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Abstract

In this paper a stochastic model for the spread of tick-borne diseases amongst cattle,

that incorporates the stage structure of the tick vector, is formulated. Using a three-

type branching process approximation, a threshold quantity, determining if a major

outbreak is possible, is derived as well as outbreak probabilities when above thresh-

old. The approximation is based on the assumption that, at the initial stages of the

epidemic, the sub-populations of susceptible larvae, nymphs and adult ticks as well as

cattle are sufficiently large, while those of the infectives are small. Expressions for the

endemic levels in case of a major outbreak are also derived.

The results are compared with those of a one stage model. It is shown that the two

models are distinctively different, with the ”homogeneous version” of the present model

having a smaller threshold quantity, smaller outbreak probability and lower endemic

levels of infectives.
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1 Introduction

In sub-Saharan Africa, ticks and tick-borne diseases are a major economic constraint to

livestock production. The tick-borne diseases that pose a threat to livestock in this region

include East Coast Fever transmitted by the parasite Theileria parva and spread by the

tick vector Rhicephalus appendiculatus, heartwater caused by Cowdria ruminatium and

spread by the tick vector Amblyomma hebraeum and babesiosis caused by Babesia bigemina

and spread by the tick vector Boophilus microplus. These diseases have a massive impact

through loss of animals and reduction of their productivity when they recover ([1]). High

costs associated with the control of ticks and treatment of the diseases further contributes

to the poverty of cattle owners and there is therefore a continuous effort to manage these

diseases ([1]; International Livestock Research Institute website,www.ilri.org). Concern

over these diseases has led to the development of mathematical models either describing

the tick population and/or the disease transmission dynamics by several authors: [2]-[8].

Several authors have also developed mathematical models for tick borne diseases affecting

humans,([9]-[11]) among others.

The life cycle of a tick consists of four developmental stages namely egg, larvae, nymph

and adult. Ticks are generally categorised according to the number of stages of the tick

that require to attach on to a host for a blood meal. There are one-host ticks that attach

only once at the larvae stage, there are two-host ticks that attach at the larvae and adult

stages and finally the three-host ticks that attach at the larvae, nymph and adult stages

2



([1]). The disease transmission dynamics therefore vary as the parasites which cause the

diseases are transmitted by both the tick and host through feeding on the host. The model

to be developed in the present paper considers a three-host tick as they are more abundant

in Sub-Saharan Africa. Moreover the tick vectors Cowdria ruminatium and Rhicephalus

appendiculatus, which transmit heartwater and East Coast Fever diseases that have the

largest impact on the community, are three-host ticks ([12]). For the three-host ticks,

larvae and nymphs develop to nymphs and adults respectively after a complete blood meal

and detachment from a host. For an adult tick, after detaching from a host it either dies or

lays eggs if it is a female and then dies. For a tick to get infected and become infectious, it

must feed on an infectious host, detach and develop to the next stage. Therefore only the

larvae and nymphs can get infected and only the nymphs and adults can infect susceptible

hosts. Once a tick is infectious it remains so throughout its remaing life cycle, thus a larvae

that gets infected can infect at most two hosts at its nymph and adult stages.

Wangombe et al.[8] developed a stochastic model describing the disease dynamics for a

tick borne disease amongst cattle. The model defined is a seven dimensional Markov process.

In the model, the three stages of the tick vector were combined into one compartment and

the tick was only classified according to its infection status and whether or not it is attached

to a host. For the host population it was categorised as susceptible, infected or recovered.

Using a branching process approximation, a threshold condition which determines whether

the epidemic may take off in the tick-cattle system was derived. Also the probabilty that

an epidemic takes off is derived as well as expressions for the endemic level.

In the present paper we build on the model of [8] by dividing the ticks into the three

developmental stages of larvae, nymph and adult. A threshold quantity which is a function
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of the population dynamics and transmission parameters and the probability of a major

outbreak occurring are derived using branching process approximation. In case of a major

outbreak, expressions for endemic level are also derived. Model parameters of a ”homoge-

neous version” of the present model are compared with the one stage model of [8]. One

comparison involves calibrating the population dynamics of the tick-host system while the

other comparison involves calibrating the endemic levels of the attached ticks and hosts

for both models. For both comparisons, we compare the thresholds and probability of

an outbreak and it is shown that the ”homogeneous version” of the present model has a

smaller threshold quantity and lower probability of a major outbreak occurring for both

comparisons.

The rest of the paper is organized as follows: In Section 2 we describe the model. In Section

3 we derive the threshold conditions for the persistence of the disease as well as the proba-

bility of a major outbreak occurring using branching process approximations. The endemic

levels are also derived for the case of being above threshold. In Section 4 we calibrate the

model parameters and compare the present model with the model in [8]. In Section 5 we

assess the results of Sections 3 and 4 using numerical examples and simulations. Finally in

Section 6 we have a discussion and summary of results obtained.

2 A stochastic epidemic model

A stochastic epidemic model incorporating the different stages a tick vector undergoes in

its life cycle is defined. The host population is classified as susceptible (HS), infected (HI)

and recovered (HR). The tick population is classified according to the three developmental

stages as larvae (L), nymphs (N) and adults (A). The egg stage is not incorporated into
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the model as it is not directly related to the disease transmission dynamics. Each tick stage

is further classified according to whether it is attached to a host or detached as well as its

infection status (susceptible or infected). This classification of the ticks leads to categories

such as LDS , the number of detached susceptible larvae; LAI , the number of attached

infected larvae and so on. For each stage the first index denotes detachment/attachment

and the second index denotes the infection status. The categories are eleven in total. Eggs

laid by female adult ticks that hatch to become detached larvae are susceptible and hence

there are no detached infected larvae (LDI). Let the total number of attached larvae,

nymphs and adults be denoted by LA, NA and AA; i.e LA = LAS + LAI , NA = NAS + NAI

and AA = AAS +AAI . Similarly let LD = LDS , ND = NDS +NDI and AD = ADS +ADI be

the total number of detached larvae, nymphs and adult ticks. Finally let the total number

of attached ticks be KA, KA = LA + NA + AA.

2.1 Model definition

2.1.1 Host population dynamics without ticks and disease

We want a model such that the host population (per unit area) fluctuates around a constant

value M , i.e H(t) ' M . The simple way to achieve this is to have the host birth rate µM

constant and each host have a death rate µ, implying that the overall death rate is µH(t).

2.1.2 Vector-host interaction system without the disease

The tick population is assumed to have no impact on the births and deaths in the host

population so the host dynamics remain as described above.

The production rate of eggs is assumed to be proportional to the total number of attached
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adult ticks, AA(t). The eggs produced then hatch to become larvae and therefore we can

let the rate at which larvae are produced be proportional to the attached adult ticks. Let

ρ be the rate at which larvae are produced per attached adult tick, then the rate at which

detached larvae are produced is ρAA(t).

At each stage of larvae, nymph and adult; a tick attaches to a host. The attachment

rate of each stage is treated as a decreasing function of the total number of attached ticks

KA(t), and an increasing function of the host population H(t). A tick at the larvae, nymph

or adult stage encounters a host at the rates αL, αN or αA. The functions chosen for

the attachment rates of larvae, nymph and adult stages are αLH(t)
1+KA(t) ,

αN H(t)
1+KA(t) and αAH(t)

1+KA(t)

respectively. These functions are one of the many possible choices of the attachment rates

that can be used.

Attached ticks at the larvae, nymph and adult stages detach at the respective rates dL,

dN and dA. Mortality of attached ticks is neglected. Detached ticks at larvae, nymph and

adult stages die at respective rates δL, δN and δA.

2.1.3 Vector-Host-Disease interaction system

The nymph and adult ticks as well as the hosts may transmit the parasite that causes the

disease. An infective nymph, while attached to a susceptible host infects the host at the

rate λN , and the probability that the nymph is attached to a susceptible host is HS
M , hence

the overall infection transmission rate from nymph to host is λNNAI(t)
HS(t)

M . Similarly, an

infected adult tick may infect a susceptible host it is attached to at the rate λA and hence

the overall infection transmission rate from an adult tick to a host is λAAAI(t)
HS(t)

M .

While infectious, a host may infect a susceptible larvae attached to it at the rate βL,

and since the average number of susceptible attached larvae per host is LAS
M , the overall
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transmission rate from host to larvae is βLHI(t)
LAS(t)

M . Similarly, an infective host may

infect a susceptible nymph attached to it at the rate βN , hence the overall transmission

rate from host to nymph is βNHI(t)
NAS(t)

M . A susceptible adult tick that gets infected plays

no role in the epidemic process as it dies after detaching from the host it was attached to

or if it is a female it lays uninfected eggs and dies.

An infected host dies at the rate µ or recovers at the rate γ, hence the overall death and

recovery rates are µHI(t) and γHI(t) respectively. Recovered hosts die at the rate µHR(t)

The model is denoted by:

(LDS , LAS , LAI , NDS, NAS, NDI , NAI , ADS , AAS , ADI , AAI , HS, HI , HR) =

{LDS(t), LAS(t), LAI(t), NDS(t), NAS(t), NDI(t), NAI(t), ADS(t), AAS(t),

ADI(t), AAI(t), HS(t), HI(t), HR(t); t > 0}

It is a fourteen dimensional Markov process with respective jump intensities as illustrated

in Figure 1. The jump intensities are rates per individual host or tick except for ρAA and

µM .
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Figure 1: Schematic representation of the model

Assumptions of the model : We have made the following assumptions;

(i) There is uniform mixing of the hosts and ticks. This implies that any larvae has an

equal chance of attaching to a host and similarly for the nymph and adult tick.

(ii) The environmental conditions are constant and ticks are constantly developing into

various stages.

(iii) Susceptible attached larvae and nymphs get infected at a rate proportional to the

total number of infectious hosts and thus the infection status of the actual host the

larvae (nymph) is attached to is not relevant.

(iv) The attachment rate of each stage of the tick is proportional to the total number of

ticks attached in the system and not the number attached to a particular host.

(v) All hosts have the same susceptibility and that there is no increased death rate of

infectious hosts due to the disease.
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Figure 2: Schematic representation of the stages of the disease-free tick-host interaction

system

2.2 Disease free equilibrium state

Let us first consider the tick-host system before any disease is introduced.The uninfected

tick-host interaction system is a Markov process with jump rates as illustrated in Figure 2.

This sub-system is in equilibrium when the rates at which the individuals of the various

subpopulations enter the subsystem are equal to the rates at which they leave the subsystem.

Beginning with the host population,

µM = µHS(t),

thus giving

ĤS = M.
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For the tick population, it is at equilibrium when the incoming rates are equal to the

outgoing rates for each tick stage, (see Figure 2). Thus;

ρAAS(t) =
(

δL +
αLHS(t)

1 + KAS(t)

)
LDS(t)

αLHS(t)
1 + KAS(t)

LDS(t) = dLLAS(t)

dLLAS(t) =
(

δN +
αNHS(t)

1 + KAS(t)

)
NDS(t)

αNHS(t)
1 + KAS(t)

NDS(t) = dNNAS(t)

dNNAS(t) =
(

δA +
αAHS(t)

1 + KAS(t)

)
ADS(t)

αAHS(t)
1 + KAS(t)

ADS(t) = dAAAS(t).

Using 1 + KAS ' KAS , we obtain;

L̂DS =
ραAM

dA(δLK̂AS + αLM)
ÂDS

L̂AS =
ραLM

dL(δLK̂AS + αLM)
ÂAS

N̂DS =
αLM

δN K̂AS + αNM
L̂DS

N̂AS =
dLαNM

dN (δNK̂AS + αNM)
L̂AS (1)

ÂDS =
αNM

δAK̂AS + αAM
N̂DS

ÂAS =
dNαAM

dA(δAK̂AS + αAM)
N̂AS

where K̂AS = L̂AS + N̂AS + ÂAS . There is no explicit solution for (1). However from the

equations the average number of attached ticks per host K̂AS
M at equilibrium satistifies the

condition

(
δL

K̂AS

M
+ αL

)(
δN

K̂AS

M
+ αN

)(
δA

K̂AS

M
+ αA

)
= αLαNαA

ρ

dA
. (2)
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For Equation (2) to have a positive solution for K̂AS
M , it is necessary that ρ > dA. Since

only attached adult ticks give birth to new ticks, the tick birth rate ρ has to be greater

than the detachment rate dA for the tick population to be able to survive. From now on

we assume that ρ > dA.

3 Branching process

At the early stages of an epidemic in a population which is divided into several categories

of distinguishable individuals, each having a large number of susceptible individuals and

few infected individuals; the number of infectives can often be approximated by a multi-

type branching process ([13], [14]). In multi-type branching processes, individuals in the

population are categorised into a finite number of types and each individual behaves inde-

pendently. An individual of a given type can produce offsprings of possibly all types and

individuals of the same type have the same offspring distribution of all type of individuals

([15],Ch 11; [16], Ch 4)

In the present model, the disease is spread by individuals of three types: infective

attached nymphs, infective attached adult ticks and infective hosts. An infective attached

nymph produces one infective attached adult tick when it detaches from a host, develops

to become an infected detached adult and then attaches to a host. It may also produce one

infective host if attached to a susceptible host. An infective attached adult tick produces

one infective host if it infects the susceptible host it is attached to. Finally, an infective host

may infect susceptible larvae and nymphs attached to it, which in turn detach, moult and

may attach to other hosts becoming attached infected nymphs and attached infected adults

respectively. Assuming the uninfected tick-host interaction system is in equilibrium at the
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time when the disease is introduced in the system with a few infectives of the three types

then at the early stages the number of infectives in the population can be approximated by

a three type branching process.

3.1 Threshold condition for persistence of disease

Let the infected host be of type 0, infected attached nymphs be of type 1 and infected

attached adults be of type 2. Further let {Xij ; i, j = 0, 1, 2} be the number of infectives

of type j produced by an infective of type i and let cij = E [Xij ]. We derive the offspring

distribution and its mean matrix.

An infected host infects larvae according to a Poisson process with rate βL
L̂AS
N during

its infectious period which is exponentially distributed with intensity (µ + γ). The Poisson

distribution is an approximation since assume that the average number of susceptible larvae

per host is large and constant over the infectious period so that the binomial distribution

can be approximated using Poisson. An infected larvae then becomes an infected attached

nymph with probability αN M

δN T̂AS+αN M
as a detached infected nymph either attaches at the

rate

αNH(t)
1 + KA(t)

' αN ĤS

K̂A

' αNM

K̂A

since we assume large populations for the susceptible ticks and hosts, or it dies at the rate

δN .

Conditioning on the length I of the infectious period, the number of infective nymphs

produced by one infective host,X01, is Poisson distributed with rate βL
αN M

δNK̂A+αN M
I L̂AS

M .

Thus the number of infective attached nymphs, X01, produced is mixed Poisson distributed
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and the expected number is;

E [X01] = E (E[X01|I ])

= E

[
βL

L̂A

M

αNM

δNK̂A + αNM
I

]

=

[
αNβLL̂A

δN K̂A + αNM

]
E[I ]

=
αNβLL̂A

(δN K̂A + αNM)(µ + γ)

as L̂AS = L̂A at the initial stages of the epidemic.

In a similar manner, an infectious host produces infective attached adult ticks when it infects

susceptible nymphs attached to it which then become infected attached adults. Given

that the infected host infects the nymphs according to a Poisson process with rate βN
N̂A
M ,

(N̂AS = N̂A) and the infected nymphs become attached infected adults with probability

αAM

δAK̂A+αAM
; X02 too is mixed Poisson distributed (the mean of the distribution is given

below).

An infectious host can not directly infect another host thus X00 ≡ 0.

The expected number of infective hosts, infective attached nymphs and infective attached

adults produced by one infective host are hence

c00 = E [X00] = 0,

c01 = E [X01] =
αNβLL̂A

(δNK̂A + αNM)(µ + γ)
,

c02 = E [X02] =
αAβNN̂A

(δAK̂A + αAM)(µ + γ)
.

An infected attached nymph produces one infective host if it attaches onto a susceptible host

and infects it before detaching. While attached to the host for a period that is exponentially

distributed with intensity dN , it infects it at the rate λN since the probability of attaching
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to a susceptible host at the initial stages is one (HS
M ' 1). Thus

P (X10 = 0) =
dN

dN + λN
,

P (X10 = 1) =
λN

dN + λN
.

An infected attached nymph can not directly infect an attached nymph hence X11 ≡ 0.

An infected attached nymph becomes an infected attached adult if it detaches, successfully

develops to become an infected detached adult which then attaches onto a host before

dying. Thus

P (X12 = 0) =
δAK̂A

δAK̂A + αAM
,

P (X12 = 1) =
αAM

δAK̂A + αAM
.

The expected number of infective hosts, infective attached nymphs and infective attached

adults produced by one infective attached nymph are hence

c10 = E [X10] =
λN

dN + λN
,

c11 = E [X11] = 0,

c12 = E [X12] =
αAM

δAK̂A + αAM
.

An infected attached adult tick can only produce an infected host hence X21 ≡ X22 ≡ 0.

While an infected adult is attached to a susceptible host for a time period which is expo-

nentially distributed with intensity dA, it infects the host at the rate λA before detaching.

Thus

P (X20 = 0) =
dA

dA + λA
,

P (X20 = 1) =
λA

dA + λA
.
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The expected number of infective hosts, infective attached nymphs and infective attached

adults produced by one infective attached adult are hence

c20 = E [X20] =
λA

dA + λA
,

c21 = E [X21] = 0,

c22 = E [X22] = 0.

Let C = {cij}2
i,j=0 be the expectation matrix;

C =




0 αNβLL̂A

(δNK̂A+αN M)(µ+γ)

αAβNN̂A

(δAK̂A+αAM)(µ+γ)

λN
dN+λN

0 αAM

δAK̂A+αAM

λA
dA+λA

0 0




.

Let the characteristic polynomial of C be f(λ);

f(λ) = λ3 − λ

(
αNβLL̂A

(δN K̂A + αNM)(µ + γ)
λN

dN + λN
+

αAβNN̂A

(δAK̂A + αAM)(µ + γ)
λA

dA + λA

)

− λA

dA + λA

αNβLL̂A

(δN K̂A + αNM)(µ + γ)
αAM

δAK̂A + αAM
.

The eigen-values of C are the roots of the equation,

f(λ) = 0.

From the signs of the coefficients of f(λ), we can conclude that f(λ) has an unique

positive root and since C is a non-negative matrix, the largest positive root is greater than

one if and only if f(1) < 0, that is if

T∗ =
αNβLL̂A

(δNK̂A + αNM)(µ + γ)
λN

dN + λN
+

αAβN N̂A

(δAK̂A + αAM)(µ + γ)
λA

dA + λA

+
αNβLL̂A

(δNK̂A + αNM)(µ + γ)
αAM

δAK̂A + αAM

λA

dA + λA
> 1. (3)
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T∗ is the threshold quantity for the tick-host system when the disease is introduced at

equlibrium. It increases in the attachment rates for nymphs and adults; infection rates from

nymphs and adults to hosts respectively as well as the infection rates from hosts to nymphs

and adults respectively. It decreases in the detachment rates for nymphs and adults; the

mortality rates of the nymphs and adults; the death and recovery rate of the hosts. T∗

also depends on the average number of attached susceptible ticks per host in the system.

If we express the number of attached susceptible ticks in terms of the average number at-

tached per host as in Equation (2), we observe that T∗ also increases in the tick birth rate.

The expression T∗ can be interpreted as the average number of infectious hosts produced

indirectly by one primary infectious host: for the first term of the sum, an infectious host

produces on average αNβLL̂A

(δNK̂A+αN M)(µ+γ)
infected nymphs and each nymph will infect a sus-

ceptible host with probability λN
dN+λN

; for the second term, an infectious host produces on

average αAβNN̂A

(δAK̂A+αAM)(µ+γ)
infected adult ticks and each adult infects a susceptible host with

probability λA
dA+λA

; and finally, each of the αNβLL̂A

(δNK̂A+αN M)(µ+γ)
infected nymphs produced by

an infectious host will produce an infected adult with probability αAM

δAK̂A+αAM
and the in-

fected adult will then infect a susceptible host with probability λA
dA+λA

. Therefore T∗ is the

mean of a single type branching process approximation for the hosts. This approximation

is otherwise rather complicated to calculate as the probability distribution of the offspring

distribution is not easily attainable. A result that is almost similar to T∗ is a threshold

quantity obtained by Rosà et al.[11] for a deterministic model for tick borne diseases trans-

mitted by three-host ticks. The main difference is that in [11], the infection transmission

is defined in terms of detached (questing) ticks while in this paper we define the infection

transmission in terms of attached ticks.
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3.2 Probability of a major outbreak occurring

Let the probability generating function of the offspring distribution of infectives produced

by an infective of type i (i = 0, 1, 2), be Gi(s) = E
[∏2

j=0 s
Xij

j

]
, where Xij is as defined

in the previous section and s = (s0, s1, s2) . The probability that a minor outbreak of

the disease occurs given that there are ki infectives initially of each of the three types is

π = qk0
0 qk1

1 qk2
2 , where q is the solution of s = G(s) that is closest to the origin in the unit

cube [0, 1]3.

Since X01 and X02 are Poisson distributed conditioned on the infectious period I of the

host, and X00 ≡ 0; the probability generating function of the number of infected hosts,

infected attached nymphs and infected attached adults produced by one infected host is;

G0(s) = E
[
sX00
0 sX01

1 sX02
2

]
= E

[
E[sX01

1 sX02
2 |I ]

]

= E
(
E
[
sX01
1 |I

]
E
[
sX02
2 |I

])

Let b1 = αN βLL̂AS

δN K̂A+αN M
, b2 = αAβNN̂AS

δAK̂A+αAM

Now,

E
[
sX01
1 |I = t

]
=

∞∑

x=0

sx
1

(b1t)x e−b1t

x!

= e−(b1t)(1−s1)

Similarly,

E
[
sX02
2 |I = t

]
= e−(b2t)(1−s2)
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Thus

E
[
E
(
sX01
1 |I

)(
sX02
2 |I

)]
= E[e−(b1(1−s1)+b2(1−s2))I ]

=
∫ ∞

0
(µ + γ) e−(µ+γ)te−(b1(1−s1)+b2(1−s2))IdI

=
µ + γ

µ + γ + b1(1− s1) + b2(1 − s2)
.

Substituting b1 and b2, the probability generating function is

G0(s) =
(µ + γ)

(µ + γ) + αNβLL̂A(1−s1)

(δNK̂A+αN M)
+ αAβNN̂A(1−s2)

(δAK̂A+αAM)

(4)

Since X11 ≡ 0, X10 and X12 are either equal to 0 or 1, the probability generating function

of the number of infected hosts, infected attached nymphs and infected attached adults

produced by one infected attached nymph is

G1(s) = E
[
sX10
0 sX11

1 sX12
2

]
= E[sX10

0 ]E[sX12
2 ]

=
(
P (X10 = 0)s0

0 + P (X10 = 1)s1
0

) (
P (X12 = 0)s0

2 + P (X12 = 1)s1
2

)

=
[
dN + λNs0

dN + λN

] [
δN K̂A + αNMs2

δN K̂A + αNM

]
(5)

Finally, X21 ≡ X22 ≡ 0 and X20 is either equal to zero or one, therefore the probability

generating function of the number of infected hosts, infected attached nymphs and infected

attached adults produced by one infected attached adult is

G2(s) = E
[
sX20
0 sX21

1 sX22
2

]

= E[sX20
0 ] =

(
P (X20 = 0)s0

0 + P (X20 = 1)s1
0

)

=
dA + λAs0

dA + λA
(6)
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The analytic solution for s = G(s) is quite complex to derive but let ŝ0, ŝ1 and ŝ2

denote the solutions. Further let qi=min(1,ŝi), i = 0, 1, 2,and k0, k1, k2 be the initial

number of infective hosts, attached infective nymphs and attached infective adults; then it

follows from branching process theory (Ch II, Harris, 1989) that

(i) q0 = q1 = q2 = 1 when T∗ ≤ 1 and q0 < 1,q1 < 1, q2 < 1 when T∗ > 1.

(ii) the probability of a minor outbreak occuring is π = qk0
0 qk1

1 qk2
2

(iii) the probabilty of a major outbreak is 1− π.

3.3 Endemic level

We now consider states where the system may be in equilibrium, the disease free equilib-

rium was already derived in Section 2.2. For the model defined, T∗ is used to assess this

equilibrium. If the disease is present initially in the tick-host system, then when T∗ ≤ 1

very few infections occur and the epidemic fades out quickly. On the other hand when

T∗ > 1 the epidemic may take off in the system and become endemic, taking the tick and

host populations to an infection level known as the endemic level. At this level, the tick-

host system is said to be in an endemic equilibrium state. This state is actually not a true

equilibrium when considering a finite population; eventually the disease will die out. Prior

to this the endemic equilibrium is a so called quasi-stationary distribution.

Using similar arguments as in [18] and [19], as the tick vector and host populations

increase then, by the law of large numbers, the fourteen dimensional stochastic process

converges to the trajectories of a fourteen dimensional deterministic dynamical system.
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As M → ∞, then suppose at t = 0,

(
LDS(0)

M
,
LAS(0)

M
,
LAI(0)

M

)
p
→ (lDS(0), lAS(0), lAI(0))

(
NDS(0)

M
,
NAS(0)

M
,
NDI(0)

M
,
NAI(0)

M

)
p
→ (nDS(0), nAS(0), nDI(0), nAI(0))

(
ADS(0)

M
,
AAS(0)

M
,
ADI(0)

M
,
AAI (0)

M

)
p
→ (aDS(0), aAS(0), aDI(0), aAI(0)))

(
HS(0)

M
,
HI(0)

M
,
HR(0)

M

)
p
→ (hS(0), hI(0), hR(0))

then at time t, 0 < t ≤ u,(u is any finite time),

(
LDS(t)

M
,
LAS(t)

M
,
LAI(t)

M

)
p
→ (lDS(t), lAS(t), lAI(t))

(
NDS(t)

M
,
NAS(t)

M
,
NDI(t)

M
,
NAI(t)

M

)
p
→ (nDS(t), nAS(t), nDI(t), nAI(t))

(
ADS(t)

M
,
AAS(t)

M
,
ADI(t)

M
,
AAI(t)

M

)
p
→ (aDS(t), aAS(t), aDI(t), aAI(t))

(
HS(t)

M
,
HI(t)
M

,
HR(t)

M

)
p
→ (hS(t), hI(t), hR(t)).
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The vector

(lDS(t), lAS(t), lAI(t), nDS(t), nAS(t), nDI(t), nAS(t), aDS(t), aAS(t), aDI(t), aAI(t), hS(t), hI(t), hR(t))

is deterministic and is the solution of

l′DS(t) = ρaA(t)− δLlDS(t) − αLh(t)lDS(t)
KA(t)

l′AS(t) =
αLh(t)lDS(t)

KA(t)
− dLlAS(t) − βLhI(t)lAS(t)

l′AI(t) = βLhI(t)lAS(t)− dLlAI(t)

n′
DS(t) = dLlAS(t)− δNnDS(t) − αNh(t)nDS(t)

KA(t)

n′
AS(t) =

αNh(t)nDS(t)
KA(t)

− dNnAS(t) − βNhI(t)nAS(t)

n′
DI(t) = dLlAI(t) − δNnDI (t)−

αNh(t)nDI(t)
KA(t)

n′
AI(t) =

αNh(t)nDI(t)
KA(t)

+ βNhI(t)nAS(t) − dNnAI(t) (7)

a′DS(t) = dNnAS(t) − δAaDS(t) − αAh(t)aDS(t)
KA(t)

a′AS(t) =
αAh(t)aDS(t)

KA(t)
− dAaAS(t)

a′DI(t) = dNnAI(t) − δAaDI(t) −
αAh(t)aDI(t)

KA(t)

a′AI(t) =
αAh(t)aDI(t)

KA(t)
− dAaAI (t)

h′
S(t) = µ − µhS(t) − (λNnAI(t) + λAaAI(t))hS(t)

h′
I(t) = (λNnAI (t) + λAaAI (t))hS(t) − µhI(t) − γhI(t)

h′
R(t) = γhI(t) − µhR(t)

For the model of Equation (7),

(i) If lAI(0) = nDI(0) = nAI (0) = aDI(0) = aAI(0) = hI(0) = 0, then the tick-host

system starts in disease free equilibrium and it remains in that state.
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(ii) If lAI(0)+nDI(0)+nAI(0)+aDI(0)+aAI(0)+hI(0) > 0 and T∗ ≤ 1, then the tick-host

system converges to the disease free equilibrium as t → ∞.

(iii) If lAI(0)+nDI(0)+nAI(0)+aDI(0)+aAI(0)+hI(0) > 0 and T∗ > 1, a unique endemic

equilibrium for the tick-host system exists.

Disease free equilibrium:

If lAI(0) = nDI(0) = nAI (0) = aDI(0) = aAI(0) = hI(0) = 0 the deterministic system is:

l′DS(t) = ρaA(t) − δLlDS(t) − αLh(t)lDS(t)
KA(t)

l′AS(t) =
αLh(t)lDS(t)

KA(t)
− dLlAS(t)

n′
DS(t) = dLlAS(t) − δNnDS(t) − αNh(t)nDS(t)

KA(t)

n′
AS(t) =

αNh(t)nDS(t)
KA(t)

− dNnAS(t)

a′DS(t) = dNnAS (t)− δAaDS(t) − αAh(t)aDS(t)
KA(t)

a′AS(t) =
αAh(t)aDS(t)

KA(t)
− dAaAS(t)

h′
S(t) = µ − µhS(t)

Equating this system of equations to zero;

l̂DS =
ρâAK̂A

αL + δLK̂A

l̂AS =
αLl̂DS

K̂AdL

n̂DS =
dLK̂Al̂AS

αN + δN K̂A

n̂AS =
αN n̂DS

K̂AdN

âDS =
dN K̂An̂AS

αA + δAK̂A

âAS =
αAâDS

dAK̂A

ĥS = 1
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Further l̂DS = l̂D, l̂AS = l̂A, n̂DS = n̂D, n̂AS = n̂A, âDS = âD, âAS = âA and ĥS = ĥ.

Alternatively, if lAI(0) + nDI (0) + nAI(0) + aDI(0) + aAI(0) + hI (0) > 0 and T∗ ≤ 1,

then

[lAI(t), nDI(t), nAI(t), aDI(t), aAI(t), hI(t), hR(t)] → [0, 0, 0, 0, 0, 0, 0] as t → ∞

and

[lDS(t), lAS(t), nDS(t), nAS(t), aDS(t), aAS(t), hS(t)] → [l̂D, l̂A, n̂D, n̂A, âD, âA, ĥ] as t → ∞

Endemic equilibrium state:

When T∗ > 1, then the epidemic may attain an endemic equilibrium state. This state is

the solution of the system of equations in (7) with all derivatives equated to zero.
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Using h(t) = 1 and k̂A = K̂A
M , the solution can be shown to satisfy

l̂DS =
ρâAk̂A

αL + δLk̂A

l̂AS =
αLl̂DS

k̂A(dL + βLĥI)

l̂AI =
βLĥI l̂AS

dL

n̂DS =
dLk̂Al̂AS

αN + δN k̂A

n̂AS =
αN n̂DS

k̂A(dN + βN ĥI)

n̂DI =
dLk̂Al̂AI

αN + δN k̂A

n̂AI =
αN n̂DI + βN ĥI n̂AS k̂A

k̂AdN

(8)

âDS =
dN k̂An̂AS

αA + δAk̂A

âAS =
αAâDS

dAk̂A

âDI =
dN k̂An̂AI

αA + δAk̂A

âAI =
αAâDI

dAk̂A

ĥS =
µ

µ + λN n̂AI + λAâAI

ĥI =
µ(λN n̂AI + λAâAI)

(µ + γ) (µ + λN n̂AI + λAâAI)

ĥR =
γ(λNn̂AI + λAâAI )

(µ + γ) (µ + λN n̂AI + λAâAI)

In the stochastic model (Ml̂DS , Mn̂DS, Mn̂DI , MâDS, MâDI , ) is the endemic level for

the detached ticks; (Ml̂AS , Ml̂AI , Mn̂AS , Mn̂AS , MâASMâAI ) for the attached ticks and

(MĥS , MĥI , MĥR) for the host population. The tick-host system will fluctuate around this

level for a long period of time for large M before going into extinction.
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4 Calibration of the models

We now compare the threshold quantity, the probability of a major outbreak occurring and

the endemic level of the present model and the one developed by Wangombe et al.[8] where

all stages of a tick are combined in one compartment. The purpose of the comparison is to

find out if the more detailed model for the tick life cycle significantly changes the behaviour

of the model after we make the two models as similar as possible through calibrating their

model parameters.

To begin with, we define what we call the homogeneous version of the present model.

For the homogeneous setting, we let αL = αN = αA := α, dL = dN = dA := d, δL = δN =

δA := δ, βL = βN := β and λN = λA := λ. The homogeneous version of the present model

and the model of [8] will henceforth be referred to as the homogeneous model and one-state

model respectively.

4.1 Equating the population dynamics and transmission parameters

To equate the population dynamics and infection transmission parameters; let the tick

attachment rate, tick detachment rate, host birth (death) rate, host recovery rate, trans-

mission rate from host to tick and transmission rate from tick to host have the same notation

for both models.

Two parameters will differ for the two models, the tick birth rate and tick death rate.

With regard to the tick birth rates, for the one-state model, the birth rate of the ticks

is proportional to the total number of attached ticks whereas in the homogeneous model

the tick birth rate is proportional to the total number of adult attached ticks. Also with

regard to the tick death rates, for the one-state model ticks leave the system through death
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of detached ticks and in the present model, the ticks leave the system through death of

detached larvae, detached nymphs, detached adults (before attaching) and attached adults

who detach and die. Thus to make the population dynamics of the tick-host system equal in

the two models we adjust the birth and death rates of the homogeneous model (see Fig.3).

Figure 3: An illustration of the difference between the homogeneous and one-state model,

the big boxes and arrows to and from them represent the one-state model while the smaller

boxes with arrows to and from them represent the homogeneous model.
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Let ρ1 and δ1 be the tick birth and death rates for the one-state model. Then we want

ρ1(LA(t) + NA(t) + AA(t)) = ρAA(t),

δ1(LD(t) + ND(t) + AD(t)) = δ(LD(t) + ND(t) + AD(t)) + dAA(t).

To solve for ρ1 and δ1 we use Equations (1) and (2) so as to obtain the total number

of attached (detached) larvae, nymphs and adult ticks. Substituting the parameters of the

homogeneous model in Equation (2),

(
δ
K̂A

M
+ α

)3

= α3 ρ

d

K̂A

M
=

α

δ

((ρ

d

) 1
3 − 1

)
.

Using the result for K̂A
M in Equation (1),

L̂A

M
=

α
(

ρ
d −

(ρ
d

) 2
3

)

δ
((ρ

d

) 2
3 +

(ρ
d

) 1
3 + 1

) ,

N̂A

M
=

α
((ρ

d

) 2
3 −

(ρ
d

) 1
3

)

δ
((ρ

δ

) 2
3 +

(ρ
δ

) 1
3 + 1

) ,

ÂA

M
=

α
((

ρ
d

) 1
3 − 1

)

δ
((ρ

d

) 2
3 +

(ρ
d

) 1
3 + 1

) ,

L̂D

M
=

ρα

δ2

((
ρ
d

) 1
3 − 1

)2

(ρ
d

)1
3
(ρ

d

) 1
3

((ρ
d

) 2
3 +

(ρ
d

)1
3 + 1

) ,

N̂D

M
=

ρα

δ2

((
ρ
d

) 1
3 − 1

)2

(ρ
d)

2
3

((ρ
d

) 2
3 +

(ρ
d

)1
3 + 1

) ,

ÂD

M
=

ρα

δ2

((ρ
d

) 1
3 − 1

)2

ρ
d

((ρ
d

) 2
3 +

(ρ
d

) 1
3 + 1

) .
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Thus

ρ1 =
ρÂA

L̂A + N̂A + ÂA

=
ρ((ρ

d

) 2
3 +

(ρ
d

) 1
3 + 1

) , (9)

and

δ1 = δ +
ÂA

L̂D + N̂D + ÂD

=
(

ρ

ρ − d

)
δ. (10)

For the one-state model, the average number of attached ticks per host is

αρ1

δ1d
,

αρ1

δ1d
=

α

d

ρ((ρ
d

) 2
3 +

(ρ
d

) 1
3 + 1

) ρ − d

ρδ

=
α

δ

((ρ

d

) 1
3 − 1

)
.

Let the total number of detached larvae, nymphs and adults be KD, then K̂D = L̂D +N̂D +

ÂD,

K̂D

M
=

α

δ2
d

((ρ

d

) 1
3 − 1

)2

.

For the one-state model, the average number of detached ticks per host is

αρ2
1

dδ2
,

αρ2
1

dδ2
= K̂A

ρ1

δ1

=
α

δ

((ρ

d

) 1
3 − 1

)
ρ((ρ

d

) 2
3 +

(ρ
d

)1
3 + 1

) ρ − d

ρδ

=
α

δ2
d

((ρ

d

) 1
3 − 1

)2

,
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where the last equality follows from simple algebra. The tick-host system is in the same

equilibrium state for the two models.

Comparison of threshold quantity

Let the threshold quantity for the one-state model be T
(1)
∗ and for the homogeneous model

be T
(2)
∗ . The threshold quantity for the one-state model ( reffered to as T in [8]) is

βλα
(
1 + ρ1

d

)

δ1(λ + d)(µ + γ)
.

Using Equations (9) and (10)

T
(1)
∗ =

βαλ
((ρ

d

) 1
3 − d

ρ

)

δ(µ + γ)(λ + d)
. (11)

Using Equation (3), the threshold quantity for the homogeneous model is

T
(2)
∗ =

βλα
((ρ

d

) 2
3 +

(ρ
d

) 1
3 − 2

)

δ(λ + d)(µ + γ)
((

ρ
d

)2
3 +

(
ρ
d

) 1
3 + 1

) . (12)

This implies that

T
(1)
∗

T
(2)
∗

=

((ρ
d

)1
3 − d

ρ

)((ρ
d

) 2
3 +

(ρ
d

) 1
3 + 1

)

((ρ
d

) 2
3 +

(ρ
d

) 1
3 − 2

) > 1, since ρ > d.

From this we conclude that T
(2)
∗ < T

(1)
∗ . The new model hence always has a smaller

threshold T∗. The reason for this is that a tick can only infect at most two hosts in the

new model whereas it may infect more in the one-state model. Analysis of this result is

explored using numerical examples in Section 5. For cases where both T
(1)
∗ and T

(2)
∗ are

larger than one, we compare the probability of major outbreak and endemic level.
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4.2 Equating the endemic levels of attached ticks and hosts

In the previous subsection, we saw that the threshold quantity of the homogeneous model

is lower than that of the one-state model and consequently we expect the probability of a

major outbreak occurring and endemic levels of the homogeneous model to be lower. We

now adjust the calibration by making the endemic levels of the attached ticks and hosts

identical in the two models. It is not possible to have all the three endemic levels of de-

tached ticks, attached ticks and hosts identical so we exclude the detached ticks as they do

not directly lead to infection of either ticks or hosts.

Let β1 and λ1 be the infection transmission rate from host to tick and tick to host respec-

tively for the one-state model. We fix these values for the one-state model and then find

values for β and λ for the homogeneous model that give the same endemic levels. Using

numerical examples we will compare the probability of a major outbreak occurring and the

threshold quantity for the two models using this calibration.

5 Numerical examples

In this section we give examples to illustrate the results obtained in Sections 3 and 4.

5.1 The stage-structured stochastic epidemic model

The parameter values of the tick and host population dynamics as well as the infection

transmission are based on the work of [20], [21], [4] and [7]. The tick attachment rates, tick

detachment rates, tick mortality rates, host birth rate, host recovery rate are reciprocal

of mean time (in days) to the event. The tick birth rate is the number of eggs laid per

adult attached tick per day while the infection transmission rates have been estimated
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using the same idea as [8], i.e for the transmission rate from nymph (adult) to host, it is

a product of the rate at which the nymph (adult) feeds on the host and the probability

that an infectious nymph (adult) transmits the infection. Similarly, the transmission rate

from host to larvae (nymph) is a product of the feeding rate and the probability that an

infectious host transmits the infection.We vary the tick attachment, tick detachment and

the infection transmission rates simultaneously for the different stages of larvae, nymph and

adult while keeping the rest of the parameters fixed. The resulting cases are sixteen and

are given in Table 1.

5.1.1 Threshold quantity

Using Equations (1), (2) and (3); we compute the threshold quantity for the sixteen cases.

The results are summarised in Table 1. From the results we observe that T∗ has the largest

value when the tick attachment rates and the infection transmission rates are high and tick

detachment rates are low. Also T∗ increases when the tick attachment rates and infection

rates are increased individually while holding all other parameters constant. The results

concur with the dependencies observed earlier in Section 3.
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Table 1: Different parameter values for βL, βN , λN , λA αL , αN , αA,dL daN , dA; and the

corresponding threshold parameter T∗ with fixed values δL=0.02, δN =0.015, δA =0.005, ρ=0.75,

µ=0.0006 and γ=0.05.

Case βL βN λN λA αL αN αA dL dN dA T∗

1 0.01 0.016 0.005 0.008 0.05 0.1 0.15 0.5 0.2 0.125 0.03

2 0.05 0.08 0.005 0.008 0.05 0.1 0.15 0.5 0.2 0.125 0.15

3 0.05 0.08 0.020 0.032 0.05 0.1 0.15 0.5 0.2 0.125 0.50

4 0.01 0.016 0.020 0.008 0.05 0.1 0.15 0.5 0.2 0.125 0.10

5 0.01 0.016 0.005 0.008 0.05 0.1 0.15 0.1 0.07 0.05 0.19

6 0.05 0.08 0.005 0.008 0.05 0.1 0.15 0.1 0.07 0.05 0.97

7 0.05 0.08 0.02 0.032 0.05 0.1 0.15 0.1 0.07 0.05 2.06

8 0.01 0.016 0.02 0.032 0.05 0.1 0.15 0.1 0.07 0.05 0.41

9 0.01 0.016 0.005 0.008 0.2 0.3 0.5 0.1 0.07 0.05 0.73

10 0.05 0.08 0.005 0.008 0.2 0.3 0.5 0.1 0.07 0.05 2.37

11 0.05 0.08 0.02 0.032 0.2 0.3 0.5 0.1 0.07 0.05 6.91

12 0.01 0.016 0.02 0.032 0.2 0.3 0.5 0.1 0.07 0.05 1.38

13 0.01 0.016 0.005 0.008 0.2 0.3 0.5 0.5 0.2 0.125 0.12

14 0.05 0.08 0.005 0.008 0.2 0.3 0.5 0.5 0.2 0.125 0.62

15 0.05 0.08 0.02 0.032 0.2 0.3 0.5 0.5 0.2 0.125 2.10

16 0.01 0.016 0.02 0.032 0.2 0.3 0.5 0.5 0.2 0.125 0.42
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5.1.2 Probability of a major outbreak

We have solved Equations (4)-(6) to obtain the probability of a major outbreak occurring

when one infectious host, one infectious attached nymph and one infectious attached adult

are introduced into a susceptible tick-host system. For cases where T∗ > 1 out of the 16

cases above, the theoretical probabilities are summarised in Table 2. For all the other

cases where the threshold quantity is below one, the probability of a major outbreak is

zero. We observe that the probability of a major outbreak (1 − π) does not increase as

T∗ increases. The trend ususally is that the probability of an outbreak increases as the

threshold increases for simple epidemic models but there are exceptions for more complex

models. However for cases 10, 11 and 12 where the population dynamics parameters are

the same and only the infection transmission parameters vary, the outbreak probability

increases as T∗ increases. We ran 1000 simulations for the epidemic process for each of

the five cases where T∗ > 1 to obtain the fraction of major outbreaks occurring (1 − π̃)

and compared the results with the corrresponding theoretical probability (1 − π). For

cases 10, 11 and 12, the tick population (before disease introduction) was in equilibrium

with 12893 susceptible detached larvae, 781 suceptible attached larvae, 3243 susceptible

detached nymphs, 421 susceptible attached nymphs, 1463 susceptible detached adult ticks

and 448 susceptible attached adult ticks. Case 15 was in equilibrium with 8700 susceptible

detached larvae, 205 suceptible attached larvae, 3135 susceptible detached nymphs, 277

susceptible attached nymphs, 1607 susceptible detached adult ticks and 378 susceptible

attached adult ticks. Finally Case 7 was in equilibrium with 3646 susceptible detached

larvae, 202 suceptible attached larvae, 775 susceptible detached nymphs, 123 susceptible

attached nymphs, 397 susceptible detached adult ticks and 132 susceptible attached adult
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ticks. The susceptible host population (before disease introduction) was 50. The disease

was introduced in the system by one infective attached nymph, one infective attached adult

tick and one infective host. Each simulation was run until either there were no infectives

in the system or there were 20 infectives in the system. It is assumed that if the number

of infectives reaches 20 the epidemic will not go extinct thus leading to a major outbreak.

The probability of a major outbreak is approximated by the fraction of simulations that

reaches 20 infectives. The results are presented in Table 2 and they are overestimates of

the theoretical probabilities though the values do not differ very much.

Table 2: Values of the theoretical probability of a major outbreak for all cases where T∗ > 1.

Case T∗ q1 q2 q3 (1− π) (1− π̃)

12 1.38 0.835 0.938 0.933 0.274 0.287

7 2.06 0.555 0.834 0.826 0.617 0.648

15 2.10 0.512 0.904 0.900 0.583 0.595

10 2.37 0.485 0.940 0.928 0.577 0.599

11 6.91 0.169 0.716 0.676 0.918 0.946

5.1.3 Endemic level

We have solved the system of equations (8) to obtain the endemic level for the cases where

T∗ is larger than one. The results are summarised in Tables 3-5 for the host population,

the attached ticks and detached ticks respectively. The endemic level for the infected hosts

remains fairly constant for all cases while that of the susceptible hosts varies from 7% to 34%.

For the ticks, we observe that the endemic levels vary and this is because the tick population

sizes are different depending on the population parameters as is seen in Equation (2). For
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cases 10, 11 and 12 which have the same tick population size, the infectious proportions

increase as the threshold quantity and probability of a major outbreak increases.

One simulation was carried out for case 11 for a duration of two years, beginning the process

at the endemic level and the time averages during this period were used to obtain the

endemic proportion of the host population and the average number of attached (detached)

larvae, nymphs and adult ticks per host at the endemic level. The simulated values obtained

are h̃S = 0.075, h̃I = 0.008, h̃R = 0.917, l̃AS = 15.417, l̃AI = 0.06, ñAS = 8.465 , ñAI =

0.129, ãAS = 8.681, ãAI = 0.158, l̃DS = 255.56, ñDS = 64.11, ñDI = 0.3, ãDS = 28.68 and

ãDI = 0.47. The results are very close to the numerical solutions for case 11 given in Tables

3-5.

Table 3: Endemic proportion for host population where T∗ > 1.

Case ĥS ĥI ĥR

12 0.340 0.008 0.652

7 0.231 0.009 0.760

15 0.282 0.008 0.71

10 0.275 0.009 0.716

11 0.069 0.011 0.920
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Table 4: Endemic proportion for attached ticks per host where T∗ > 1.

Case l̂AS l̂AI n̂AS n̂AI âAS âAI

12 15.620 0.012 8.400 0.020 8.850 0.020

7 4.040 0.018 2.430 0.030 2.620 0.030

15 4.090 0.003 5.510 0.024 7.530 0.033

10 15.560 0.061 8.310 0.120 8.740 0.120

11 15.540 0.090 8.270 0.150 8.710 0.160

Table 5: Endemic proportion for detached ticks per host where T∗ > 1.

Case l̂DS n̂DS n̂DI âDS âDI

12 257.86 64.82 0.05 29.190 0.08

7 72.930 15.45 0.06 7.85 0.08

15 174.01 62.65 0.05 32.02 0.14

10 257.86 64.59 0.28 28.86 0.41

11 257.86 64.51 0.35 28.74 0.52

To illustrate the full distribution of the simulated endemic levels of the susceptible

and infected hosts, attached nymphs and attached adult ticks for case 11, we have plotted

histograms in Figures 4-6.
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Figure 4: Distribution (over time in the simulation) of susceptible and infective hosts at

the endemic level for parameters chosen for case 11.
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Figure 5: Distribution (over time in the simulation) of the number of attached susceptible

and infective nymphs per host at the endemic level for parameters chosen for case 11.
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Figure 6: Distribution (over time in the simulation) of the number of attached susceptible

and infective adult ticks per host at the endemic level for parameters chosen for case 11.

From Figure 4, we observe that the endemic proportion of the suceptible hosts ranges

from 0.04 to 0.1 while that of the infected hosts ranges from 0 to 0.04. From Figure 5 we

observe that the average number of attached susceptible nymphs per host varies between

6.84 and 9.2 and that of the infected attached nymphs varies between 0 and 0.35. Finally

the average number of attached susceptible adult ticks varies between 7.1 and 9.1 while

that of the attached infected adult ticks varies between 0.04 and 0.27 (Figure 6). In total

there are two infectious ticks per host at the endemic level including the average number

of attached infected larvae, detached infected nymphs and detached infected adult ticks.

5.2 Comparison of the two calibrated models

5.2.1 Equal population dynamics and transmission parameters

As mentioned earlier, we fix the population dynamics and transmission parameters for the

one-state model and then obtain values for the tick birth and death parameters for the

homogeneous model so that the population dynamics are equal for both models. All other

38



parameters of the homogeneous model take on the same values as the one-state model.

Using Equations (9) and (10), we obtain values for ρ and d from parameter values used

in the one-state model. The threshold quantity, probability of a major outbreak occurring

and endemic levels (where applicable) are computed for five sets of parameter values. The

values are chosen so that we have a situation where both threshold quantities are larger

than 1 and also where one quantity is below 1 and the other above 1. The results for T
(1)
∗

and T
(2)
∗ are summarised in Table 6 (where T

(1)
∗ refers to the one-state model and T

(2)
∗ to

the homogeneous model) .

Table 6: Different parameter values for β, λ, α and their corresponding threshold quantity values

with d = 0.05, µ = 0.0006, γ = 0.05, ρ1 = 0.05, δ1 = 0.01, ρ ≈ 0.311 and δ ≈ 0.0084 for the

one-state and homogeneous model.

β λ α T 1
∗ T 2

∗

0.01 0.005 0.3 1.08 0.33

0.05 0.02 0.03 1.69 0.52

0.01 0.02 0.3 3.39 1.05

0.05 0.005 0.3 5.39 1.66

0.05 0.02 0.3 16.94 5.22
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Using Equations (4)-(6), we compute the probability of a major outbreak occurring for

the cases presented in Table 6 and compare the results with those obtained for the one-state

model.

Table 7: Values of the theoretical and simulated probabilities of a major outbreak for one-state

and homogeneous model.

T 1
∗ T 2

∗ (1 − π(1)) (1 − π(2)) (1− π̃(1)) (1− π̃(2))

1.08 0.33 0.084 0.000 0.122 0.005

1.69 0.52 0.517 0.000 0.494 0.005

3.39 1.05 0.797 0.069 0.735 0.110

5.39 1.66 0.840 0.446 0.806 0.467

16.94 5.22 0.965 0.894 0.959 0.907

Both theoretical probabilities are presented in Table 7 as (1− π(1)) for the one-state model

and (1 − π(2)) for the homogeneous model. The probabilites for the homogeneous model

are lower than those of the one-state model. We ran 1000 simulations for the epidemic

process of both models for the five cases in Table 7. Both of the tick-host systems were

in equilibrium with 7500 susceptible detached ticks, 1500 susceptible attached ticks and 50

susceptible hosts. The procedure of estimating the probability of a major outbreak is as

described in the earlier section. The results are presented in Table 7 as (1 − π̃(1)) for the

one-state model and (1− π̃(2)) for the homogeneous model. For both models the simulated

values are relatively close to the theoretical probabilities.

The system of equations (8) is solved for the endemic level of the homogeneous model and

compared with results obtained for the one-state model and the results are presented in
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Tables 8 and 9 for the host and tick populations respectively (the superscript 1 represents

the one-state model and 2, the homogeneous model). As a consequence of the probability

of a major outbreak being lower for the homogeneous model, the endemic levels for the

susceptible sub-populations are higher.

Table 8: Theoretical endemic proportion for host population for one-state and homogeneous model

where both the threshold quantities are larger than one.

ĥ
(1)
S ĥ

(2)
S ĥ

(1)
I ĥ

(2)
I ĥ

(1)
R ĥ

(2)
R

0.211 0.463 0.009 0.006 0.780 0.531

0.172 0.374 0.010 0.007 0.818 0.619

0.043 0.094 0.011 0.011 0.946 0.895

Table 9: Theoretical values of the average number of attached ticks and detached ticks per host for

one-state and homogeneous model where both threshold quantities are larger than one.

K̂
(1)
AS K̂

(2)
AS K̂

(1)
AI K̂

(2)
AI K̂

(1)
DS K̂

(2)
DS K̂

(1)
DI K̂

(2)
DI

29.89 29.94 0.11 0.06 149.72 149.88 0.28 0.12

29.42 29.68 0.58 0.32 148.60 149.5 1.40 0.5

29.33 29.54 0.67 0.46 148.30 149.27 1.70 0.73

5.2.2 Equal endemic levels for attached ticks and hosts

We now calibrate the two models by instead equating the endemic levels as described in

Section 4.2. We fix values for β1, the infection transmission rate from host to tick and λ1,

the infection transmission rate from tick to host for the one-state model and then choose
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values for β and λ for the homogeneous model so that the endemic levels coincide. Using

the results obtained and the values of the other parameters as given in the earlier example,

we compute the probability of a major outbreak occurring and the threshold quantity. The

results are summarised in Table 10.

Table 10: Infection parameters, threshold quantity, theoretical and simulated probability of a major

outbreak for one-state and homogeneous models with equal endemic levels for attached ticks and

hosts.

β1 β λ1 λ T
(1)
∗ T

(2)
∗ (1− π(1)) (1− π(2)) (1− π̃(1)) (1 − π̃(2))

0.01 0.014 0.005 0.008 1.08 0.69 0.084 0.000 0.122 0.01

0.05 0.069 0.02 0.032 1.69 0.99 0.517 0.000 0.494 0.008

0.01 0.014 0.02 0.032 3.39 2.00 0.797 0.676 0.735 0.696

0.05 0.069 0.005 0.008 5.39 3.48 0.840 0.771 0.806 0.780

0.05 0.069 0.02 0.032 16.94 9.85 0.965 0.961 0.959 0.964

The threshold quantity is still considerably lower for the homogenous model. As for the

probability of a major outbreak occurring, we observe that the values are relatively close

for the last case in Table 10 but differ considerably for the other two cases. We conclude

that even though we increase the disease transmission rates, the threshold quantity and

probability of a major outbreak are still lower for the homogeneous model. As in the

previous subsection, we ran 1000 simulations using the same procedure for the homogeneous

model with the new parameters for β and λ and the results of the proportions that do not

go extinct are presented in Table 10 as (1 − π̃(2)). Again the proportions are close to the

theoretical probabilities. For the first two cases in Table 10 where T
(2)
∗ < 1, the endemic

levels are very low and not sustainable for practical purposes. We expect that the endemic
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state is unstable and hence the disease free state is stable.

6 Discussion

In the present paper we have formulated a stochastic model for the spread of tick-borne

diseases which incorporates the life stage structure of the ticks. The aim of this was to

develop a more realistic model than the one developed earlier by Wangombe et al.[8]. The

threshold condition for the persistence of the disease, the probability of a major outbreak

and endemic level of the disease are derived. The threshold condition is defined in terms

of a threshold quantity which depends on the population dynamics parameters of the tick-

host system as well as the transmission parameters, Equation (3). In Sections 3.1 and

5.1.1, it was shown that the number of infectives in the tick-host system increase when

the tick attachment rates of the different stages of the tick, the transmission rates from

host to larvae (nymph) and the transmission rate from nymph (adult) to host increase;

and decrease when the tick detachment rates for the different stages of the tick increase.

Thus these parameters play a key role in the transmission dynamics of the disease when the

tick-host system is in equilibrium. Any control strategy for the disease should therefore aim

for a reduction in the parameters that enhance the disease and/or an increase in those that

lead to a reduced spread. Similar results for the threshold quantity can be obtained using

deterministic models as shown in [11]. However the stochastic version has the advantage

that we can calculate the probability of a major outbreak occurring, something which is

not possible for a deterministic model.

We also compared the present three stage model with the one stage model in [8]. This

is done to determine if anything is gained by making the model more complicated. To make
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meaningful comparisons, we defined a homogeneous version of the present model, and then

calibrated the parameters of the homogeneous version and the one stage model of [8]. From

the results in Sections 4 and 5.2, we see that the homogeneous version has smaller threshold

and lower probability of a major outbreak despite the calibrations made of the two models.

We therefore conclude that the two models are genuinely different and that the present

model gives a more realistic representation of the transmission dynamics of the disease.

The main reason for better realism, as mentioned earlier, is that a tick in the present model

infects fewer hosts (at most two in its life cycle) than in the previous model. By neglecting

that a tick goes through several stages, the one stage model can be above threshold whereas

in fact it is below when admitting the tick life stages. From a prevention perspective this

is infact good news: The necessary amount of change in various parameters so as to come

below threshold is smaller if admitting the tick life stages. Though our main focus was on

the effects of the three stages of a tick vector on the disease dynamics, we expect that the

two-host ticks have less impact as an infected tick of this species can only infect at most

one host during its life cycle.

The present model has some limitations that could be incorporated to make the model

more realistic. For example we assume that there is no increased mortality of infectious

hosts due to the disease and yet as mentioned in the Introduction, the tick-borne diseases

do lead to death of cattle. One possible extension of the present model is hence to consider

increased mortality due to the disease as done in [4]. The role of wildlife that share open

fields with the cattle is not considered and their presence could influence the population

dynamics of the ticks and therefore lead to a dilution or enhancement of the disease. The

role of carrier cattle may also be considered as they may lead to an enhancement of the
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disease even though their ability to transmit the infection is greatly reduced ([4]). Lastly,

assumptions like exponential life length for hosts and that attachment rates depend on the

total number of attached ticks (rather than the number of attached ticks on the specific

host in question) can be relaxed to make the model more realistic.
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