y since if u =Q v, then by
transitivity of =Q,

C(12, u)⇔ (∃x : X)q x =Q u⇔ (∃x : X)q x =Q v ⇔ C(12, v).

But for u = q x the equivalence C(12, q x) ⇔ C(02, q x) holds, so f̂ ◦ q =ext f . By
uniqueness, f̂ =ext f̄ . For each u : Q, we have thus

C(02, u)⇔ C(12, u).

Since C(02, u) is trivially true, the right hand holds, which says

Tr(12) ⊃ (∃x : X)q x =Q u,

Hence as Tr(12) is true, there is x : X, q x =Q u. Thus we have shown that q is
surjective.

A setoid Y is projective if for every surjective f : X → Y , there is an extensional
g : Y → X with f ◦ g =ext idY . Using the type-theoretic axiom of choice it is easy to
show that the free setoid (A, I(A, ·, ·)) is projective. More over if (A,=A) is a setoid,
then (λx)x defines a surjective function (A, I(A, ·, ·))→ (A,=A).

Corollary 9.2.2. Every setoid is the quotient of a free setoid, and hence of a projective
setoid.

Proof. For a setoid X = (|X|,=X) we note that (λx)x is a surjective map from the
free setoid (|X|, I(|X|, ·, ·)) to X. Thus X is a quotient of (|X|, I(|X|, ·, ·)). Every free
setoid is projective.

A setoid A is discrete if =A is decidable, i.e. for all x, y : A,

x =A y ∨ ¬x =A y.

Proposition 9.2.3. If A and B are discrete setoids, then so are A × B and A + B.
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9.3 Subsets

We already have encountered one way of defining a subcollection of a setoid X: namely
as a predicate P (x) set (x : X), that is extensional

(∀x : X)(P (x) ∧ x =Y y ⊃ P (y)) true.

We can construct a new setoid set consisting of just those elements of X which satisfy
P , using the Σ-type

{x : X | P (x)} =def

(
(Σx : X)P (x), π1(·) =A π1(·)

)
Note that elements (x, p) and (y, q) of this setoid are equal precisely when x =X y.
Then the first projection π becomes an extensional injection

π1 : {x : X | P (x)} //X.

We can denote this as {x : X | P (x)} ↪→ X. This leads to a more abstract notion of
subsetoid.

Let X be a setoid. A subsetoid of X is an injective function iA : ∂A→ X where A
is a setoid. For an element x : X, we say that x belongs to A = (∂A, iA), in symbols
x ∈X A, if there is some a : A with iA(a) =X x. Note that

x ∈X A set (x : A)

is an extensional predicate on X.
If iA : ∂A→ X and iB : ∂B → X are two subsets we write A ⊆ B, if for every x : X,

x ∈X A implies x ∈X B. This is in fact equivalent to the existence of an extensional
function f : ∂A // ∂B such that iB ◦ f =ext iA.

A subsetoid A of X is detachable, if for all x : X

x ∈X A ∨ ¬x ∈X A.

9.4 Finite and countable sets

The canonical k-element setoid Nk is

{n : N |n < k}.

Write n′k for (n, pn,k) where pn,k : n < k. A setoid X is finite if it is isomorphic to some
Nk, k : N; it is finitely enumerable if there is a surjection Nk → X for some k.

Proposition 9.4.1. (a) Every finite setoid is finitely enumerable.
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(b) A finitely enumerable setoid is finite if and only if it discrete.

(c) A detachable subsetoid of finite setoid is finite.

(d) It can be decided whether a finitely enumerable setoid, is inhabited or not.

Proof. (a): this follows since every isomorphism is surjective. (d): Suppose that f :
Nk

//X is a surjection. Then X is inhabited precisely when k > 0.

In general subsetoids of finite setoids cannot be proved to be finite or even finitely
enumerable. Let P be an arbitrary proposition, and form the subsetoid

{x : N1 | P} ↪→ N1.

(In classical set theory, this subset is finite.) However, if we assume that it is finitely
enumerable then there is k and a surjection

f : Nk → {x : N1 | P}.

Thus k = 0 or k > 0. If k = 0, then assuming P , we get an element y : {x : N1 | P},
so by surjectivity there is u : N0 which f maps to y. This is impossible. Hence ¬P . If
k > 0, then f provides an element in {x : N1 | P} which implies that P is true. The
assumption of finite enumerability thus leads to P ∨ ¬P . From this reasoning follows:

Theorem 9.4.2. If subsetoids of finite setoids, are finitely enumerable, then PEM is
valid.

Zermelo’s axiom of choice fails even for finitely enumerable sets.

Theorem 9.4.3. (Diaconescu’s theorem) For any proposition P , there is a setoid M
and a surjective function f : N2

//M , such that there is an extensional g : M → N2

with f ◦ g =ext M , then P ∨ ¬P .

Proof. Let P be an arbitrary proposition. Consider the finite set N2. Now define a
quotient of this set by letting M = (Fin2,∼) where

a ∼ b⇐⇒def a =N2 b ∨ P

This relation is easily seen to be an equivalence relation, and the identity (λx)x becomes
a surjective extensional function f : N2

//M . Suppose now that g : M → N2 is an
extensional function with

f ◦ g =ext idM . (9.4)

Now N2 is a discrete set so there are two cases

g 0′2 =N2 g 1′2 ∨ ¬(g 0′2 =N2 g 1′2).

In the former case, we get by (9.4), 0′2 ∼ 1′2. But ¬0′2 =N2 1′2, so P must hold. In the
latter case, that is ¬(g 0′2 =N2 g 1′2). Suppose P is true, then 0′2 ∼ 1′2, and hence also
g 0′2 =N2 g 1′2 by extensionality. But this is a contradiction. Hence ¬P . Thus we have
proved P ∨ ¬P .
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Corollary 9.4.4. (Diaconescu) If Zermelo’s axiom of choice is true, then PEM holds.

Proof. Let P and M be as in the theorem. Let f : N2
//M be a surjective function.

Thus
(∀x : M)(∃n : N2)f n =M x.

If Zermelo’s axiom of choice holds, there is an extensional function g : M // N2 such
that

(∀x : M)f (g x) =M x.

But this is f ◦ g =ext M , so by the theorem P ∨ ¬P .

A setoid X is countable if it is a quotient of a detachable D subsetoid of N.

Example 9.4.5. Any quotient of N is countable.

Example 9.4.6. Any finitely enumerable set is countable.

Lemma 9.4.7. Any detachable subsetoid of a countable setoid is countable.

Proof. Suppose that X is countable, so there is a detachable subsetoid D ↪→ N, and a
surjection f : D → X. Let d : D → N be injection of the subsetoid. Assume now that
we are given a detachable subsetoid e : E ↪→ X. Form the subsetoid

DE =def {n : N | (∃u : D)d u =N n ∧ f u ∈X E} π1
↪→ N.

This may be proved to be a detachable subsetsetoid of N by using that n ∈X D is
decidable and then that f u ∈X E is decidable. For every (n, p) : DE, there is u : D
and v : E with d u =N n and e v =N f u. Now both u and v are unique since d and
e are injective. By unique choice we have two extensional functions g : DE → D and
h : DE → E such that d (g (n, p)) =N n and e (h (n, p)) =N f (g (n, p)). We claim that
h is surjective. For any z : E, there is u : D with f u =X e z, since f is surjective.
Thus (d u, p) : DE for some proof construction p. Hence d (g ((d u), p)) =N d u and
e (h ((d u), p))) =N f (g ((d u), p))). By injectivity of d, we have u =D g ((d u), p), so

e (h ((d u), p)) =X f u =X e z.

Hence by injectivity of e, h ((d u), p))) =E z as required.

Lemma 9.4.8. If A and B are countable setoids, then so are A×B and A+B.

Proof. Use some standard isomorphisms N + N ∼= N and N × N ∼= N. The details are
left to the reader.
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Example 9.4.9. Hom(N,N) is not countable. Suppose that there is a surjective func-
tion f : D → Hom(N,N) from a detachable subsetoid D of N. Let d : D → N be the
injection associated with the subsetoid. Define h : N→ N by

h =def (λn)

{
((f u)n) + 1 if n ∈X D and u : D unique such that d u =N n
0 otherwise

Suppose now that for some u : D, we have f u =ext h. Now by definition

h (d u)) =N ((f u) (d u)) + 1.

But this contradicts the equality f u =ext h for the argument d u. Hence we must
conclude that Hom(N,N) is not countable.

9.4.1 Subsetoids of countable setoids and Kripke’s Schema

Subsetoids of countable setoids are not necessarily countable (Mines et al. 1988, p. 32).
To argue for this we consider a general principle called Kripke’s Schema (KS). It is the
following: (KS) for every proposition P there is a function f : N→ N such that

P ⇐⇒ (∃n : N)¬f n =N 0.

It is trivially true, classically, but not provable constructively (as is it false in realiz-
ability models where Markov’s principle holds; see Bridges and Richman (1987) and
below).

Theorem 9.4.10. The following are equivalent:

1. Every subsetoid of N is countable.

2. Kripke’s Schema.

Proof. (1 ⇒ 2): Assume (1). Let P set be a proposition. Define the subsetoid

{x : N | P} π1
↪→ N.

Thus there is a detachable d : D ↪→N and a surjection h : D → {x : N | P}. Define a
function N→ N,

f =def (λn)

{
1 if n ∈N D
0 if ¬n ∈N D

Suppose P holds. Then there is u : D such that h(u) = 0. Hence d u ∈N D and

¬f (d u) =N 0.
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Conversely, if there is n with ¬I(N, f n, 0), then n ∈N D which implies there is some
u : D such that d u =N n. But then hu : {x : N | P}, so P holds. Thus we have proved
(2).

(⇐) Assume (1). Let A ↪→ N be a subsetoid of N. Define the family of propositions

P (n) =def n ∈N A (n : N)

By Kripke’s Schema we have

(∀n : N)(∃f : N // N)(P (n)⇐⇒ (∃m)¬ f m =N 0).

By the type-theoretic axiom of choice we obtain g : N→ (N→ N) such that

(∀n : N)(P (n)⇐⇒ (∃m : N)¬(g n)m =N 0).

Define a setoid
D = {(n,m) : N× N | (g n)m =N 0}.

The first projection π1 : D → N× N is an injection. Let φ : N× N→ N be a bijective
coding of pairs of natural numbers. Then φ ◦ π1 : D → N is an injection as well, and
D becomes a detachable subsetoid of N since =N is decidable. Define the following
subsetoid of N:

B =def {n : N | (∃m : N)(n,m) ∈N×N D}.

The extensional projection p : D → B is clearly surjective and by the above we have

(∀n : N)(n ∈N A⇔ P (n)⇔ n ∈N B)

Hence A and B are equal as subsetoids of N. Hence A is countable.

Markov’s Principle (MP) is the following: for any f : N→ N,

¬¬(∃n : N)f n =N 0 ⊃ (∃n : N)f n =N 0.

MP is true in many realizability interpretations of constructive systems. Together with
Kripke’s Schema it yields PEM (Bridges and Richman, 1987). This is a reason to reject
KS from a constructive point of view.

Theorem 9.4.11. KS and MP implies PEM.

Proof. Let P be a proposition. Then by KS there are functions f, g : N→ N such that

P ⇐⇒ (∃n : N)¬f n =N 0

and
¬P ⇐⇒ (∃n : N)¬g n =N 0
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Thus

P ∨ ¬P ⇐⇒ (∃n : N)(¬f n =N 0 ∨ ¬g n =N 0)

⇐⇒ (∃n : N)(h ((f n) + (g n)) =N 0)

Here h is the function which is such that h 0 = S(0) and hS(m) = 0. However we can
always prove in intuitionistic logic

¬¬(P ∨ ¬P ).

Hence it follows by the above equivalence that

¬¬(∃n : N)h ((f n) + (g n)) =N 0.

By Markov’s Principle,
(∃n : N)h ((f n) + (g n)) =N 0.

Which then gives P ∨ ¬P , by the same equivalence again.
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Chapter 10

Inductive sets, families and
predicates in Coq

10.1 Simple inductive sets

In the Coq system the simple inductive sets N2 and N of Martin-Löf type theory can
be defined as follows. The two constructors are separated by a vertical bar | .

Inductive N_2: Set :=

zero_2:N_2 | one_2:N_2.

Inductive N:Set :=

zero: N | succ : N -> N.

The +-set construction can be defined as an inductive set with parameters

Inductive sum’ (A B:Set):Set :=

inl’: A -> sum’ A B | inr’: B -> sum’ A B.

The Σ-set construction is an inductive set with a single constructor and dependent
parameters

Inductive Sigma (A:Set)(B:A -> Set):Set :=

Spair: forall a:A, forall b : B a, Sigma A B.

The general pattern is that a new set, that is an element of the type Set, is defined
by giving the typing of some constructor names.
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10.2 Inductive families and predicates

A construction in Martin-Löf type theory that doesn’t follow this pattern is the identity
type construction I. This is an example of an inductively defined family. Here an element
is introduced in a family of sets. For a fixed element a : A, we may think of the identity
set as a family over A

I(A, a, x) set (x : A).

Inductive I (A: Set)(x: A) : A -> Set :=

r : I A x x.

The transitive closure of a relation may be defined as an inductive predicate

Inductive tc (A:Set)(R:A->A->Set) : A -> A -> Set :=

incl: (forall x y:A, R x y -> tc A R x y)

| tran: (forall x y z:A,

tc A R x y -> R y z -> tc A R x z).

The smallest equivalence relation that includes a given predicate is given by

Inductive eqc (A:Set)(R:A->A->Set) : A -> A -> Set :=

incl: (forall x y:A, R x y -> eqc A R x y)

| refr (forall x :A, eqc A R x x)

| symm (forall x y :A, eqc A R x y -> eqc A R y x)

| tran: (forall x y z:A,

eqc A R x y -> eqc R y z -> eqc A R x z).

10.3 General form of inductive definitions in Coq

We follow Paulin-Mohring (1992) in this presentation but adapt the notation. A sort
is any of the types Set, Type or Prop. A type A is an arity with target sort s if it has
the form

(∀x1 : M1,∀x2 : M2, . . . ,∀xm : Mm, s).

Here ∀ is notation for forall, and Mk is a type that can depend on the variables
x1, . . . , xk−1. Note that Set is an arity taking m = 0. The arity associated with the
identity type above is A -> Set which can be written (∀ : A, Set). The arity
associated with eqc is similarly (∀ : A, ∀ : A, Set).

Let A be an arity and suppose X : A. In a type P of the form

(∀y1 : N1,∀y2 : N2, . . . ,∀yn : Nn, X m1 · · · mk),

we say that X occurs strictly positively in P , if X does not occur in N1, . . . , Nn or in
m1, . . . ,mk. Admissible constructor forms for X : A are built up as follows

101



• X is admissible,

• A term C m is admissible, if C is admissible, and X does not occur in m.

• A term P → C is admissible, if C is admissible and X occurs strictly positively
in P

• A term (∀x : M)C is admissible, if C is admissible and X does not occur in M .

The formation rule for inductive sets is

Γ ` A : Type Γ, X : A ` C1 : s · · · Γ, X : A ` Cn : s

Γ ` Ind(X : A){C1| · · · |Cn} (10.1)

where A is an arity for s and each Ci is an admissible constructor form for X : A. Here
an inductive set with n different (nameless) constructors is introduced.

Example 10.3.1. The inductive set N2 is given by

I1 =def Ind(X : Set){X|X}

Example 10.3.2. The inductive set N is given by

I2 =def Ind(X : Set){X|X → X}

Example 10.3.3. The inductive family IAa is given by

I3 =def Ind(X : A→ Set){X a}

Example 10.3.4. The inductive family tcAR is given by

I4 =def Ind(X : A→ A→ Set){(∀x : A,∀y : A,Rx y → X xy)
| (∀x : A, ∀y : A,∀z : A,X x y → Ry z → X xz)}

The introduction rule corresponding to (10.1) is as follows. Let I =def Ind(X :
A){C1| · · · |Cn}. For each i = 1, . . . , n

Constr(i, I) : Ci[I/X]

Here Ci[I/X] denotes the result of substituting I for X in Ci.
For the examples above we have

Constr(1, I1) : I1 Constr(2, I1) : I1
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and
Constr(1, I2) : I2 Constr(2, I2) : I2 → I2.

Moreover,

Constr(1, I3) : I3 a,

With I3 = IAa this is as above. Further, for I4 = tcAR,

Constr(1, I4) : ∀x : A,∀y : A,Rx y → I4 x y

and
Constr(2, I4) : ∀x : A, ∀y : A, ∀z : A,X x y → Ry z → I4 x z

Let A = (∀x1 : M1,∀x2 : M2, . . . ,∀xm : Mm, s) be an arity, and let X : A. Let s′ be
a sort and

Q : ∀x1 : M1,∀x2 : M2, . . . ,∀xm : Mm, X x1 · · · xm → s′.

For C a constructor form and c : C we define inductively a type

C{X,Q, x}.

There are three cases to consider.

• (P → C){X,Q, c} =

∀p : P, (∀y1 : N1, . . . ,∀yr : Nr, Q t1 · · · tm (p y1 · · · yr))→ C{X,Q, c p}

where c : P → C and P = (∀y1 : N1, . . . ,∀yr : Nr, X t1 · · · tm) is strictly positive
in X a

• P = (∀x : M,C){X,Q, c} = ∀x : M,C{X,Q, c x} where c : (∀x : M,C) and X
does not occur in M .

• (X a1 · · · am){X,Q, c} = Qa1 · · · am c where c : X a1 · · · am.

The elimination and computation rules are then generated from these rules according
to the following method.

Γ ` Q′ : (∀x1 : M1,∀x2 : M2, . . . ,∀xm : Mm, I x1 · · · xm → s′)
Γ ` c′ : I a1 · · · am
Γ ` f1 : C1{X,Q, c}[I,Q′,Constr(1, I)/X,Q, c]
...
Γ ` fn : Cn{X,Q, c}[I,Q′,Constr(n, I)/X,Q, c])}

Elim(c,Q′){f1| · · · |fn} : Q′ a1 · · · am c′

Here Ci{X,Q, c} is a type that is constructed by recursion on its structure.
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10.4 Exercises

1. One of these definitions of inductive set is rejected by the Coq system. Can you
explain why with the help of the theory above?

Inductive Gadget (A:Set) : Set :=

gnil : Gadget A

| gconstr : (forall f: A-> A -> Gadget A, Gadget A).

Inductive Widget (A:Set) : Set :=

wnil : Widget A

| wconstr : (forall f: A-> Widget A -> A, Widget A).

2. Find the elimination rules for the inductive types defined in Sections 10.1 and 10.2.

3. In this problem we outline a formalization of the lazy addition example of Section
2.2. Define the set of arithmetical expressions as follows in Coq.

Inductive Aexp :Set :=

zer: Aexp

| suc: Aexp -> Aexp

| pls: Aexp -> Aexp -> Aexp.

A predicate for recognizing canonical expressions is given by

Definition Canonical (x:Aexp):Set :=

or (I Aexp x zer)

(Sigma Aexp (fun y =>

I Aexp x (suc y))).

The denotational semantics of these expressions are given by recursive definition

Definition denotation: Aexp- > N:=

fix F (a: Aexp): N :=

match a as a0 with

| zer => zero

| suc a1 => succ (F a1)

| pls a1 a2 => add (F a1) (F a2)

end.

The computation relation ; is given as an inductively defined relation
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Inductive Comp : Aexp -> Aexp -> Set :=

refrule: forall a: Aexp,

forall p: Canonical a, Comp a a

| zerrule: forall a b c:Aexp,

forall p: Comp b zer,

forall q: Comp a c,

Comp (pls a b) c

| sucrule: forall a b c:Aexp,

forall p: Comp b (suc c),

Comp (pls a b) (suc (pls a c)).

Theorem Only_canonical_results:

(forall x y: Aexp, Comp x y -> Canonical y).

Correctness: the computation relation preserves denotation of expressions.

Theorem correct_wrt_semantics:

(forall x y: Aexp, Comp x y ->

I N (denotation x) (denotation y)).

Theorem Comp_is_total: (forall x:Aexp,

(Sigma Aexp (fun y =>

prod (Comp x y) (Canonical y)))).
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Chapter 11

Semantics of Dependent Types

A main problem in semantics of dependent types is how to interpret the interaction of
substitutions with dependent type constructions. We follow here Hofmann (1997).

11.1 Categories with families

Definition 11.1.1. A category with families (CwF) consists of the following data

(a) A category C with a terminal object >. This is thought of as the category of
contexts and substitutions. For Γ ∈ C denote by !Γ the unique morphism Γ //>.

(b) For each object Γ of C, a class Ty(Γ) and for each morphism f : ∆ // Γ, a class
function Ty(f) : Ty(Γ) //Ty(∆), for which use the notation σ{f} for Ty(f)(σ),
to suggest that it is the result of performing the substitution f in the type σ.
These functions should satisfy, for all σ ∈ Ty(Γ), and g : Θ //∆, f : ∆ // Γ:

– σ{1Γ} = σ,

– σ{f ◦ g} = σ{f}{g}.

(Thus Ty may be regarded as a functor Cop // Class.)

(c) For each σ ∈ Ty(Γ), an object Γ.σ in C and a morphism p(σ) = pΓ(σ) : Γ.σ //Γ.
This tells that each context can be extended by a type in the context, and that
there is a projection from the extended context to the original one.

(d) For each σ ∈ Ty(Γ), there is a class Tm(Γ, σ) — thought of as the terms of
type σ. It should be such that for f : ∆ // Γ there is a class function Tm(f) :
Tm(Γ, σ)→ Tm(∆, σ{f}), where we write N{f} for Tm(f)(N). It should satisfy
the following

– N{1Γ} = N for N ∈ Tm(Γ, σ) (= Tm(Γ, σ{1Γ})).

106



– N{f ◦ g} = N{f}{g} for N ∈ Tm(Γ, σ)

(Note: Tm(Θ, σ{f ◦ g}) = Tm(Θ, σ{f}{g}).)

(e) For each σ ∈ Ty(∆) there is an element vσ ∈ Tm(∆.σ, σ{p(σ)}).

(f) For any morphism f : Γ //∆ and M ∈ Tm(Γ, σ{f}), there is

〈f,M〉σ : Γ //∆.σ.

This construction should satisfy

– p(σ) ◦ 〈f,M〉σ = f

– vσ{〈f,M〉σ} = M

(Note: vσ{〈f,M〉σ} ∈ Tm(Γ, σ{p(σ)}{〈f,M〉σ}) = Tm(Γ, σ{f}))
– 〈p(σ), vσ〉σ = 1Γ.σ

and moreover for any g : Θ // Γ,

〈f,M〉σ ◦ g = 〈f ◦ g,M{g}〉σ

(Remark: M{g} ∈ Tm(Θ, σ{f}{g}) = Tm(Θ, σ{f ◦ g}).)

Note that for any f : Γ //∆.σ, we have by the equations

f = 1Γ.σ ◦ f = 〈p(σ), vσ〉σ ◦ f = 〈p(σ) ◦ f, vσ{f}〉. (11.1)

Hence if g : Γ //∆.σ is such that p(σ) ◦ f = p(σ) ◦ g and vσ{f} = vσ{g}, then f = g.
In particular, we have

〈f,M〉σ = 〈f ′,M ′〉σ iff f = f ′ and M = M ′.

A context Γ is called finite if it has the form

Γ = >.σ1. . . . .σ.

Maps into such contexts can be described as follows.

Proposition 11.1.2. Suppose σ1 ∈ Ty(>), σ2 ∈ Ty(>.σ1), . . . , σn ∈ Ty(>.σ1. . . . .σ(n−1)).
Every f : Γ→ >.σ1. . . . .σn can be written uniquely as

f = 〈· · · 〈〈!Γ,M1〉σ1 ,M2〉σ2 , . . . ,Mn〉σn

where

Mi ∈ Tm(Γ, σi{〈· · · 〈〈!Γ,M1〉σ1 ,M2〉σ2 , . . . ,Mi−1〉σi−1
}) (i = 1, . . . , n).

Indeed Mi = vi{p(σi+1) · · · p(σn)f}, for i = 1, . . . , n.
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To motivate the operation q below consider the following construction. Let Fam(Γ)
be the class of families in context Γ ∈ C

{(σ, τ) : σ ∈ Ty(Γ), τ ∈ Ty(Γ.σ)}

For f : Θ // Γ we wish to define a map that performs substitution in a family

Fam(Γ) // Fam(Θ).

To do this we first define for f : Θ // Γ and σ ∈ Ty(Γ) a morphism q(f, σ) :
Θ.σ{f} // Γ.σ by

q(f, σ) =def 〈f ◦ p(σ{f}), vσ{f}〉σ.
Suppose τ ∈ Ty(Γ.σ). Then τ{q(f, σ)} ∈ Ty(Θ.σ{f}). Hence (σ{f}, τ{q(f, σ)}) ∈
Fam(Θ), whenever (σ, τ) ∈ Fam(Γ). We write

Fam(f)(σ, τ) = (σ{f}, τ{q(f, σ)}). (11.2)

Moreover, the following lemma will be used to prove that Fam is functorial.

Lemma 11.1.3. (a) q(1Γ, σ) = 1Γ.σ

(b) q(f ◦ g, σ) = q(f, σ) ◦ q(g, σ{f})

Proof. (a): q(1Γ, σ) = 〈1Γ ◦ p(σ{1Γ}), vσ{1Γ}〉σ = 〈p(σ), vσ〉σ = 1Γ.σ

(b):

q(f, σ) ◦ q(g, σ{f})
= 〈f ◦ p(σ{f}), vσ{f}〉σ ◦ 〈g ◦ p(σ{f}{g}), vσ{f}{g}〉σ{f}
= 〈f ◦ p(σ{f}) ◦ 〈g ◦ p(σ{f}{g}), vσ{f}{g}〉σ{f}, vσ{f}{〈g ◦ p(σ{f}{g}), vσ{f}{g}〉σ{f}}〉σ
= 〈f ◦ g ◦ p(σ{f}{g}), vσ{f}{g}}〉σ
= 〈f ◦ g ◦ p(σ{f ◦ g}), vσ{f◦g}〉σ = q(f ◦ g, σ).

Corollary 11.1.4. The operation Fam is functorial in the sense that

(a) Fam(1Γ) = idFam(Γ)

(b) For f : Θ // Γ and g : ∆ //Θ,

Fam(f ◦ g) = Fam(g) ◦ Fam(f).

For (σ, τ) ∈ Fam(Γ), and f : Θ // Γ we write

(σ, τ){f} = Fam(f)(σ, τ).

Lemma 11.1.5. q(f, σ){〈g,N〉} = 〈f ◦ g,N〉.
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11.2 Type constructions

We shall consider the type constructions Π, Σ, +, I, Nk and N below.

A CwF supports Π-types if for σ ∈ Ty(Γ) and τ ∈ Ty(Γ.σ) there is a type Π(σ, τ) ∈
Ty(Γ), and moreover for every P ∈ Tm(Γ.σ, τ) there is an element λσ,τ (P ) ∈ Tm(Γ,Π(σ, τ)),
and furthermore for any M ∈ Tm(Γ,Π(σ, τ)) and any N ∈ Tm(Γ, σ) this is an element
Appσ,τ (M,N) ∈ Tm(Γ, τ{〈1Γ, N〉σ}), such that the following equations hold for any
f : Θ // Γ:

(β-conv) Appσ,τ (λσ,τ (P ), N) = P{〈1Γ, N〉σ},

(Π-subst) Π(σ, τ){f} = Π(σ{f}, τ{q(f, σ)}),

(λ-subst) λσ,τ (P ){f} = λσ{f},τ{q(f,σ)}(P{q(f, σ)}),

(App-subst) Appσ,τ (M,N){f} = Appσ{f},τ{q(f,σ)}(M{f}, N{f}).

Remark: The substitution f acts as Fam(f) on the family σ, τ in the last three
equations.

Omitting type information from terms (which is not computationally relevant) the
equations above simply read:

App(λ(P ), N) = P{〈1, N〉},

Π(σ, τ){f} = Π(σ{f}, τ{q(f)}),

λ(P ){f} = λ(P{q(f)}),

App(M,N){f} = App(M{f}, N{f}).

A CwF supports Σ-types if for σ ∈ Ty(Γ) and τ ∈ Ty(Γ.σ) there is a type Σ(σ, τ) ∈
Ty(Γ), and for M ∈ Tm(Γ, σ) and N ∈ Tm(Γ, τ{〈1Γ,M〉σ}) there is an element
Pairσ,τ (M,N) ∈ Tm(Γ,Σ(σ, τ)). These constructions should satisfy for any f : ∆ //Γ

(Σ-subst) Σ(σ, τ){f} = Σ(σ{f}, τ{q(f, σ)}),

(Pair-subst) Pairσ,τ (M,N){f} = Pairσ{f},τ{q(f,σ)}(M{f}, N{f})

Note that:

N{f} ∈ Tm(∆, τ{〈1Γ,M〉σ}{f})
= Tm(∆, τ{〈1Γ ◦ f,M{f}〉σ})
= Tm(∆, τ{〈f,M{f}〉σ})
= Tm(∆, τ{〈f ◦ p(σ{f}), vσ{f}〉σ}{〈1∆,M{f}〉σ{f}}
= Tm(∆, τ{q(f, σ)}{〈1∆,M{f}〉σ{f}}.
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So by (Σ-subst) both sides of (Pair-subst) have the same type. Next we need to specify
the elimination operation E. First we construct a substitution

pairσ,τ : Γ.σ.τ → Γ.Σ(σ, τ)

by
pairσ,τ =def 〈p(σ)p(τ),Pairσ{p(σ)p(τ)},τ{q(p(σ)p(τ),σ)}(vσ{p(τ)}, vτ )〉.

For any ρ ∈ Ty(Γ.Σ(σ, τ)), for any P ∈ Tm(Γ,Σ(σ, τ)) and for anyK ∈ Tm(Γ.σ.τ, ρ{pairσ,τ})
there is an element

Eσ,τ,ρ(P,K) ∈ Tm(Γ, ρ{〈1Γ, P 〉Σ(σ,τ)})
such that

(Σ-conv) Eσ,τ,ρ(Pairσ,τ (M,N), K) = K{〈〈1Γ,M〉σ, N〉τ}.

Moreover for any f : ∆→ Γ, we require

(E-subst) Eσ,τ,ρ(P,K){f} = Eσ{f},τ{q(f,σ)},ρ{q(f,Σ(σ,τ))}(P{f}, K{q(q(f, σ), τ)}).

Again omitting type information from terms the equations above read:

Σ(σ, τ){f} = Σ(σ{f}, τ{q(f)}),

Pair(M,N){f} = Pair(M{f}, N{f})

E(Pair(M,N), K) = K{〈〈1,M〉, N〉}.

E(P,K){f} = E(P{f}, K{q(q(f))}).

A CwF supports +-types if for σ, τ ∈ Ty(Γ) there is a type σ + τ ∈ Ty(Γ), and for
each M ∈ Tm(Γ, σ) there is inlσ,τ (M) ∈ Tm(Γ, σ+τ), and for each N ∈ Tm(Γ, τ) there
is inrσ,τ (N) ∈ Tm(Γ, σ + τ). For all f : ∆→ Γ, these construction should satisfy

(+-subst) (σ + τ){f} = σ{f}+ τ{f}

(inl-subst) inlσ,τ (M){f} = inlσ{f},τ{f}(M{f})

(inr-subst) inrσ,τ (N){f} = inrσ{f},τ{f}(N{f})

Furthermore for each ρ ∈ Ty(Γ.σ + τ), each P ∈ Tm(Γ, σ + τ) and each pair

K1 ∈ Tm(Γ.σ, ρ{〈p(σ), inlσ{p(σ)},τ{p(σ)}(vσ)〉σ+τ})

and
K2 ∈ Tm(Γ.τ, ρ{〈p(τ), inrσ{p(τ)},τ{p(τ)}(vτ )〉σ+τ})

there is
Dσ,τ,ρ(P,K1, K2) ∈ Tm(Γ, ρ{〈1Γ, P 〉})

such that
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(+-conv1) Dσ,τ,ρ(inlσ,τ (M), K1, K2) = K1{〈1Γ,M〉σ}

(+-conv2) Dσ,τ,ρ(inrσ,τ (N), K1, K2) = K2{〈1Γ, N〉τ}.

Moreover for any f : ∆→ Γ, the construction D should satisfy

(D-subst) Dσ,τ,ρ(P,K1, K2){f} = Dσ{f},τ{f},ρ{q(f,σ+τ)}(P{f}, K1{q(f, σ)}, K2{q(f, τ)})

Without type information the terms, the equations above read

(σ + τ){f} = σ{f}+ τ{f}

inl(M){f} = inl(M{f})

inr(N){f} = inr(N{f})

D(inl(M), K1, K2) = K1{〈1,M〉}

D(inr(N), K1, K2) = K2{〈1, N〉}.

D(P,K1, K2){f} = D(P{f}, K1{q(f)}, K2{q(f)})

A CwF supports I-types if for any σ ∈ Ty(Γ), and any M,N ∈ Tm(Γ, σ) there is
a type I(σ,M,N) ∈ Ty(Γ), and for any M ∈ Tm(Γ, σ), there is an element rσ(M) ∈
I(σ,M,M). These constructions should satisfy for each f : ∆→ Γ

(I-subst) I(σ,M,N){f} = I(σ{f},M{f}, N{f})

(r-subst) rσ(M){f} = rσ{f}(M{f})

For any

ρ ∈ Ty(Γ.σ.σ{p(σ)}.I(σ{p(σ)p(σ{p(σ)})}, vσ{p(σ{p(σ)})}, vσ{p(σ)})),

any P ∈ Tm(Γ, I(σ,M,N)) and any K ∈ Tm(Γ.σ, ρ{〈〈〈p(σ), vσ〉, vσ〉, rσ(vσ)〉}), there
is

Jσ,ρ(P,K) ∈ Tm(Γ, ρ{〈〈〈1Γ,M〉, N〉, P 〉})

such that

(I-conv) Jσ,ρ(rσ(M), K) = K{〈1Γ,M〉σ}

Moreover for any f : ∆→ Γ,

(J-subst) Jσ,ρ(P,K){f} = Jσ{f},ρ{q(q(q(f,σ),σ{p(σ)}),I(σ{p(σ)p(σ{p(σ)})},vσ{p(σ{p(σ)})},vσ{p(σ)}))}(P{f}, K{q(f, σ)})

Omitting the type information from the terms the equations above are follows

I(σ,M,N){f} = I(σ{f},M{f}, N{f})
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r(M){f} = r(M{f})

J(r(M), K) = K{〈1,M〉}

J(P,K){f} = J(P{f}, K{q(f)})

A CwF supports Nk-types if for every Γ ∈ C there is Nk,Γ ∈ Ty(Γ) and k elements

0k,Γ, . . . , (k − 1)k,Γ ∈ Tm(Γ,Nk,Γ)

such that for any f : ∆→ Γ,

(Nk-subst) Nk,Γ{f} = Nk,∆

(ik-subst) ik,Γ{f} = ik,∆.

Moreover for any ρ ∈ Ty(Γ.Nk,Γ) and any Mi ∈ Tm(Γ, ρ{〈1Γ, ik,Γ〉}) (i = 0, . . . , k − 1)
and any P ∈ Tm(Γ,Nk,Γ), there is

Rk,Γ,ρ(P,M0, . . . ,Mk−1) ∈ Tm(Γ, ρ{〈1Γ, P 〉}

which is such that

(Nk-conv) Rk,Γ,ρ(ik,Γ,M0, . . . ,Mk−1) = Mi

and for f : ∆→ Γ,

(Nk-subst) Rk,Γ,ρ(P,M0, . . . ,Mk−1){f} = Rk,∆,ρ{q(f)}(P{f},M0{f}, . . . ,Mk−1{f}).

Shedding the type information from terms we have the following equations

Nk{f} = Nk

ik{f} = ik

Rk(ik,M0, . . . ,Mk−1) = Mi

Rk(P,M0, . . . ,Mk−1){f} = Rk(P{f},M0{f}, . . . ,Mk−1{f}).

A CwF supports natural numbers if for every Γ ∈ C there is NΓ ∈ Ty(Γ) and
0Γ ∈ Tm(Γ,NΓ), and for any N ∈ Tm(Γ,NΓ), SΓ(N) ∈ Tm(Γ,NΓ), such that for any
f : ∆→ Γ,

(N-subst) NΓ{f} = N∆

(0-subst) 0Γ{f} = 0∆.
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(S-subst) SΓ(N){f} = S∆(N{f})

Moreover for any ρ ∈ Ty(Γ.NΓ), M ∈ Tm(Γ, ρ{〈1Γ, 0Γ〉}), P ∈ Tm(Γ,NΓ) and K ∈
Tm(Γ.NΓ.ρ, ρ{〈p(NΓ) ◦ p(ρ), SΓ.NΓ.ρ(vNΓ

{p(ρ)})〉NΓ
}), there is

RΓ,ρ(P,M,K) ∈ Tm(Γ, ρ{〈1Γ, P 〉})

which is such that

(N-conv1) RΓ,ρ(0Γ,M,K) = M

(N-conv2) RΓ,ρ(SΓ(P ),M,K) = K{〈〈1Γ, P 〉NΓ
,RΓ,ρ(P,M,K)〉ρ}

and for f : ∆→ Γ,

(N-subst) RΓ,ρ(P,M,K){f} = R∆,ρ{q(f,NΓ})(P{f},M{f}, K{q(q(f,NΓ), ρ)}).

Without type information on the terms the above equations now read

N{f} = N

0{f} = 0.

S{f} = S(N{f})

R(0,M,K) = M

R(S(P ),M,K) = K{〈〈1, P 〉,R(P,M,K)〉}

R(P,M,K){f} = R(P{f},M{f}, K{q(q(f))}).

11.3 A variable free formulation of type theory

From the semantic components we obtain eight judgement forms

Γ ∈ C Γ ctxt
Γ = ∆ ∈ C Γ = ∆
f ∈ HomC(∆,Γ) f :: ∆ // Γ
f = g ∈ HomC(∆,Γ) f = g :: ∆ // Γ
σ ∈ Ty(Γ) Γ ` σ set
σ = τ ∈ Ty(Γ) Γ ` σ = τ
M ∈ Tm(Γ, σ) Γ `M : σ
M = N ∈ Tm(Γ, σ) Γ `M = N : σ
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The axioms for a CwF supporting the type constructions Π, Σ, +, I, Nk andN may
be formulated in rule form, and gives then a variable-free formulation of type theory
with explicit substitution. (A formulation of type theory with explicit substitution was
given by Martin-Löf 1992).

Γ ctxt
1 :: Γ // Γ

f :: Θ //∆ g :: ∆ // Γ

g ◦ f :: Θ // Γ

f :: Θ //∆

f ◦ 1 = f :: Θ //∆

f :: Θ //∆

1 ◦ f = f :: Θ //∆

f :: Θ //∆ g :: ∆ // Γ h :: Γ //Ψ

h ◦ (g ◦ f) = (h ◦ g) ◦ f :: Θ //Ψ

> ctxt
Γ ctxt

! :: Γ //>
f :: Γ //>

f = ! :: Γ //>

Γ ctxt Γ ` σ set
Γ.σ ctxt

Γ ctxt Γ ` σ set
p :: Γ.σ // Γ

∆ ` σ set f :: Γ //∆

Γ ` σ{f} set

Γ ` σ set
Γ ` σ{1} = σ

Γ ` σ set f :: Θ //∆ g :: ∆ // Γ

Γ ` σ{g ◦ f} = σ{g}{f}

Γ ` N : σ
Γ ` N{1} = N : σ

Γ ` N : σ f :: Θ //∆ g :: ∆ // Γ

Γ ` N{g ◦ f} = N{g}{f} : σ{g ◦ f}

Γ ` σ set
Γ.σ ` v : σ{p}

f :: Γ //∆ Γ ` σ set Γ `M : σ{f}
〈f,M〉 :: Γ //∆.σ

f :: Γ //∆ Γ ` σ set Γ `M : σ{f}
p ◦ 〈f,M〉 = f :: Γ //∆

f :: Γ //∆ Γ ` σ set Γ `M : σ{f}
v{〈f,M〉} = M : σ{f}

〈p, v〉 = 1
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f :: Γ //∆ Γ ` σ set Γ `M : σ{f} g :: Θ // Γ

〈f,M〉 ◦ g = 〈f ◦ g,M{g}〉

Γ ` σ set Γ.σ ` τ set
Γ ` Π(σ, τ) set

Γ.σ ` P : τ
Γ ` λ(P ) : Π(σ, τ)

Γ `M : Π(σ, τ) Γ ` N : σ

Γ ` App(M,N) : τ{〈1, N〉}

Γ.σ ` P : τ Γ ` N : σ
Γ ` App(λ(P ), N) = P{〈1, N〉} : τ{〈1, N〉}

Γ ` σ set Γ.σ ` τ set f :: ∆ // Γ

∆ ` Π(σ, τ){f} = Π(σ{f}, τ{〈f ◦ p, v〉})

Γ.σ ` P : τ f :: ∆ // Γ

∆ ` λ(P ){f} = λ(P{〈f ◦ p, v〉}) : Π(σ{f}, τ{〈f ◦ p, v〉})

Γ `M : Π(σ, τ) Γ ` N : σ f :: ∆ // Γ

∆ ` App(M,N){f} = App(M{f}, N{f}) : τ{〈f,N{f}〉}

Γ ` σ set Γ.σ ` τ set
Γ ` Σ(σ, τ) set

Γ `M : σ Γ ` N : τ{〈1,M〉}
Γ ` Pair(M,N) : Σ(σ, τ)

Γ.Σ(σ, τ) ` ρ set Γ ` P : Σ(σ, τ) Γ.σ.τ ` K : ρ{〈p ◦ p,Pair(v{p}, v)〉}
Γ ` E(P,K) : ρ{〈1, P 〉}

Γ.Σ(σ, τ) ` ρ set Γ `M : σ Γ ` N : τ{〈1,M〉} Γ.σ.τ ` K : ρ{〈p ◦ p,Pair(v{p}, v)〉}
Γ ` E(Pair(M,N), K) = K{〈〈1,M〉, N〉} : ρ{〈1,Pair(M,N)〉}

Γ ` σ set Γ.σ ` τ set f :: ∆ // Γ

∆ ` Σ(σ, τ){f} = Σ(σ{f}, τ{〈f ◦ p, v〉})
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Γ `M : σ Γ ` N : τ{〈1,M〉} f :: ∆ // Γ

∆ ` Pair(M,N){f} = Pair(M{f}, N{f}) : Σ(σ, τ){f}

Γ.Σ(σ, τ) ` ρ set Γ ` P : Σ(σ, τ) Γ.σ.τ ` K : ρ{〈p ◦ p,Pair(v{p}, v)〉} f :: ∆ // Γ

∆ ` E(P,K){f} = E(P{f}, K{〈〈f ◦ p ◦ p, v{p}〉, v〉}) : ρ{〈f, P{f}〉}

Γ ` σ set Γ ` τ set
Γ ` σ + τ set

Γ `M : σ Γ ` τ set
Γ ` inl(M) : σ + τ

Γ ` σ set Γ ` N : τ
Γ ` inr(N) : σ + τ

Γ.σ + τ ` ρ Γ ` P : σ + τ Γ.σ ` K1 : ρ{〈p, inl(v)〉} Γ.τ ` K2 : ρ{〈p, inr(v)〉}
Γ ` D(P,K1, K2) : ρ{〈1, P 〉}

Γ.σ + τ ` ρ Γ `M : σ Γ.σ ` K1 : ρ{〈p, inl(v)〉} Γ.τ ` K2 : ρ{〈p, inr(v)〉}
Γ ` D(inl(M), K1, K2) = K1{〈1,M〉} : ρ{〈1, inl(M)〉}

Γ.σ + τ ` ρ Γ ` N : τ Γ.σ ` K1 : ρ{〈p, inl(v)〉} Γ.τ ` K2 : ρ{〈p, inr(v)〉}
Γ ` D(inl(N), K1, K2) = K2{〈1, N〉} : ρ{〈1, inr(N)〉})

Γ ` σ set Γ ` τ set f :: ∆ // Γ

Γ ` (σ + τ){f} = σ{f}+ τ{f}

Γ `M : σ Γ ` τ set f :: ∆ // Γ

Γ ` inl(M){f} = inl(M{f}) : σ + τ

Γ ` σ set Γ ` N : τ f :: ∆ // Γ

Γ ` inr(N){f} = inr(N{f}) : σ + τ

Γ.σ + τ ` ρ Γ ` P : σ + τ Γ.σ ` K1 : ρ{〈p, inl(v)〉} Γ.τ ` K2 : ρ{〈p, inr(v)〉} f :: ∆ // Γ

Γ ` D(P,K1, K2){f} = D(P{f}, K1{〈f ◦ p, v〉}, K2{〈f ◦ p, v〉}) : ρ{〈f, P{f}〉}

Γ ` σ set Γ `M : σ Γ ` N : σ
Γ ` I(σ,M,N) set
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Γ `M : σ
Γ ` r(M) : I(σ,M,M)

Γ.σ.σ{p}.I(σ{p ◦ p}, v{p}, v) ` ρ set Γ ` P : I(σ,M,N) Γ.σ ` K : ρ{〈〈〈p, v〉, v〉, r(v)〉}
Γ ` J(P,K) : ρ{〈〈〈1,M〉, N〉, P 〉}

Γ ` σ set Γ `M : σ Γ ` N : σ f :: ∆ // Γ

∆ ` I(σ,M,N){f} = I(σ{f},M{f}, N{f})

Γ `M : σ f :: ∆ // Γ

∆ ` r(M){f} = r(M{f}) : I(σ{f},M{f},M{f})

Γ.σ.σ{p}.I(σ{pp}, v{p}, v) ` ρ set Γ ` P : I(σ,M,N) Γ.σ ` K : ρ{〈〈〈p, v〉, v〉, r(v)〉} f :: ∆ // Γ

∆ ` J(P,K){f} = J(P{f}, K{q(f)}) : ρ{〈〈〈f,M{f}〉, N{f}〉, P{f}〉}

Γ ctxt
Γ ` Nk set (k = 0, 1, 2, . . .)

Γ ` ik : Nk (i = 0, . . . , k − 1)

Γ.Nk ` ρ set Γ ` P : Nk Γ `M0 : ρ{〈1, 0k〉} · · · Γ `Mk−1 : ρ{〈1, (k − 1)k〉}
Γ ` Rk(P,M0, . . . ,Mk−1) : ρ{〈1, P 〉}

Γ.Nk ` ρ set Γ `M0 : ρ{〈1, 0k〉} · · · Γ `Mk−1 : ρ{〈1, (k − 1)k〉}
Γ ` Rk(ik,M0, . . . ,Mk−1) = Mi : ρ{〈1, ik〉}

f :: ∆→ Γ

∆ ` Nk{f} = Nk

f :: ∆→ Γ

∆ ` ik{f} = ik : Nk

Γ.Nk ` ρ set Γ ` P : Nk Γ `M0 : ρ{〈1, 0k〉 · · · Γ `Mk−1 : ρ{〈1, (k − 1)k〉 f :: ∆→ Γ

∆ ` R(P,M0, . . . ,Mk−1){f} = R(P{f},M0{f}, . . . ,Mk−1{f}) : ρ{〈f, P{f}〉
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Γ ctxt
Γ ` N set

Γ ctxt
Γ ` 0 : N set

Γ `M : N
Γ ` S(M) : N

Γ.N ` ρ set Γ ` P : N Γ `M : ρ{〈1, 0〉} Γ.N.ρ ` K : ρ{〈p ◦ p, S(v{p})〉}
Γ ` R(P,M,K) : ρ{〈1, P 〉}

Γ.N ` ρ set Γ `M : ρ{〈1, 0〉} Γ.N.ρ ` K : ρ{〈p ◦ p, S(v{p})〉}
Γ ` R(0,M,K) = M : ρ{〈1, 0〉}

Γ.N ` ρ set Γ ` P : N Γ `M : ρ{〈1, 0〉} Γ.N.ρ ` K : ρ{〈p ◦ p, S(v{p})〉}
Γ ` R(S(P ),M,K) = K{〈〈1, P 〉,R(P,M,K)〉} : ρ{〈1, S(P )〉}

f :: ∆→ Γ

∆ ` N{f} = N

f :: ∆→ Γ

∆ ` 0{f} = 0 : N

Γ `M : N f :: ∆→ Γ

∆ ` S(M){f} = S(M{f}) : N

Γ.N ` ρ set Γ ` P : N Γ `M : ρ{〈1, 0〉} Γ.N.ρ ` K : ρ{〈p ◦ p, S(v{p})〉} f :: ∆→ Γ

Γ ` R(P,M,K){f} = R(P{f},M{f}, K{q(q(f))}) : ρ{〈f, P{f}〉}

11.3.1 Another variant

The syntax may be further simplified and brought closer to that of (Martin-Löf 1992).
See also (Coquand et. al. 2007). Write

fg for f ◦ g, fgh for (f ◦ g) ◦ h etc.
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σf for σ{f}, σfg for σ{f}{g} etc.

Nf for N{f}, Nfg for N{f}{g} etc.

ε for !

Γ ctxt
1 :: Γ // Γ

f :: Θ //∆ g :: ∆ // Γ

g ◦ f :: Θ // Γ

f :: Θ //∆

f1 = f :: Θ //∆

f :: Θ //∆

1f = f :: Θ //∆

f :: Θ //∆ g :: ∆ // Γ h :: Γ //Ψ

h(gf) = (hg)f :: Θ //Ψ

> ctxt
Γ ctxt

ε :: Γ //>
f :: Γ //>

f = ε :: Γ //>

Γ ctxt Γ ` σ set
Γ.σ ctxt

Γ ctxt Γ ` σ set
p :: Γ.σ // Γ

∆ ` σ set f :: Γ //∆

Γ ` σf set

Γ ` σ set
Γ ` σ1 = σ

Γ ` σ set f :: Θ //∆ g :: ∆ // Γ

Γ ` σ(gf) = σgf

Γ ` N : σ
Γ ` N1 = N : σ

Γ ` N : σ f :: Θ //∆ g :: ∆ // Γ

Γ ` N(gf) = Ngf : σ(gf)

Γ ` σ set
Γ.σ ` v : σp

f :: Γ //∆ Γ ` σ set Γ `M : σf

〈f,M〉 :: Γ //∆.σ

f :: Γ //∆ Γ ` σ set Γ `M : σf

p〈f,M〉 = f :: Γ //∆

f :: Γ //∆ Γ ` σ set Γ `M : σf

v〈f,M〉 = M : σf

〈p, v〉 = 1
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f :: Γ //∆ Γ ` σ set Γ `M : σf g :: Θ // Γ

〈f,M〉g = 〈fg,Mg〉

Γ ` σ set Γ.σ ` τ set
Γ ` Π(σ, τ) set

Γ.σ ` P : τ
Γ ` λ(P ) : Π(σ, τ)

Γ `M : Π(σ, τ) Γ ` N : σ

Γ ` App(M,N) : τ〈1, N〉

Γ.σ ` P : τ Γ ` N : σ
Γ ` App(λ(P ), N) = P 〈1, N〉 : τ〈1, N〉

Γ ` σ set Γ.σ ` τ set f :: ∆ // Γ

∆ ` Π(σ, τ)f = Π(σf, τ〈fp, v〉)

Γ.σ ` P : τ f :: ∆ // Γ

∆ ` λ(P )f = λ(P 〈fp, v〉) : Π(σf, τ〈fp, v〉)

Γ `M : Π(σ, τ) Γ ` N : σ f :: ∆ // Γ

∆ ` App(M,N)f = App(Mf,Nf) : τ〈f,Nf〉

Γ ` σ set Γ.σ ` τ set
Γ ` Σ(σ, τ) set

Γ `M : σ Γ ` N : τ〈1,M〉
Γ ` Pair(M,N) : Σ(σ, τ)

Γ.Σ(σ, τ) ` ρ set Γ ` P : Σ(σ, τ) Γ.σ.τ ` K : ρ〈pp,Pair(vp, v)〉
Γ ` E(P,K) : ρ〈1, P 〉

Γ.Σ(σ, τ) ` ρ set Γ `M : σ Γ ` N : τ〈1,M〉 Γ.σ.τ ` K : ρ〈pp,Pair(vp, v)〉
Γ ` E(Pair(M,N), K) = K〈〈1,M〉, N〉 : ρ〈1,Pair(M,N)〉

Γ ` σ set Γ.σ ` τ set f :: ∆ // Γ

∆ ` Σ(σ, τ)f = Σ(σf, τ〈fp, v〉)

Γ `M : σ Γ ` N : τ〈1,M〉 f :: ∆ // Γ

∆ ` Pair(M,N)f = Pair(Mf,Nf) : Σ(σ, τ)f
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Γ.Σ(σ, τ) ` ρ set Γ ` P : Σ(σ, τ) Γ.σ.τ ` K : ρ〈pp,Pair(vp, v)〉 f :: ∆ // Γ

∆ ` E(P,K)f = E(Pf,K〈〈fpp, vp〉, v〉) : ρ〈f, Pf〉

Γ ` σ set Γ ` τ set
Γ ` σ + τ set

Γ `M : σ Γ ` τ set
Γ ` inl(M) : σ + τ

Γ ` σ set Γ ` N : τ
Γ ` inr(N) : σ + τ

Γ.σ + τ ` ρ Γ ` P : σ + τ Γ.σ ` K1 : ρ〈p, inl(v)〉 Γ.τ ` K2 : ρ〈p, inr(v)〉
Γ ` D(P,K1, K2) : ρ〈1, P 〉

Γ.σ + τ ` ρ Γ `M : σ Γ.σ ` K1 : ρ〈p, inl(v)〉 Γ.τ ` K2 : ρ〈p, inr(v)〉
Γ ` D(inl(M), K1, K2) = K1〈1,M〉 : ρ〈1, inl(M)〉

Γ.σ + τ ` ρ Γ ` N : τ Γ.σ ` K1 : ρ〈p, inl(v)〉 Γ.τ ` K2 : ρ〈p, inr(v)〉
Γ ` D(inl(N), K1, K2) = K2〈1, N〉 : ρ〈1, inr(N)〉

Γ ` σ set Γ ` τ set f :: ∆ // Γ

Γ ` (σ + τ)f = σf + τf

Γ `M : σ Γ ` τ set f :: ∆ // Γ

Γ ` inl(M)f = inl(Mf) : σ + τ

Γ ` σ set Γ ` N : τ f :: ∆ // Γ

Γ ` inr(N)f = inr(Nf) : σ + τ

Γ.σ + τ ` ρ Γ ` P : σ + τ Γ.σ ` K1 : ρ〈p, inl(v)〉 Γ.τ ` K2 : ρ〈p, inr(v)〉 f :: ∆ // Γ

Γ ` D(P,K1, K2)f = D(Pf,K1〈fp, v〉, K2〈fp, v〉) : ρ〈f, Pf〉

Γ ` σ set Γ `M : σ Γ ` N : σ
Γ ` I(σ,M,N) set

Γ `M : σ
Γ ` r(M) : I(σ,M,M)
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Γ.σ.σp.I(σpp, vp, v) ` ρ set Γ ` P : I(σ,M,N) Γ.σ ` K : ρ〈〈〈p, v〉, v〉, r(v)〉
Γ ` J(P,K) : ρ〈〈〈1,M〉, N〉, P 〉

Γ ` σ set Γ `M : σ Γ ` N : σ f :: ∆ // Γ

∆ ` I(σ,M,N)f = I(σf,Mf,Nf)

Γ `M : σ f :: ∆ // Γ

∆ ` r(M)f = r(Mf) : I(σf,Mf,Mf)

Γ.σ.σp.I(σpp, vp, v) ` ρ set Γ ` P : I(σ,M,N) Γ.σ ` K : ρ〈〈〈p, v〉, v〉, r(v)〉 f :: ∆ // Γ

∆ ` J(P,K)f = J(Pf,K〈fp, v〉) : ρ〈〈〈f,Mf〉, Nf〉, Pf〉

Γ ctxt
Γ ` Nk set (k = 0, 1, 2, . . .)

Γ ` ik : Nk (i = 0, . . . , k − 1)

Γ.Nk ` ρ set Γ ` P : Nk Γ `M0 : ρ〈1, 0k〉 · · · Γ `Mk−1 : ρ〈1, (k − 1)k〉
Γ ` Rk(P,M0, . . . ,Mk−1) : ρ〈1, P 〉

Γ.Nk ` ρ set Γ `M0 : ρ〈1, 0k〉 · · · Γ `Mk−1 : ρ〈1, (k − 1)k〉
Γ ` Rk(ik,M0, . . . ,Mk−1) = Mi : ρ〈1, ik〉

f :: ∆→ Γ

∆ ` Nkf = Nk

f :: ∆→ Γ

∆ ` ikf = ik : Nk

Γ.Nk ` ρ set Γ ` P : Nk Γ `M0 : ρ〈1, 0k〉 · · · Γ `Mk−1 : ρ〈1, (k − 1)k〉 f :: ∆→ Γ

∆ ` R(P,M0, . . . ,Mk−1)f = R(Pf,M0f, . . . ,Mk−1f) : ρ〈f, Pf〉

Γ ctxt
Γ ` N set
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Γ ctxt
Γ ` 0 : N set

Γ `M : N
Γ ` S(M) : N

Γ.N ` ρ set Γ ` P : N Γ `M : ρ〈1, 0〉 Γ.N.ρ ` K : ρ〈pp, S(vp)〉
Γ ` R(P,M,K) : ρ〈1, P 〉

Γ.N ` ρ set Γ `M : ρ〈1, 0〉 Γ.N.ρ ` K : ρ〈pp, S(vp)〉
Γ ` R(0,M,K) = M : ρ〈1, 0〉

Γ.N ` ρ set Γ ` P : N Γ `M : ρ〈1, 0〉 Γ.N.ρ ` K : ρ〈pp, S(vp)〉
Γ ` R(S(P ),M,K) = K〈〈1, P 〉,R(P,M,K)〉 : ρ〈1, S(P )〉

f :: ∆→ Γ

∆ ` Nf = N

f :: ∆→ Γ

∆ ` 0f = 0 : N

Γ `M : N f :: ∆→ Γ

∆ ` S(M)f = S(Mf) : N

Γ.N ` ρ set Γ ` P : N Γ `M : ρ〈1, 0〉 Γ.N.ρ ` K : ρ〈pp, S(vp)〉 f :: ∆→ Γ

Γ ` R(P,M,K)f = R(Pf,Mf,K〈〈fpp, vp〉, v〉) : ρ〈f, Pf〉
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[9] Per Martin-Löf (1984), Intuitionistic Type Theory. Notes by Giovanni Sambin of
a series of lectures given in Padua 1980. Bibliopolis.
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