The Grothendieck construction and models for dependent types

Erik Palmgren

Notes, March 8, 2013; minor editing May 28, 2016

We show here that presheaves and the Grothendieck construction gives a natural model for dependent types, in the form of a contextual category. This is a variant of Hofmann's presheaf models. The difference is briefly that in Hofmann's models the category of contexts is the presheaf category $PSh(\mathbb{C})$, whereas in the model here presented, the context objects are iterated Grothendieck constructions $\int (\cdots \int (\int (\mathbb{C}, P_1), P_2), \ldots, P_n)$ and the context morphisms are functors with some restriction.

1 Iterated Grothendieck constructions

Let \mathbb{C} be a small category. Let P be a presheaf on \mathbb{C} . The category of elements of P, denoted

$$\Sigma(\mathbb{C}, P),$$

consists of objects (a, x) where a is an object in \mathbb{C} and x is an element of P(a). A morphism $\alpha : (a, x) \longrightarrow (b, y)$ is a \mathbb{C} -morphism $\alpha : a \longrightarrow b$, such that $P(\alpha)(y) = x$. $\Sigma(\mathbb{C}, P)$ is the well-known *Grothendieck construction* [3] and is usually denoted

$$\int_{\mathbb{C}} P$$
 or perhaps $\int(\mathbb{C}, P)$.

This category is again small. There is a projection functor $\pi_P = \pi : \Sigma(\mathbb{C}, P) \longrightarrow \mathbb{C}$ defined by $\pi(a, x) = a$ and $\pi(\alpha) = \alpha$, for $\alpha : (a, x) \longrightarrow (b, y)$.

It is well-known that the Grothendieck construction gives the following equivalence

$$PSh(\mathbb{C})/P \simeq PSh(\Sigma(\mathbb{C}, P)).$$

¹Henrik Forssell observed after seeing the first version of these notes (dated February 28, 2013) that these restrictions amount to imposing a fibration condition, so that new iterated presheaf category is actually equivalent to the standard presheaf category. See Section 3.

Thus objects Q over P can be regarded as presheaves over $\Sigma(\mathbb{C}, P)$. This suggests a relation to semantics of dependent types [2]. One can iterate the Grothendieck construction as follows. Write

$$\Sigma(\mathbb{C}) = \mathbb{C}$$

$$\Sigma(\mathbb{C}, P_1, P_2, \dots, P_n) = \Sigma(\Sigma(\mathbb{C}, P_1, P_2, \dots, P_{n-1}), P_n).$$

Here $P_{k+1} \in \mathrm{PSh}(\Sigma(\mathbb{C}, P_1, \dots, P_k))$ for each $k = 0, \dots, n-1$. Note that

$$\pi_{P_{k+1}}: \Sigma(\Sigma(\mathbb{C}, P_1, P_2, \dots, P_k), P_{k+1}) \longrightarrow \Sigma(\mathbb{C}, P_1, P_2, \dots, P_k).$$

Using these projections, define the iterated first projection functor

$$\pi_{P_1,P_2,\ldots,P_n}^* =_{\operatorname{def}} \pi_{P_1} \circ \pi_{P_2} \circ \cdots \circ \pi_{P_n} : \Sigma(\mathbb{C},P_1,P_2,\ldots,P_n) \longrightarrow \mathbb{C}.$$

We explicate these constructions to see the connection to contexts of type theory. The objects of the category $\Sigma(\mathbb{C}, P_1, P_2, \dots, P_n)$ have the form $(\cdots((a, x_1), x_2), \dots, x_n)$ but we shall write them as (a, x_1, \dots, x_n) . Thus $a \in \mathbb{C}$, $x_1 \in P_1(a)$, $x_2 \in P_2(a, x_1)$, $x_3 \in P_3(a, x_1, x_2), \dots, x_n \in P_n(a, x_1, \dots, x_{n-1})$.

Proposition 1.1. A morphism

$$\alpha:(a,x_1,\ldots,x_n)\longrightarrow(b,y_1,\ldots,y_n)$$

in $\Sigma(\mathbb{C}, P_1, P_2, \dots, P_n)$ is given by a morphism $\alpha : a \longrightarrow b$ in \mathbb{C} such that

$$P_1(\alpha)(y_1) = x_1, P_2(\alpha)(y_2) = x_2, \dots, P_n(\alpha)(y_n) = x_n.$$

Proof. Induction on n. For n=0, this is trivial, since the condition is void. Suppose it holds for n. A morphism $\alpha:(a,x_1,\ldots,x_{n+1})\longrightarrow(b,y_1,\ldots,y_{n+1})$ is by definition a morphism $\alpha:(a,x_1,\ldots,x_n)\longrightarrow(b,y_1,\ldots,y_n)$ such that $P_{n+1}(\alpha)(y_{n+1})=x_{n+1}$. By the induction hypothesis α is a morphism $a\longrightarrow b$ such that

$$P_1(\alpha)(y_1) = x_1, P_2(\alpha)(y_2) = x_2, \dots, P_n(\alpha)(y_n) = x_n.$$

Hence also

$$P_1(\alpha)(y_1) = x_1, P_2(\alpha)(y_2) = x_2, \dots, P_n(\alpha)(y_n) = x_n, P_{n+1}(y_{n+1}) = x_{n+1}$$

as required. \Box

2 A category with attributes

Let \mathbb{C} be a small category. We first define the category of contexts. Define a category $MPSh(\mathbb{C}) = M$ to have as objects finite sequences $\overline{P} = [P_1, \dots, P_n], n \geq 0$, such that $P_{k+1} \in PSh(\Sigma(\mathbb{C}, P_1, \dots, P_k))$ for each $k = 0, \dots, n-1$. (In commutative diagrams we omit the rectangular brackets for typographical reasons.) We write $\Sigma(\mathbb{C}, \overline{P})$, or $\Sigma(\overline{P})$ when \mathbb{C} is clear from the situation, for $\Sigma(\mathbb{C}, P_1, \dots, P_n)$. Define the set of morphisms $Hom_M(\overline{P}, \overline{Q})$ as a subset of the functors from $\Sigma(\overline{P})$ to $\Sigma(\overline{Q})$, as follows:

$$\operatorname{Hom}_{M}(\overline{P}, \overline{Q}) = \{ f \in \Sigma(\overline{Q})^{\Sigma(\overline{P})} : \pi_{\overline{Q}}^{*} \circ f = \pi_{\overline{P}}^{*} \}. \tag{1}$$

Notice that since $\pi_{\overline{Q}}^*(\beta) = \beta$ and $\pi_{\overline{P}}^*(\alpha) = \alpha$ for all arrows β in $\Sigma(\overline{Q})$, and α in $\Sigma(\overline{P})$, it holds for $f \in \text{Hom}_M(\overline{P}, \overline{Q})$,

$$f(\alpha) = \alpha.$$

To see that M is category we need only to check that it has all identity morphisms and is closed under composition. If $f \in \operatorname{Hom}_M(\overline{P}, \overline{Q})$ and $g \in \operatorname{Hom}_M(\overline{Q}, \overline{R})$, then

$$\pi_{\overline{R}}^* \circ g \circ f = \pi_{\overline{Q}}^* \circ f = \pi_{\overline{P}}^*.$$

Thus closure under composition is clear. Further,

$$\pi_{\overline{P}}^* \circ \mathrm{id}_{\Sigma(\overline{P})} = \pi_{\overline{P}}^*$$

so $\operatorname{id}_{\Sigma(\overline{P})} \in \operatorname{Hom}_M(\overline{P}, \overline{P})$. Note that $\operatorname{Hom}_M(\overline{P}, [])$ consists only of the functor $\pi_{\overline{P}}^*$ since if $f \in \operatorname{Hom}_M(\overline{P}, [])$, then $\pi_{[]}^* \circ f = \pi_{\overline{P}}^*$. But $\pi_{[]}^*$ is the identity functor on \mathbb{C} , so $f = \pi_{\overline{P}}^*$. It seems reasonable to call $\operatorname{MPSh}(\mathbb{C})$ the *multivariable presheaves over* \mathbb{C} . We conclude from this

Theorem 2.1. MPSh(\mathbb{C}) is a category with terminal object [], whenever \mathbb{C} is a small category.

The objects form a tree structure via the immediate extension relation: $\overline{P} \triangleleft \overline{Q}$ if and only if $\overline{Q} = [\overline{P}, S]$ for some $S \in \mathrm{PSh}(\overline{P})$.

The following is immediate in view of the definition (1):

Lemma 2.2. Let $M = \text{MPSh}(\mathbb{C})$. The hom-set $\text{Hom}_M(\overline{P}, [Q_1, \dots, Q_{m+1}])$ consists of those functors $f : \Sigma(\overline{P}) \longrightarrow \Sigma(Q_1, \dots, Q_{m+1})$ such that $\pi_{Q_{m+1}} \circ f \in \text{Hom}_M(\overline{P}, [Q_1, \dots, Q_m])$.

The restriction in the hom-sets of $MPSh(\mathbb{C})$ yields the following characterization.

Lemma 2.3. For $P, Q \in PSh(\mathbb{C})$ there is a bijection

$$\operatorname{Hom}_{\operatorname{MPSh}(\mathbb{C})}([P], [Q]) \cong \operatorname{Hom}_{\operatorname{PSh}(\mathbb{C})}(P, Q).$$

Proof. For $f \in \operatorname{Hom}_{\operatorname{MPSh}(\mathbb{C})}([P],[Q])$ we have by the restriction $\pi_{[Q]}^* \circ f = \pi_{(P)}^*$ that $f(a,x) = (a,\hat{f}_a(x))$ and $f(\alpha) = \alpha$. Thus if $x \in P(a)$, then $(a,x) \in \Sigma(\mathbb{C},P)$, so $\hat{f}_a(x) \in Q(a)$. This gives a family of maps $\hat{f}_a : P(a) \longrightarrow Q(a)$, $a \in \mathbb{C}$. We check that they form a natural transformation $\tau : P \longrightarrow Q$. Suppose $y \in P(b)$ and $\alpha : a \longrightarrow b$. Then $(a,P(\alpha)(y)) \in \Sigma(\mathbb{C},P)$ and $\alpha : (a,P(\alpha)(y)) \longrightarrow (b,y)$, so $f(\alpha) : f(a,P(\alpha)(y)) \longrightarrow f(b,y)$. This means

$$\alpha: (a, \hat{f}_a(P(\alpha)(y))) \longrightarrow (b, \hat{f}_b(y)).$$

Hence $Q(\alpha)(\hat{f}_b(y)) = \hat{f}_a(P(\alpha)(y))$, which verifies the naturally condition. Write \hat{f} for the natural transformation constructed from f.

Conversely, suppose that $\tau: P \longrightarrow Q$ is a natural transformation. Define a functor $f: \Sigma(\mathbb{C}, P) \longrightarrow \Sigma(\mathbb{C}, Q)$ by

$$f(a, x) = (a, \tau_a(x))$$
 $f(\alpha) = \alpha$.

Note that if $x \in P(a)$, then $\tau_a(x) \in Q(a)$, so it is well-defined on objects. If α : $(a,x) \longrightarrow (b,y)$ then $P(\alpha)(y) = x$. Now we need to check that $f(\alpha) = \alpha : (a,\tau_a(x)) \longrightarrow (b,\tau_b(y))$, i.e. that $Q(\alpha)(\tau_b(y)) = \tau_a(x)$. Inserting $x = P(\alpha)(y)$, this is

$$Q(\alpha)(\tau_b(y)) = \tau_a(P(\alpha)(y))$$

which is exactly the naturality of τ . So f is well-defined on arrows as well. The functoriality of f is clear. Write $[\tau] = f$ for the morphism so constructed from τ .

Now for $g \in \operatorname{Hom}_{\operatorname{MPSh}(\mathbb{C})}([P],[Q]),$

$$[\hat{g}](a,x) = (a,\hat{g}_a(x)) = g(a,x)$$

and $[\hat{g}](\alpha) = \alpha = g(\alpha)$. Thus $[\hat{g}] = g$. Further for $\sigma \in \operatorname{Hom}_{\mathrm{PSh}(\mathbb{C})}(P,Q)$, we wish to prove $\widehat{\sigma} = \sigma$. For $(a,x) \in \Sigma(P)$, we have by definition

$$[\sigma](a,x) = (a,\sigma_a(x)),$$

and further by definition

$$\widehat{[\sigma]}_a(x) = \sigma_a(x).$$

Thus

$$\widehat{[\sigma]} = \sigma$$

and this shows that the operations are mutual inverses.

The following may be considered as a secondary Yoneda embedding.

Theorem 2.4. $[\cdot] : \mathrm{PSh}(\mathbb{C}) \longrightarrow \mathrm{MPSh}(\mathbb{C})$ is a full and faithful functor.

Proof. In view of Lemma 2.3 we need only to check that the operation $[\cdot]$ is functorial. Consider identity natural transformation $\iota: P \longrightarrow P$ given by $\iota_a = \mathrm{id}_{P(a)}$. We have

$$[\iota](a,x) = (a,\iota_a(x)) = (a,x) \qquad [\iota](\alpha) = \alpha,$$

so clearly (ι) is the identity $[P] \longrightarrow [P]$. Suppose that $\sigma: P \longrightarrow Q$ and $\tau: Q \longrightarrow R$ are natural transformations. We have for objects (a, x) in $\Sigma(P)$:

$$[\tau \cdot \sigma](a, x) = (a, (\tau \cdot \sigma)_a(x)) = (a, \tau_a(\sigma_a(x)))$$

and on the other hand we get the same result evaluating

$$([\tau] \circ [\sigma])(a,x) = [\tau]([\sigma](a,x)) = [\tau](a,\sigma_a(x)) = (a,\tau_a(\sigma_a(x))).$$

For a morphism $\alpha:(a,x)\longrightarrow(b,y)$ in $\Sigma(P)$, we have by definition

$$[\tau \cdot \sigma](\alpha) = \alpha = [\tau](\alpha) = [\tau](([\sigma])(\alpha)) = ([\tau] \circ [\sigma])(\alpha).$$

This means that $[\cdot]$ is functorial.

Composing the Yoneda embedding with the secondary embedding we get:

Corollary 2.5. $[\cdot] \circ \mathbf{y} : \mathbb{C} \longrightarrow \mathrm{MPSh}(\mathbb{C})$ is a full and faithful functor. \square

Theorem 2.6. Let $\overline{P} = [P_1, \ldots, P_n]$ and $\overline{Q} = [Q_1, \ldots, Q_m]$ be objects of MPSh(\mathbb{C}). An MPSh(\mathbb{C})-morphism $f : \overline{P} \longrightarrow \overline{Q}$ is given by m components f_1, \ldots, f_m , which are such that for objects (a, \overline{x}) of $\Sigma(\overline{P})$:

$$f(a,\overline{x}) = (a, f_1(a,\overline{x}), \dots, f_m(a,\overline{x}))$$
(2)

and

$$f_1(a,\overline{x}) \in Q_1(a), f_2(a,\overline{x}) \in Q_2(a,f_1(a,\overline{x})), \dots, f_m(a,\overline{x}) \in Q_m(a,f_1(a,\overline{x}),\dots,f_{m-1}(a,\overline{x}))$$
(3)

Moreover for each morphism $\alpha:(a,\overline{x})\longrightarrow (b,\overline{y})$ in $\Sigma(\overline{P})$, the following naturality equations hold

$$Q_1(\alpha)(f_1(b,\overline{y})) = f_1(a, P_1(\alpha)(y_1), \dots, P_n(\alpha)(y_n))$$

$$\vdots$$

$$Q_m(\alpha)(f_m(b,\overline{y})) = f_m(a, P_1(\alpha)(y_1), \dots, P_n(\alpha)(y_n))$$

Proof. Induction on m. For m=0, we have $f=\pi_{\overline{P}}^*$ since [] is the terminal object. Now $\pi_{\overline{P}}^*(a,\overline{x})=a$ and $\pi_{\overline{P}}^*(\alpha)=\alpha$. Since for m=0 there are no side conditions or

naturality equations, we are done. Suppose that the characterization holds for m. Let $f: \overline{P} \longrightarrow [Q_1, \ldots, Q_{m+1}]$ be a MPSh(\mathbb{C})-morphism. Write

$$f(a, \overline{x}) = (a, f_1(a, \overline{x}), \dots, f_{m+1}(a, \overline{x})).$$

By the definition of the domain, (3) is satisfied for m+1. According to Lemma 2.2 we have that $\pi_{Q_{m+1}} \circ f : \overline{P} \longrightarrow [Q_1, \ldots, Q_m]$ so applying the inductive hypothesis to this we get the naturality equations for Q_1, \ldots, Q_m . It remains to prove the naturally equation for Q_{m+1} . We have by definition

$$f(a, \overline{x}) = ((\pi_{Q_{m+1}} \circ f)(a, \overline{x}), f_{m+1}(a, \overline{x}))$$

$$f(b, \overline{y}) = ((\pi_{Q_{m+1}} \circ f)(b, \overline{y}), f_{m+1}(b, \overline{y}))$$

and for a morphism $\alpha:(a,\overline{x})\longrightarrow (b,\overline{y})$, we have in $\Sigma(\Sigma(\mathbb{C},Q_1,\ldots,Q_m),Q_{m+1})$ the morphism

$$f(\alpha) = \alpha : ((\pi_{Q_{m+1}} \circ f)(a, \overline{x}), f_{m+1}(a, \overline{x})) \longrightarrow ((\pi_{Q_{m+1}} \circ f)(b, \overline{y}), f_{m+1}(b, \overline{y})).$$

This implies $Q_{m+1}(\alpha)(f_{m+1}(b,\overline{y})) = f_{m+1}(a,\overline{x})$. Since

$$\overline{x} = P_1(\alpha)(y_1), \dots, P_n(\alpha)(y_n),$$

we are done.

Conversely, suppose that f_1, \ldots, f_{m+1} are satisfying (3) and the naturally equations for m+1. Thus these conditions are also satisfied for f_1, \ldots, f_m . Define

$$g(a, \overline{x}) = (a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x})).$$

By the inductive hypothesis $g: \overline{P} \longrightarrow [Q_1, \dots, Q_m]$ is a morphism. Let

$$f(a, \overline{x}) = (g(a, \overline{x}), f_{m+1}(a, \overline{x}))$$
 $f(\alpha) = \alpha.$

Note that $\pi_{Q_{m+1}} \circ f = g$, so we need only to check that f is a functor

$$\Sigma(\mathbb{C}, P_1, \dots, P_n) \longrightarrow \Sigma(\Sigma(\mathbb{C}, Q_1, \dots, Q_m), Q_{m+1})$$

We have $f(a, \overline{x}) = (g(a, \overline{x}), f_{m+1}(a, \overline{x}))$ and $g(a, \overline{x}) \in \Sigma(\mathbb{C}, Q_1, \dots, Q_m))$ so objects are sent to objects. Now since $f(\alpha) = \alpha$ the functoriality is automatic, and we need only to check that a morphism $\alpha : (a, \overline{x}) \longrightarrow (b, \overline{y})$ also forms a morphism

$$\alpha: (g(a,\overline{x}), f_{m+1}(a,\overline{x})) \longrightarrow (g(b,\overline{y}), f_{m+1}(b,\overline{y})).$$

Assume $\alpha:(a,\overline{x})\longrightarrow(b,\overline{y})$. We have $\alpha:a\longrightarrow b$ and

$$\overline{x} = (P_1(\alpha)(y_1), \dots, P_n(\alpha)(y_n)). \tag{4}$$

By the induction hypothesis $\alpha: g(a, \overline{x}) \longrightarrow g(b, \overline{y})$ is a morphism. Thus it is enough to show $Q_{m+1}(f_{m+1}(b, \overline{y})) = f_{m+1}(a, \overline{x})$. But by the assumption and using (4) we get

$$Q_{m+1}(\alpha)(f_{m+1}(b,\overline{y})) = f_{m+1}(a,P_1(\alpha)(y_1),\ldots,P_n(\alpha)(y_n))$$

= $f_{m+1}(a,\overline{x}).$

This concludes the proof.

Remark 2.7. Note that for m = n = 1 the naturality equations become just the usual condition that f_1 is a natural transformation. It may be reasonable to call the conditions in the general case *multinaturality*.

Example 2.8. For $R \in \mathrm{PSh}(\Sigma(\mathbb{C}, \overline{P}))$, the projection functor π_R is morphism $[\overline{P}, R] \longrightarrow \overline{P}$ in MPSh(\mathbb{C}).

Example 2.9. (Sections.) Let $Q \in \text{PSh}(\Sigma(\mathbb{C}, \overline{P}))$, where $\overline{P} = [P_1, \dots, P_n]$. Consider a MPSh(\mathbb{C})-morphism $s : \overline{P} \longrightarrow [\overline{P}, Q]$ which is a section of π_Q , that is, it satisfies $\pi_Q \circ s = \text{id}_{\overline{P}}$. By Theorem 2.6 it follows that s is specified by s' such that

$$s(a, \overline{x}) = (a, \overline{x}, s'(a, \overline{x})),$$

where $s'(a, \overline{x}) \in Q(a, \overline{x})$ and $(a, \overline{x}) \in \Sigma(\mathbb{C}, \overline{P})$, and for $\alpha : (a, \overline{x}) \longrightarrow (b, \overline{y})$,

$$Q(\alpha)(s'(b,\overline{y})) = s'(a, P_1(\alpha)(y_1), \dots, P_n(\alpha)(y_n)).$$

For n = 0, this is

$$Q(\alpha)(s'(b)) = s'(a).$$

For any object \overline{P} of MPSh(\mathbb{C}) define the presheaf $\Sigma^*(\overline{P})$ on \mathbb{C} by letting

$$\Sigma^*(\overline{P})(a) = \{(x_1, \dots, x_n) : x_1 \in P_1(a), \dots, x_n \in P_n(a, x_1, \dots, x_n)\},\$$

and for $\alpha: b \longrightarrow a$, assigning

$$\Sigma^*(\overline{P})(\alpha)((x_1,\ldots,x_n)) = (P_1(\alpha)(x_1),\ldots,P_n(\alpha)(x_n)).$$

The following will give the *types* in a context \overline{P} . Define for each $\overline{P} \in MPSh(\mathbb{C})$,

$$T(\overline{P}) = PSh(\Sigma(\mathbb{C}, \overline{P})).$$

For a morphism $f: \overline{Q} \longrightarrow \overline{P}$, and $S \in T(\overline{P})$, let

$$T(f)(S) = S \circ f \in T(\overline{Q}).$$

Thus T is a contravariant functor. We write $S\{f\}$ for $S \circ f$. For $Q \in T$ define its set of *elements* as the sections of π_Q

$$E(\overline{P}, Q) = \{s : \overline{P} \longrightarrow [\overline{P}, Q] : \pi_Q \circ s = id_{\overline{P}}\}$$

These data give rise to a category with attributes.

Theorem 2.10. Let $M = \text{MPSh}(\mathbb{C})$ for a small category \mathbb{C} . For $S \in \text{T}(\overline{P})$ and $f : \overline{Q} \longrightarrow \overline{P}$, the functor $q_{S,f} = q : [\overline{Q}, S \circ f] \longrightarrow [\overline{P}, S]$ defined by

$$q(a, \overline{x}, u) = (f(a, \overline{x}), u)$$
 and $q(\alpha) = f(\alpha)$ $(\alpha : (a, \overline{x}, u) \longrightarrow (b, \overline{y}, v))$

makes the following into a pullback square in M:

$$\overline{Q}, S \circ f \xrightarrow{q_{S,f}} \overline{P}, S$$

$$\downarrow^{\pi_{S \circ f}} \downarrow \qquad \qquad \downarrow^{\pi_{S}}$$

$$\overline{Q} \xrightarrow{f} \overline{P}$$
(5)

Further, if $f = \mathrm{id}_{\Sigma(\overline{P})} : \overline{P} \longrightarrow \overline{P}$, then

$$q_{S, \mathrm{id}_{\Sigma(\overline{P})}} = \mathrm{id}_{\Sigma(\overline{P}, S)}. \tag{6}$$

Suppose $g: \overline{A} \longrightarrow \overline{Q}$, where

$$\overline{A}, S \circ f \circ g \xrightarrow{q_{S \circ f,g}} \overline{Q}, S \circ f$$

$$\downarrow^{\pi_{S \circ f \circ g}} \downarrow \qquad \qquad \downarrow^{\pi_{S \circ f}}$$

$$\overline{A} \xrightarrow{q} \overline{Q}$$

$$(7)$$

is a pullback. Then

$$q_{S \circ f,g} \circ q_{S,f} = q_{S,f \circ g} \tag{8}$$

where the associated pullback to $q_{S,f \circ g}$ is

$$\overline{A}, S \circ f \circ g \xrightarrow{q_{S,f \circ g}} \overline{P}, S$$

$$\downarrow^{\pi_{S \circ f \circ g}} \downarrow \qquad \qquad \downarrow^{\pi_{S}}$$

$$\overline{A} \xrightarrow{f \circ g} \overline{P}$$

$$(9)$$

Proof. For $\alpha:(a,\overline{x},u)\longrightarrow (b,\overline{y},v)$ in $[\overline{Q},S\circ f]$ we have $\alpha:(a,\overline{x})\longrightarrow (b,\overline{y})$, and since f is a morphism, this gives

$$f(\alpha) = \alpha : f(a, \overline{x}) \longrightarrow f(b, \overline{y}).$$

Moreover $(S \circ f)(\alpha)(v) = u$. Hence

$$q(\alpha) = \alpha : (f(a, \overline{x}), v) \longrightarrow (f(b, \overline{y}), u).$$

Since $q(\alpha) = \alpha$, q is clearly a functor. It remains to verify the final condition for q being a morphism, this amounts to checking

$$\pi^*_{[\overline{P},S]} \circ q = \pi^*_{[\overline{Q},S \circ f]},$$

i.e. $\pi_{\overline{P}}^* \circ \pi_S \circ q = \pi_{\overline{Q}}^* \circ \pi_{S \circ f}$. We have

$$(\pi_{\overline{P}}^* \circ \pi_S \circ q)(a, \overline{x}) = \pi_{\overline{P}}^*(\pi_S(q(a, \overline{x}))) = \pi_{\overline{P}}^*(f(a, \overline{x})) = \pi_{\overline{Q}}^*(a, \overline{x}),$$

where the last step uses that f is a morphism. Moreover

$$(\pi_{\overline{P}}^* \circ \pi_S \circ q)(\alpha) = \pi_{\overline{P}}^*(\pi_S(\alpha)) = \alpha = \pi_{\overline{Q}}^*(\alpha).$$

It is clear that (5) commutes. Suppose that $h: \overline{R} \longrightarrow \overline{Q}$ and $k: \overline{R} \longrightarrow [\overline{P}, S]$ are morphisms such that $f \circ h = \pi_S \circ k$. Define $t: \overline{R} \longrightarrow [\overline{Q}, S \circ f]$ by on objects (a, \overline{x}) letting

$$t(a, \overline{x}) = (h(a, \overline{x}), k_2(a, \overline{x})),$$

where $k(a, \overline{x}) = (k_1(a, \overline{x}), k_2(a, \overline{x}))$. We have $k_2(a, \overline{x}) \in S(k_1(a, \overline{x}))$. Now $f(h(a, \overline{x})) = \pi_S(k(a, \overline{x})) = k_1(a, \overline{x})$, so $k_2(a, \overline{x}) \in (S \circ f)(h(a, \overline{x}))$. Thus $t(a, \overline{x})$ is well-defined on objects. For an arrow $\alpha : (a, \overline{x}) \longrightarrow (b, \overline{y})$, we define (as usual)

$$t(\alpha) = \alpha$$
.

Need to check that $\alpha: t(a, \overline{x}) \longrightarrow t(b, \overline{y})$, i.e. that

$$h(\alpha) = \alpha : h(a, \overline{x}) \longrightarrow h(b, \overline{y}) \text{ and } ((S \circ f)(h(\alpha)))(k_2(b, \overline{y})) = k_2(a, \overline{x}).$$
 (10)

The first statement of (10) follows since h is a functor. As k is a morphism we have $S(k_1(\alpha))(k_2(b, \overline{y})) = k_2(a, \overline{x})$, but

$$((S \circ f)(h(\alpha)))(k_2(b, \overline{y})) = S(f(h(\alpha)))(k_2(b, \overline{y}))$$

$$= S(\pi_S(k(\alpha)))(k_2(b, \overline{y}))$$

$$= S(k_1(\alpha))(k_2(b, \overline{y}))$$

$$= k_2(a, \overline{x}).$$

That t is functorial is trivial since $t(\alpha) = \alpha$. Next we check that t is a morphism $\overline{R} \longrightarrow [\overline{Q}, S \circ f]$, and for this it remains to verify that $\pi_{\overline{Q}, S \circ f}^* \circ t = \pi_{\overline{R}}^*$. This amounts to checking $\pi_{\overline{Q}}^* \circ \pi_{S \circ f} \circ t = \pi_{\overline{R}}^*$. Now

$$(\pi_{\overline{Q}}^* \circ \pi_{S \circ f} \circ t)(a, \overline{x}) = \pi_{\overline{Q}}^*(h(a, \overline{x})) = \pi_{\overline{R}}^*(a, \overline{x})$$

where using in the last step, the fact that h is a morphism. Moreover, for \mathbb{C} -morphisms α

$$(\pi_{\overline{Q}}^* \circ \pi_{S \circ f} \circ t)(\alpha) = \pi_{\overline{Q}}^*(\pi_{S \circ f}(\alpha))$$

$$= \pi_{\overline{Q}}^*(\pi_{S \circ f}(h(\alpha)))$$

$$= \pi_{\overline{Q}}^*(h(\alpha))$$

$$= \pi_{\overline{R}}^*(\alpha)$$

The last step used that h is a morphism. Further

$$q_{S,f}(t(a,\overline{x})) = (f(h(a,\overline{x})), k_2(a,\overline{x})) = (k_1(a,\overline{x}), k_2(a,\overline{x})) = k(a,\overline{x}) \qquad \pi_{S \circ f}(t(a,\overline{x})) = h(a,\overline{x}).$$
and

$$q_{S,f}(t(\alpha)) = f(t(\alpha)) = f(h(\alpha)) = k_1(\alpha) = k(\alpha)$$
 $\pi_{S \circ f}(t(\alpha)) = \pi_{S \circ f}(h(\alpha)) = h(\alpha).$

Thus t is a mediating morphism for the diagram. We check that it is unique: suppose that $t': \overline{R} \longrightarrow [\overline{Q}, S \circ f]$ is such that

$$q_{S,f}(t'(a,\overline{x})) = k(a,\overline{x})$$
 $\pi_{S \circ f}(t'(a,\overline{x})) = h(a,\overline{x})$

and

$$q_{S,f}(t'(\alpha)) = k(\alpha) \qquad \pi_{S \circ f}(t'(\alpha)) = h(\alpha). \tag{11}$$

Writing $t'(a, \overline{x}) = (t'_1(a, \overline{x}), t'_2(a, \overline{x}))$ we see that $q_{S,f}(t'(a, \overline{x})) = (f(t'_1(a, \overline{x})), t'_2(a, \overline{x})) = k(a, \overline{x}) = (k_1(a, \overline{x}), k_2(a, \overline{x}))$, and $\pi_{S \circ f}(t'(a, \overline{x})) = t'_1(a, \overline{x}) = h(a, \overline{x})$. Hence $t'(a, \overline{x}) = t(a, \overline{x})$. From (11) we get $g(t'(\alpha)) = k(\alpha)$ and $t'(\alpha) = h(\alpha)$. Thus also $t'(\alpha) = t(\alpha)$.

Suppose that a pullback square as in (5) is given. For an element $t \in E(\overline{P}, S)$ we have $\pi_S \circ t \circ f = f \circ \operatorname{id}_{\overline{Q}}$. Let $t\{f\} : \overline{Q} \longrightarrow [\overline{Q}, S \circ f]$ be the unique map such that

$$\pi_{S \circ f} \circ t\{f\} = \mathrm{id}_{\overline{Q}} \text{ and } q_{S,f} \circ t\{f\} = t \circ f.$$

Then $t\{f\} \in E(\overline{Q}, S\{f\})$, which is the element obtained from t by carrying out the substitution f. What does this look like in its components? Suppose $\overline{Q} = [Q_1, \dots, Q_n]$ and $\overline{P} = [P_1, \dots, P_m]$. Write

$$f(a, \overline{x}) = (a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x})).$$

Moreover write

$$t(a, \overline{y}) = (a, \overline{y}, t'(a, \overline{y})).$$

By Theorem 2.10 above

$$t\{f\}(a,\overline{x})=(a,\overline{x},t'(a,f_1(a,\overline{x}),\ldots,f_m(a,\overline{x}))).$$

Question: What are the categorical closure conditions of $MPSh(\mathbb{C})$ in analogy to the closure conditions of $PSh(\mathbb{C})$ (which is a topos)?

3 Equivalence with standard presheaves

It was noted by Henrik Forssell that the functor $[]: \mathrm{PSh}(\mathbb{C}) \longrightarrow \mathrm{MPSh}(\mathbb{C})$ is actually an equivalence of categories. Its inverse can be constructed explicitly.

For a morphism $f: \overline{P} \longrightarrow \overline{Q}$ in MPSh(\mathbb{C}) define a natural transformation

$$\Sigma^*(f): \Sigma^*(\overline{P}) \longrightarrow \Sigma^*(\overline{Q})$$

by letting

$$\Sigma^*(f)_a((x_1,\ldots,x_n)) = (f_1(a,x_1,\ldots,x_n),\ldots,f_m(a,x_1,\ldots,x_n)).$$

Here f_1, \ldots, f_m are as in Theorem 2.6.

Lemma 3.1. $\Sigma^* : \mathrm{MPSh}(\mathbb{C}) \longrightarrow \mathrm{PSh}(\mathbb{C})$ is a functor.

Proof. It is clear that Σ^* sends objects to objects. We check that it is also well-defined on arrows by verifying that $\Sigma^*(f)$ is a natural transformation for $f: \overline{P} \longrightarrow \overline{Q}$. Let $\alpha: b \longrightarrow a$ and $\overline{x} \in \Sigma^*(\overline{P})(a)$. Then by definition and since $\alpha: (b, \overline{P}(\alpha)(\overline{x})) \longrightarrow (a, \overline{x})$ we get by Theorem 2.6

$$\Sigma^{*}(\overline{Q})(\alpha)(\Sigma^{*}(f)_{a}(\overline{x})) = (Q_{1}(\alpha)(f_{1}(a,\overline{x})), \dots, Q_{m}(\alpha)(f_{m}(a,\overline{x})))$$

$$= (f_{1}(b,\overline{P}(\alpha)\overline{x}), \dots, f_{m}(b,\overline{P}(\overline{x})))$$

$$= \Sigma^{*}(f)_{b}(\overline{P}(\alpha)(\overline{x}))$$

$$= \Sigma^{*}(f)_{b}(\Sigma^{*}(\overline{P})(\alpha)(\overline{x})$$

as required.

If f is the identity, then $f_k(a, \overline{x}) = x_k$ and hence $\Sigma^*(f)_a(\overline{x}) = \overline{x}$. Suppose that $f : \overline{P} \longrightarrow \overline{Q}$ and $g : \overline{Q} \longrightarrow \overline{R}$ are morphisms and write

$$f(a, \overline{x}) = (a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x}))$$

and

$$g(a, \overline{y}) = (a, g_1(a, \overline{y}), \dots, f_k(a, \overline{x}))$$

Then

$$\Sigma^*(g)_a(\Sigma^*(f)_a(\overline{x})) = \Sigma^*(g)_a(f_1(a,\overline{x}),\dots,f_m(a,\overline{x}))$$

$$= (g_1(a,f_1(a,\overline{x}),\dots,f_m(a,\overline{x})),\dots,g_k(a,f_1(a,\overline{x}),\dots,f_m(a,\overline{x})))$$

But we have

$$(g \circ f)(a, \overline{x}) = g(f(a, \overline{x}))$$

$$= g(a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x}))$$

$$= (a, g_1(a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x})), \dots, f_k(a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x})))$$

Hence

$$\Sigma^*(g)_a(\Sigma^*(f)_a(\overline{x})) = \Sigma^*(g \circ f)_a(\overline{x})$$

as was to be proved.

Theorem 3.2. The functors $[]: \mathrm{PSh}(\mathbb{C}) \longrightarrow \mathrm{MPSh}(\mathbb{C})$ and $\Sigma^*: \mathrm{MPSh}(\mathbb{C}) \longrightarrow \mathrm{PSh}(\mathbb{C})$ form an equivalence of categories witnessed by the natural isomorphisms

$$\varepsilon: \Sigma^*([-]) \longrightarrow \mathrm{Id}_{\mathrm{PSh}(\mathbb{C})} \ and \ \eta: [\Sigma^*(-)] \longrightarrow \mathrm{Id}_{\mathrm{MPSh}(\mathbb{C})}$$

where

$$(\varepsilon_P)_a((x)) = x$$

and

$$\eta_{\overline{P}}: \Sigma(\mathbb{C}, \Sigma^*(P_1, \dots, P_n)) \longrightarrow \Sigma(\mathbb{C}, P_1, \dots, P_n)$$

is given by $\eta_{\overline{P}}(a,(x_1,\ldots,x_n))=(a,x_1,\ldots,x_n).$

Proof. Clearly $(\varepsilon_P)_a: \Sigma^*([P])(a) \longrightarrow P(a)$ is a bijection. For $\alpha: b \longrightarrow a$,

$$P(\alpha)((\varepsilon_P)_a((x))) = P(\alpha)(x) = (\varepsilon_P)_b((P(\alpha)(x))) = (\varepsilon_P)_b(\Sigma^*([P])(\alpha)((x))).$$

Thus $\varepsilon_P : \Sigma^*([P]) \longrightarrow P$ is a natural isomorphism, so an iso in $PSh(\mathbb{C})$. We check that ε is natural in P. Let $\tau : P \longrightarrow Q$ be a natural transformation. We need to verify

$$\tau \cdot \varepsilon_P = \varepsilon_Q \cdot \Sigma^*([\tau]),$$

i.e.
$$\tau_a((\varepsilon_P)_a((x))) = (\varepsilon_Q)_a((\Sigma^*([\tau]))_a((x)))$$
. Now

$$\tau_a((\varepsilon_P)_a((x))) = \tau_a(x).$$

On the other hand

$$(\varepsilon_Q)_a((\Sigma^*([\tau]))_a((x))) = (\varepsilon_Q)_a((\tau_a(x))) = \tau_a(x).$$

Hence ϵ is a natural transformation.

We verify that η is an natural isomorphism. First check that $\eta_{\overline{P}}$ is a morphism $[\Sigma^*(P_1,\ldots,P_n)] \longrightarrow [P_1,\ldots,P_n]$ in MPSh(\mathbb{C}) by verifying the multinaturality of Theorem 2.6: Let $\alpha:(b,(\overline{y})) \longrightarrow (a,(\overline{x}))$. We should have

$$P_1(\alpha)(f_1(b,(\overline{x}))) = f_1(a, \Sigma^*(P_1, \dots, P_n)(\alpha)((\overline{x})))$$

$$\vdots$$

$$P_n(\alpha)(f_m(b,(\overline{x}))) = f_n(a, \Sigma^*(P_1, \dots, P_n)(\alpha)((\overline{x})))$$

where $f_k(a,(\overline{x})) = x_k$. But $\Sigma^*(P_1,\ldots,P_n)(\alpha)((\overline{x})) = (P_1(\alpha)(x_1),\ldots,P_n(\alpha)(x_n))$ so this is clear. We claim that $g(a,x_1,\ldots,x_n) = (a,(x_1,\ldots,x_n))$ defines an inverse morphism

to $\eta_{\overline{P}}$. It is clearly an inverse, so it remains to verify it is a morphism. Let $\alpha: (b, \overline{y}) \longrightarrow (a, \overline{x})$. We need to verify

$$\Sigma^*(P_1, \dots, P_n)(\alpha)(f(a, \overline{x})) = f(b, P_1(\alpha)(x_1), \dots, P_n(\alpha)(x_n))$$
(12)

where $f(\overline{x}) = (\overline{x})$. But (12) is

$$\Sigma^*(P_1, \dots, P_n)(\alpha)((\overline{x})) = (P_1(\alpha)(x_1), \dots, P_n(\alpha)(x_n))$$
(13)

which follows by definition. Thus each $\eta_{\overline{P}}$ is an isomorphism. We check that $\eta_{\overline{P}}$ is natural in \overline{P} . Suppose that $f: \overline{P} \longrightarrow \overline{Q}$ is a morphism. We need to verify that

$$f\circ\eta_{\,\overline{P}}=\eta_{\,\overline{Q}}\circ[\Sigma^*(f)].$$

Write

$$f(a, \overline{x}) = (a, f_1(a, \overline{x}), \dots, f_m(a, \overline{x}))$$

We have

$$f(\eta_{\overline{P}}(a,(\overline{x}))) = f(a,\overline{x}) = (a, f_1(a,\overline{x}), \dots, f_m(a,\overline{x}))$$

and on the other hand

$$\eta_{\overline{Q}}([\Sigma^*(f)](a,(\overline{x}))) = \eta_{\overline{Q}}(a,\Sigma^*(f)_a((\overline{x})))) = \eta_{\overline{Q}}(a,(f_1(a,\overline{x}),\ldots,f_m(a,\overline{x}))) = (a,f_1(a,\overline{x}),\ldots,f_m(a,\overline{x})).$$

Thus we are done.

4 Π -construction

Let \mathbb{C} be any small category and let $\overline{R} = [R_1, \dots, R_n] \in MPSh(\mathbb{C})$. Let $P \in PSh(\Sigma(\overline{R}))$ and $Q \in PSh(\Sigma(\overline{R}, P))$. We define a presheaf $\Pi(P, Q)$ over $\Sigma(\overline{R})$ as follows. For $(a, \overline{x}) \in \Sigma(\overline{R})$, let

$$\Pi(P,Q)(a,\overline{x}) = \begin{cases} h \in (\Pi b \in \mathbb{C})(\Pi f : b \to a)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v) \mid \\ \forall b \in \mathbb{C}, \forall f : b \to a, \forall v \in P(b,\overline{R}(f)(\overline{x})), \\ \forall c \in \mathbb{C}, \forall \beta : c \to b, \end{cases}$$
$$Q(\beta)(h(b,f,v)) = h(c,f \circ \beta, P(\beta)(v))$$

We have written $\overline{R}(f)(\overline{x})$ for $R_1(f)(x_1), \ldots, R_n(f)(x_n)$. For $\alpha : (a', \overline{x}') \to (a, \overline{x})$ and $h \in \Pi(P, Q)(a, \overline{x})$ define $\Pi(P, Q)(\alpha)(h) = h'$ by

$$h'(b, f, v) = h(b, \alpha \circ f, v), \tag{14}$$

for $b \in \mathbb{C}$, $f : b \to a', v \in P(b, \overline{R}(f)(\overline{x}'))$. It is straightforward to verify that $\Pi(P, Q)$ is a presheaf over \mathbb{C} .

Let $s \in \mathcal{E}([\overline{R}, P], Q)$. Thus there is s' such that for all $(b, \overline{u}, v) \in \Sigma(\overline{R}, P)$,

$$s(b, \overline{u}, v) = (b, \overline{u}, v, s'(b, \overline{u}, v))$$

where $s'(b, \overline{u}, v) \in Q(b, \overline{u}, v)$ and further for all $\alpha : (a, \overline{x}, y) \longrightarrow (b, \overline{u}, v)$

$$Q(\alpha)(s'(b,\overline{u},v)) = s'(a,\overline{R}(\alpha)(\overline{u}), P(\alpha)(v)). \tag{15}$$

Define

$$\hat{s}(a,\overline{x}) = \lambda b \in \mathbb{C}.\lambda f : b \to a.\lambda v \in P(b,\overline{R}(f)(\overline{x})).s'(b,\overline{R}(f)(\overline{x}),v).$$

We check that $\hat{s}(a, \overline{x}) \in \Pi(P, Q)(a, \overline{x})$: For $b \in \mathbb{C}$, $f : b \to a$, $v \in P(b, \overline{R}(f)(\overline{x}))$ we need to verify that for any $\beta : c \longrightarrow b$,

$$Q(\beta)(\hat{s}(a,\overline{x})(b,f,v)) = \hat{s}(a,\overline{x})(c,f\circ\beta,P(\beta)(v)).$$

Indeed, using (18), the following calculation proves this.

$$Q(\beta)(\hat{s}(a,\overline{x})(b,f,v)) = Q(\beta)(s'(b,\overline{R}(f)(\overline{x}),v))$$

$$= s'(c,\overline{R}(\beta)(\overline{R}(f)(\overline{x})),P(\beta)(v))$$

$$= s'(c,\overline{R}(f\circ\beta)(\overline{x}),P(\beta)(v))$$

$$= \hat{s}(a,\overline{x})(c,f\circ\beta,P(\beta)(v)).$$

Next, define

$$\lambda_{P,Q}(s)(a,\overline{x}) = (a,\overline{x},\hat{s}(a,\overline{x})).$$

We wish to verify that $\lambda_{P,Q}(s) \in E(\overline{R}, \Pi(P,Q))$. For this it suffices to check that for $\alpha: (a', \overline{x}') \longrightarrow (a, \overline{x})$,

$$\Pi(P,Q)(\alpha)(\hat{s}(a,\overline{x})) = \hat{s}(a',\overline{R}(\alpha)(\overline{x})). \tag{16}$$

Evaluate the left hand side at $b \in \mathbb{C}$, $f: b \to a', v \in P(b, \overline{R}(f)(\overline{x}'))$,

$$\begin{split} \Pi(P,Q)(\alpha)(\widehat{s}(a,\overline{x}))(b,f,v) &= \widehat{s}(a,\overline{x})(b,\alpha\circ f,v) \\ &= s'(b,\overline{R}(\alpha\circ f)(\overline{x}),v) \\ &= s'(b,\overline{R}(f)(\overline{R}(\alpha)(\overline{x})),v) \\ &= \widehat{s}(a,\overline{R}(\alpha)(\overline{x}))(b,f,v) \end{split}$$

This verifies (16).

For $f \in E(\overline{R}, \Pi(P, Q))$ and $t \in E(\overline{R}, P)$ we write

$$f(a, \overline{x}) = (a, \overline{x}, f'(a, \overline{x}))$$
 $t(a, \overline{x}) = (a, \overline{x}, t'(a, \overline{x})).$

Thus $f'(a, \overline{x}) \in \Pi(P, Q)(a, \overline{x})$ and $t'(a, \overline{x}) \in P(a, \overline{x})$. It holds that

$$f'(a, \overline{x})(a, 1_a, t'(a, \overline{x})) \in Q(a, \overline{x}, t'(a, \overline{x})) = (Q \circ t)(a, \overline{x}).$$

Define

$$App_{PO}(f,t)(a,\overline{x}) = (a,\overline{x}, f'(a,\overline{x})(a, 1_a, t'(a,\overline{x}))).$$

We wish to prove that

$$\operatorname{App}_{P,Q}(f,t) \in \operatorname{E}(\overline{R},Q \circ t).$$

By the form of the definition it suffices to check the naturality condition: for $\alpha:(a,\overline{x})\longrightarrow(b,\overline{y}),$

$$(Q \circ t)(\alpha)(f'(b, \overline{y})(b, 1_b, t'(b, \overline{y}))) = f'(a, \overline{R}(\alpha)(\overline{y}))(a, 1_a, t'(a, \overline{R}(\alpha)(\overline{y}))).$$

We use the naturality conditions for f, t and naturality of elements in $\Pi(P,Q)(b,\overline{y})$ to verify this:

$$(Q \circ t)(\alpha)(f'(b,\overline{y})(b,1_b,t'(b,\overline{y}))) = Q(t(\alpha))(f'(b,\overline{y})(b,1_b,t'(b,\overline{y})))$$

$$= f'(b,\overline{y})(a,1_b \circ \alpha, P(\alpha)(t'(b,\overline{y})))$$

$$= f'(b,\overline{y})(a,1_b \circ \alpha,t'(a,\overline{R}(\alpha)(\overline{y})))$$

$$= f'(b,\overline{y})(a,\alpha \circ 1_a,t'(a,\overline{R}(\alpha)(\overline{y})))$$

$$= (\Pi(P,Q)(\alpha)(f'(b,\overline{y})))(a,1_a,t'(a,\overline{R}(\alpha)(\overline{y})))$$

$$= f'(a,\overline{R}(\alpha)(\overline{y}))(a,1_a,t'(a,\overline{R}(\alpha)(\overline{y}))).$$

The λ -computation rule is verified as follows

$$App_{P,Q}(\boldsymbol{\lambda}_{P,Q}(s),t)(a,\overline{x}) = (a,\overline{x},\hat{s}(a,\overline{x})(a,1_a,t'(a,\overline{x})))$$

$$= (a,\overline{x},s'(a,\overline{x},t'(a,\overline{x})))$$

$$= s\{t\}(a,\overline{x}).$$

Thus $\operatorname{App}_{P,Q}(\boldsymbol{\lambda}_{P,Q}(s),t) = s\{t\}.$

It remains to check that all constructs commute with substitutions. Fix a morphism $f: \overline{S} \longrightarrow \overline{R}$, where $\overline{S} = [S_1, \dots, S_k]$ and $\overline{R} = [R_1, \dots, R_n]$. Then write

$$f(d, \overline{w}) = (d, f_1(d, \overline{w}), \dots, f_n(d, \overline{w})).$$

The components satisfy the naturality conditions: for each morphism $\alpha:(e,\overline{z})\longrightarrow (d,\overline{w})$ in $\Sigma(\overline{S})$, the following equations hold

$$R_1(\alpha)(f_1(d,\overline{w})) = f_1(e,\overline{S}(\alpha)(\overline{w}))$$

$$\vdots$$

$$R_n(\alpha)(f_n(d,\overline{w})) = f_n(e,\overline{S}(\alpha)(\overline{w}))$$

Π-substitution: $P \in PSh(\Sigma(\overline{R}))$ and $Q \in PSh(\Sigma(\overline{R}, P))$. We need to check that $\Pi(P,Q)\{f\} = \Pi(P\{f\}, Q\{q_{P,f}\})$ as presheaves. Let $(d,\overline{w}) \in \Sigma(\overline{S})$. We have

$$\Pi(P,Q)\{f\}(d,\overline{w}) = \begin{cases} h \in (\Pi b \in \mathbb{C})(\Pi g : b \to d)(\Pi v \in P(b,\overline{R}(g)(f_1(d,\overline{w}),\dots,f_n(d,\overline{w})))) \\ Q(b,\overline{R}(g)(f_1(d,\overline{w}),\dots,f_n(d,\overline{w})),v) \mid \\ \forall b \in \mathbb{C}, \forall g : b \to d, \forall v \in P(b,\overline{R}(g)(f_1(d,\overline{w}),\dots,f_n(d,\overline{w}))), \\ \forall c \in \mathbb{C}, \forall \beta : c \to b, \\ Q(\beta)(h(b,g,v)) = h(c,g \circ \beta, P(\beta)(v)) \end{cases}$$

By the naturality condition

$$\overline{R}(g)(f_1(d,\overline{w}),\ldots,f_n(d,\overline{w})) = (f_1(b,\overline{S}(g)(\overline{w})),\ldots,f_n(b,\overline{S}(g)(\overline{w}))). \tag{17}$$

Thus

$$P(b, \overline{R}(g)(f_1(d, \overline{w}), \dots, f_n(d, \overline{w})) = P(b, (f_1(b, \overline{S}(g)(\overline{w})), \dots, f_n(b, \overline{S}(g)(\overline{w}))))$$

$$= P(f(b, \overline{S}(g)(\overline{w})))$$

$$= (P\{f\})(b, \overline{S}(g)(\overline{w}))$$

and moreover

$$Q(b, \overline{R}(g)(f_1(d, \overline{w}), \dots, f_n(d, \overline{w})), v) = Q(b, f_1(b, \overline{S}(g)(\overline{w})), \dots, f_n(b, \overline{S}(g)(\overline{w})), v)$$

$$= Q(f(b, \overline{S}(g)(\overline{w})), v)$$

$$= (Q\{q_{P,f}\})(\overline{S}(g)(\overline{w}), v)$$

We have thereby

$$\Pi(P,Q)\{f\}(d,\overline{w}) = \begin{cases} h \in (\Pi b \in \mathbb{C})(\Pi g : b \to d)(\Pi v \in (P\{f\})(b,\overline{S}(g)(\overline{w}))) \\ (Q\{q_{P,f}\})(\overline{S}(g)(\overline{w}),v) \mid \\ \forall b \in \mathbb{C}, \forall g : b \to d, \forall v \in (P\{f\})(b,\overline{S}(g)(\overline{w})), \\ \forall c \in \mathbb{C}, \forall \beta : c \to b, \end{cases}$$
$$Q(\beta)(h(b,g,v)) = h(c,g \circ \beta, P(\beta)(v)) \end{cases}$$

But
$$Q(\beta) = Q(q_{P,f}(\beta))$$
 and $P(\beta) = P(f(\beta))$, so

$$\Pi(P,Q)\{f\}(d,\overline{w}) = \Pi(P\{f\},Q\{q_{P,f}\})(d,\overline{w}).$$

Suppose $\alpha:(e,\overline{z})\longrightarrow (d,\overline{w})$ in $\Sigma(\overline{S})$,

$$\Pi(P,Q)\{f\}(\alpha)(h)(b,f,v) = \Pi(P,Q)(f(\alpha))(h)(b,f,v) = \Pi(P,Q)(\alpha)(h)(b,f,v) = (b,\alpha \circ f,v)$$

and on the other hand

$$\Pi(P\{f\}, Q\{q_{P,f}\})(\alpha)(h)(b, f, v) = (b, \alpha \circ f, v).$$

Hence $\Pi(P,Q)\{f\} = \Pi(P\{f\}, Q\{q_{P,f}\}).$

 λ -substitution: Let $s \in \mathrm{E}([\overline{R}, P], Q)$. Thus there is s' such that for all $(b, \overline{u}, v) \in \Sigma(\overline{R}, P)$,

$$s(b, \overline{u}, v) = (b, \overline{u}, v, s'(b, \overline{u}, v))$$

where $s'(b, \overline{u}, v) \in Q(b, \overline{u}, v)$ and further for all $\alpha : (a, \overline{x}, y) \longrightarrow (b, \overline{u}, v)$

$$Q(\alpha)(s'(b,\overline{u},v)) = s'(a,\overline{R}(\alpha)(\overline{u}), P(\alpha)(v)). \tag{18}$$

We have

$$\hat{s}(a,\overline{x}) = \lambda b \in \mathbb{C}.\lambda f : b \to a.\lambda v \in P(b,\overline{R}(f)(\overline{x})).s'(b,\overline{R}(f)(\overline{x}),v).$$

and

$$\lambda_{P,Q}(s)(a,\overline{x}) = (a,\overline{x},\hat{s}(a,\overline{x})).$$

Further,

$$\boldsymbol{\lambda}_{P,O}(s)\{f\}(d,\overline{w}) = (d,\overline{w},\hat{s}(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w})))$$

Now $s\{q_{P,f}\} \in \mathbb{E}([\overline{S}, P\{f\}], Q\{q_{P,f}\})$, and so

$$\lambda_{P\{f\},Q\{q_{P,f}\}}(s\{q_{P,f}\}) \in \mathbb{E}(\overline{S},\Pi(P\{f\},Q\{q_{P,f}\})).$$

and

$$\boldsymbol{\lambda}_{P\{f\},Q\{q_{P,f}\}}(s\{q_{P,f}\})(d,\overline{w}) = (d,\overline{w},\widehat{s\{q_{P,f}\}}(d,\overline{w}))$$

We have

$$q_{P,f}(d,\overline{w},v)=(f(d,\overline{w}),v)=(d,f_1(d,\overline{w}),\ldots,f_m(d,\overline{w}),v).$$

By construction of substitution on terms

$$s\{q_{P,f}\}(d,\overline{w},v)=(d,\overline{w},v,s'(d,f_1(d,\overline{w}),\ldots,f_m(d,\overline{w}),v))$$

Thus

$$\widehat{s\{q_{P,f}\}}(d,\overline{w}) = \lambda b \in \mathbb{C}.\lambda g: b \to d.\lambda v \in P\{f\}(b,\overline{S}(g)(\overline{w})).s'(b,f_1(b,\overline{S}(g)(\overline{w})),\dots,f_m(b,\overline{S}(g)(\overline{w})),v)).$$

We compare

$$\widehat{s\{q_{P,f}\}}(d,\overline{w})(b,g,v) = s'(b,f_1(b,\overline{S}(g)(\overline{w})),\dots,f_m(b,\overline{S}(g)(\overline{w})),v))$$

and

$$\hat{s}(d, f_1(a, \overline{w}), \dots, f_m(d, \overline{w}))(b, g, v) = s'(b, \overline{R}(g)(f_1(a, \overline{w}), \dots, f_m(d, \overline{w})), v)$$

By the condition (17) we see that the two expressions are equal.

App-substitution: For $g \in E(\overline{R}, \Pi(P, Q))$ and $t \in E(\overline{R}, P)$ we write

$$g(a, \overline{x}) = (a, \overline{x}, g'(a, \overline{x}))$$
 $t(a, \overline{x}) = (a, \overline{x}, t'(a, \overline{x})).$

Thus $g'(a, \overline{x}) \in \Pi(P, Q)(a, \overline{x})$ and $t'(a, \overline{x}) \in P(a, \overline{x})$. It holds that

$$g'(a, \overline{x})(a, 1_a, t'(a, \overline{x})) \in Q(a, \overline{x}, t'(a, \overline{x})) = (Q \circ t)(a, \overline{x}).$$

We have by definition

$$App_{P,Q}(g,t)(a,\overline{x}) = (a,\overline{x},g'(a,\overline{x})(a,1_a,t'(a,\overline{x}))).$$

We shall prove

$$App_{P,Q}(g,t)\{f\} = App_{P\{f\},Q\{q_{P|f}\}}(g\{f\},t\{f\})$$

On the one hand

$$\operatorname{App}_{P,Q}(g,t)\{f\}(d,\overline{w}) = (d,\overline{w},g'(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w}))(d,1_d,t'(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w})))).$$

We have further

$$g\{f\}(d,\overline{w}) = (d,\overline{w},g'(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w})))$$

and

$$t\{f\}(d,\overline{w})=(d,\overline{w},t'(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w})))$$

Now on the other hand

$$App_{P\{f\},Q\{q_{P,f}\}}(g\{f\},t\{f\})(d,\overline{w})$$

$$= (d,\overline{w},g'(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w}))(d,1_d,t'(d,f_1(a,\overline{w}),\ldots,f_m(d,\overline{w}))))$$

which is indeed the same.

5 Σ -construction

Let \mathbb{C} be any small category and let $\overline{R} = [R_1, \dots, R_n] \in MPSh(\mathbb{C})$. Let $P \in PSh(\Sigma(\overline{R}))$ and $Q \in PSh(\Sigma(\overline{R}, P))$. We define a presheaf $\dot{\Sigma}(P, Q)$ over $\Sigma(\overline{R})$ as follows. For $(a, \overline{x}) \in \Sigma(\overline{R})$, let

$$\dot{\Sigma}(P,Q)(a,\overline{x}) = \{(u,v) : u \in P(a,\overline{x}), v \in Q(a,\overline{x},u)\}.$$

For $\alpha:(a',\overline{x}')\to(a,\overline{x})$ and $h\in\dot{\Sigma}(P,Q)(a,\overline{x})$ define

$$\dot{\Sigma}(P,Q)(\alpha)(u,v) = (P(\alpha)(u), Q(\alpha)(v)).$$

It is straightforward to verify that $\dot{\Sigma}(P,Q)$ is a presheaf over \mathbb{C} .

6 Explication of the constructions over some categories

•

Suppose that \mathbb{C} is the category $0 \to 2 \leftarrow 1$, where all other arrows are identities. Let $\overline{R} = [R_1, \dots, R_n] \in \mathrm{MPSh}(\mathbb{C})$. Let $P \in \mathrm{PSh}(\Sigma(\overline{R}))$ and $Q \in \mathrm{PSh}(\Sigma(\overline{R}, P))$. Now the definition of $\Pi(P, Q)$ simples for a = 0, 1, since there are only identity arrows into a, the naturality condition becomes void, so we have:

$$\Pi(P,Q)(a,\overline{x}) = (\Pi b \in \mathbb{C})(\Pi f : b \to a)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v)$$

$$\cong (\Pi v \in P(b,\overline{x})Q(b,\overline{x},v)$$

For a=2, the naturality condition has a few nontrivial cases:

$$\Pi(P,Q)(2,\overline{x}) = \begin{cases} h \in (\Pi b \in \mathbb{C})(\Pi f : b \to 2)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v) \mid \\ \forall b \in \mathbb{C}, \forall f : b \to 2, \forall v \in P(b,\overline{R}(f)(\overline{x})), \\ \forall c \in \mathbb{C}, \forall \beta : c \to b, \end{cases}$$
$$Q(\beta)(h(b,f,v)) = h(c,f \circ \beta, P(\beta)(v))$$

Writing out the cases explicitly we get

$$\begin{split} \Pi(P,Q)(2,\overline{x}) &= \left. \left\{ h \in (\Pi b \in \mathbb{C})(\Pi f: b \to 2)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v) \mid \right. \right. \\ &\forall f: 0 \to 2, \forall v \in P(0,\overline{R}(f)(\overline{x})), \\ &\forall c \in \mathbb{C}, \forall \beta: c \to 0, \\ &Q(\beta)(h(0,f,v)) = h(c,f \circ \beta,P(\beta)(v)), \\ &\forall f: 1 \to 2, \forall v \in P(b,\overline{R}(f)(\overline{x})), \\ &\forall c \in \mathbb{C}, \forall \beta: c \to 1, \\ &Q(\beta)(h(1,f,v)) = h(c,f \circ \beta,P(\beta)(v)) \\ &\forall f: 2 \to 2, \forall v \in P(2,\overline{R}(f)(\overline{x})), \\ &\forall c \in \mathbb{C}, \forall \beta: c \to 2, \\ &Q(\beta)(h(2,f,v)) = h(c,f \circ \beta,P(\beta)(v)) \right\} \end{split}$$

Simplifying this the first two conditions become void.

$$\begin{split} \Pi(P,Q)(2,\overline{x}) &= \left. \left\{ h \in (\Pi b \in \mathbb{C})(\Pi f : b \to 2)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v) \mid \right. \\ &\forall f : 2 \to 2, \forall v \in P(2,\overline{R}(f)(\overline{x})), \\ &\forall c \in \mathbb{C}, \forall \beta : c \to 2, \\ &\left. Q(\beta)(h(2,f,v)) = h(c,f \circ \beta,P(\beta)(v)) \right\} \end{split}$$

Further, simplifying the remaining condition

$$\Pi(P,Q)(2,\overline{x}) = \begin{cases} h \in (\Pi b \in \mathbb{C})(\Pi f : b \to 2)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v) \mid \\ \forall v \in P(2,\overline{x}), \forall c \in \mathbb{C}, \forall \beta : c \to 2, \\ Q(\beta)(h(2,1_2,v)) = h(c,\beta,P(\beta)(v)) \end{cases}$$

Finally, instantiating c to 0, 1, 2 what remains after simplification (c = 2 gives an empty condition):

$$\Pi(P,Q)(2,\overline{x}) = \begin{cases}
h \in (\Pi b \in \mathbb{C})(\Pi f : b \to 2)(\Pi v \in P(b,\overline{R}(f)(\overline{x}))Q(b,\overline{R}(f)(\overline{x}),v) \mid \\
\forall v \in P(2,\overline{x}), \\
Q(f_{02})(h(2,1_{2},v)) = h(0,f_{02},P(f_{02})(v)), \\
Q(f_{12})(h(2,1_{2},v)) = h(1,f_{12},P(f_{12})(v))
\end{cases}$$

6.1 Simplicial sets

Let Δ be the category whose objects are the natural number $\mathbb{N} = \{0, 1, 2, \ldots\}$. Denote by [n] the set $\{0, \ldots, n\}$ for $n \in \mathbb{N}$. A morphism $f : m \longrightarrow n$ in Δ is a monotone function $f : [m] \longrightarrow [n]$. The presheaves over Δ , is called the category of simplicial sets. The Yoneda embedding $y : \Delta \longrightarrow \mathrm{PSh}(\Delta)$ satisfies by the Yoneda lemma

$$\operatorname{Hom}_{\operatorname{PSh}(\mathbb{C})}(y(n), F) \cong F(n)$$

for any $n \in \mathbb{N}$ and any $F \in \mathrm{PSh}(\mathbb{C})$. The canonical n-simplex is $\Delta^n = y(n)$.

For i = 0, ..., n + 1, let $\delta_i^n : [n] \longrightarrow [n + 1]$ be the unique monotone function such that $\delta_i^n[\{0, ..., n\}] = \{0, ..., i - 1, i + 1, ..., n + 1\}$. $F(\delta_i^n) : F(n + 1) \longrightarrow F(n)$ is the *ith face map*.

The presheaf $F \in PSh(\Delta)$ is a $Kan\ complex$ if for any n and any $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1} \in F(n)$ such that $F(\delta_i)(x_j) = F(\delta_{j-1})(x_i)$ for all $i < j, i \neq k, j \neq k$, there exists $x \in F(n+1)$ such that $F(\delta_i)(x) = x_i$ for all $i \neq k$.

Spelling out:

n = 1, k = 0: for any x_1, x_2 with $F(\delta_1)(x_2) = F(\delta_1)(x_1)$, there is $x \in F(2)$ such that $F(\delta_1)(x) = x_1, F(\delta_2)(x) = x_2$.

n = 1, k = 1: for any x_0, x_2 with $F(\delta_0)(x_2) = F(\delta_1)(x_0)$, there is $x \in F(2)$ such that $F(\delta_0)(x) = x_0, F(\delta_2)(x) = x_2$.

n = 1, k = 2: for any x_0, x_1 with $F(\delta_0)(x_1) = F(\delta_0)(x_0)$, there is $x \in F(2)$ such that $F(\delta_0)(x) = x_0, F(\delta_1)(x) = x_1$.

n = 2, k = 0: for any x_1, x_2, x_3 with $F(\delta_1)(x_2) = F(\delta_1)(x_1), F(\delta_1)(x_3) = F(\delta_2)(x_1),$ $F(\delta_2)(x_3) = F(\delta_2)(x_2),$ there is $x \in F(3)$ such that $F(\delta_1)(x) = x_1, F(\delta_2)(x) = x_2,$ $F(\delta_3)(x) = x_3.$

References

- [1] J. Cartmell. Generalised Algebraic Theories and Contextual Categories. *Annals of Pure and Applied Logic* 32 (1986), 209 243.
- [2] M. Hofmann. The Syntax and Semantics of Dependent Types. 1994.
- [3] S. MacLane and I. Moerdijk. Sheaves and Geometry: A First Introduction to Topos Theory. Springer 1992.
- [4] T. Streicher. Semantics of Type Theory. Birkhäuser 1991.

Appendix

Definition 6.1. A category with attributes (cwa) consists of the data

- (a) A category \mathcal{C} with a terminal object 1. This is the called the *category of contexts* and substitutions.
- (b) A functor $T: \mathcal{C}^{\text{op}} \longrightarrow \text{Set}$. This functor is intended to assign to each context Γ a set $T(\Gamma)$ of types in the context and tells how substitutions act on these types. For $f: B \longrightarrow \Gamma$ and $\sigma \in T(\Gamma)$ we write

$$\sigma\{f\}$$
 for $T(f)(\sigma)$.

(c) For each $\sigma \in T(\Gamma)$, an object $\Gamma . \sigma$ in \mathcal{C} and a morphism

$$p(\sigma) = p_{\Gamma}(\sigma) : \Gamma.\sigma \longrightarrow \Gamma \text{ in } C.$$

This tells that each context can be extended by a type in the context, and that there is a projection from the extended context to the original one.

(d) The final datum tells how substitutions interact with context extensions: For each $f: B \longrightarrow \Gamma$ and $\sigma \in T(\Gamma)$, there is a morphism $q(f, \sigma) = q_{\Gamma}(f, \sigma) : B.(T(f)(\sigma)) \longrightarrow \Gamma.\sigma$ in C such that

is a pullback, and furthermore

- (d.1) $q(1_{\Gamma}, \sigma) = 1_{\Gamma.\sigma}$
- $(\mathrm{d}.2) \ \mathsf{q}(f \circ g, \sigma) = \mathsf{q}(f, \sigma) \circ \mathsf{q}(g, \sigma\{f\}) \ \mathrm{for} \ A \overset{g}{\longrightarrow} B \overset{f}{\longrightarrow} \Gamma.$

From [2] we take the following definition, but adapt it in the obvious way to cwas.

Definition 6.2. A cwa supports Π -types if for $\sigma \in T(\Gamma)$ and $\tau \in T(\Gamma, \sigma)$ there is a type

$$\Pi(\sigma, \tau) \in T(\Gamma),$$

and moreover for every $P \in E(\Gamma.\sigma, \tau)$ there is an element

$$\lambda_{\sigma,\tau}(P) \in E(\Gamma, \Pi(\sigma,\tau)),$$

and furthermore for any $M \in E(\Gamma, \Pi(\sigma, \tau))$ and any $N \in E(\Gamma, \sigma)$ there is an element $\mathsf{App}_{\sigma,\tau}(M,N) \in E(\Gamma, \tau\{N\}),$

such that the following equations hold for any substitution $f: B \longrightarrow \Gamma$:

$$(\lambda\text{-comp}) \ \operatorname{\mathsf{App}}_{\sigma,\tau}(\lambda_{\sigma,\tau}(P),N) = P\{N\},$$

$$(\Pi\text{-subst})\ \Pi(\sigma,\tau)\{f\} = \Pi(\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}),$$

$$(\lambda\text{-subst}) \ \lambda_{\sigma,\tau}(P)\{f\} = \lambda_{\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}}(P\{\mathsf{q}(f,\sigma)\}),$$

$$(\mathsf{App\text{-}subst}) \ \ \mathsf{App}_{\sigma,\tau}(M,N)\{f\} = \mathsf{App}_{\sigma\{f\},\tau\{\mathsf{q}(f,\sigma)\}}(M\{f\},N\{f\}).$$