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We show here that presheaves and the Grothendieck construction gives a natural
model for dependent types, in the form of a contextual category. This is a variant of Hof-
mann’s presheaf models. The difference is briefly that in Hofmann’s models the category
of contexts is the presheaf category PSh(C), whereas in the model here presented, the
context objects are iterated Grothendieck constructions

∫
(· · ·

∫
(
∫

(C, P1), P2), . . . , Pn)
and the context morphisms are functors with some restriction. 1

1 Iterated Grothendieck constructions

Let C be a small category. Let P be a presheaf on C. The category of elements of P ,
denoted

Σ(C, P ),

consists of objects (a, x) where a is an object in C and x is an element of P (a). A
morphism α : (a, x) // (b, y) is a C-morphism α : a // b, such that P (α)(y) = x.
Σ(C, P ) is the well-known Grothendieck construction [3] and is usually denoted∫

C
P or perhaps

∫
(C, P ).

This category is again small. There is a projection functor πP = π : Σ(C, P ) // C
defined by π(a, x) = a and π(α) = α, for α : (a, x) // (b, y).

It is well-known that the Grothendieck construction gives the following equivalence

PSh(C)/P ' PSh(Σ(C, P )).

1Henrik Forssell observed after seeing the first version of these notes (dated February 28, 2013) that
these restrictions amount to imposing a fibration condition, so that new iterated presheaf category is
actually equivalent to the standard presheaf category. See Section 3.
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Thus objects Q over P can be regarded as presheaves over Σ(C, P ). This suggests a
relation to semantics of dependent types [2]. One can iterate the Grothendieck con-
struction as follows. Write

Σ(C) = C

Σ(C, P1, P2, . . . , Pn) = Σ(Σ(C, P1, P2, . . . , Pn−1), Pn).

Here Pk+1 ∈ PSh(Σ(C, P1, . . . , Pk)) for each k = 0, . . . , n− 1. Note that

πPk+1
: Σ(Σ(C, P1, P2, . . . , Pk), Pk+1) // Σ(C, P1, P2, . . . , Pk).

Using these projections, define the iterated first projection functor

π∗P1,P2,...,Pn
=def πP1 ◦ πP2 ◦ · · · ◦ πPn : Σ(C, P1, P2, . . . , Pn) // C.

We explicate these constructions to see the connection to contexts of type theory.
The objects of the category Σ(C, P1, P2, . . . , Pn) have the form (· · · ((a, x1), x2), . . . , xn)
but we shall write them as (a, x1, . . . , xn). Thus a ∈ C, x1 ∈ P1(a), x2 ∈ P2(a, x1),
x3 ∈ P3(a, x1, x2), . . . , xn ∈ Pn(a, x1, . . . , xn−1).

Proposition 1.1. A morphism

α : (a, x1, . . . , xn) // (b, y1, . . . , yn)

in Σ(C, P1, P2, . . . , Pn) is given by a morphism α : a // b in C such that

P1(α)(y1) = x1, P2(α)(y2) = x2, . . . , Pn(α)(yn) = xn.

Proof. Induction on n. For n = 0, this is trivial, since the condition is void. Suppose
it holds for n. A morphism α : (a, x1, . . . , xn+1) // (b, y1, . . . , yn+1) is by definition a
morphism α : (a, x1, . . . , xn) // (b, y1, . . . , yn) such that Pn+1(α)(yn+1) = xn+1. By the
induction hypothesis α is a morphism a // b such that

P1(α)(y1) = x1, P2(α)(y2) = x2, . . . , Pn(α)(yn) = xn.

Hence also

P1(α)(y1) = x1, P2(α)(y2) = x2, . . . , Pn(α)(yn) = xn, Pn+1(yn+1) = xn+1

as required.
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2 A category with attributes

Let C be a small category. We first define the category of contexts. Define a category
MPSh(C) = M to have as objects finite sequences P = [P1, . . . , Pn], n ≥ 0, such that
Pk+1 ∈ PSh(Σ(C, P1, . . . , Pk)) for each k = 0, . . . , n− 1. (In commutative diagrams we
omit the rectangular brackets for typographical reasons.) We write Σ(C, P ), or Σ(P )
when C is clear from the situation, for Σ(C, P1, . . . , Pn). Define the set of morphisms
HomM(P ,Q) as a subset of the functors from Σ(P ) to Σ(Q), as follows:

HomM(P ,Q) = {f ∈ Σ(Q)Σ(P ) : π∗
Q
◦ f = π∗

P
}. (1)

Notice that since π∗
Q

(β) = β and π∗
P

(α) = α for all arrows β in Σ(Q), and α in Σ(P ),

it holds for f ∈ HomM(P ,Q),
f(α) = α.

To see that M is category we need only to check that it has all identity morphisms and
is closed under composition. If f ∈ HomM(P ,Q) and g ∈ HomM(Q,R), then

π∗
R
◦ g ◦ f = π∗

Q
◦ f = π∗

P
.

Thus closure under composition is clear. Further,

π∗
P
◦ idΣ(P ) = π∗

P

so idΣ(P ) ∈ HomM(P , P ). Note that HomM(P , []) consists only of the functor π∗
P

since

if f ∈ HomM(P , []), then π∗[]◦f = π∗
P

. But π∗[] is the identity functor on C, so f = π∗
P

. It

seems reasonable to call MPSh(C) the multivariable presheaves over C. We conclude
from this

Theorem 2.1. MPSh(C) is a category with terminal object [], whenever C is a small
category.

The objects form a tree structure via the immediate extension relation: P � Q if
and only if Q = [P , S] for some S ∈ PSh(P ).

The following is immediate in view of the definition (1):

Lemma 2.2. Let M = MPSh(C). The hom-set HomM(P , [Q1, . . . , Qm+1]) consists of
those functors f : Σ(P ) //Σ(Q1, . . . , Qm+1) such that πQm+1◦f ∈ HomM(P , [Q1, . . . , Qm]).

The restriction in the hom-sets of MPSh(C) yields the following characterization.

Lemma 2.3. For P,Q ∈ PSh(C) there is a bijection

HomMPSh(C)([P ], [Q]) ∼= HomPSh(C)(P,Q).
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Proof. For f ∈ HomMPSh(C)([P ], [Q]) we have by the restriction π∗[Q] ◦ f = π∗(P ) that

f(a, x) = (a, f̂a(x)) and f(α) = α. Thus if x ∈ P (a), then (a, x) ∈ Σ(C, P ), so
f̂a(x) ∈ Q(a). This gives a family of maps f̂a : P (a) // Q(a), a ∈ C. We check that
they form a natural transformation τ : P //Q. Suppose y ∈ P (b) and α : a //b. Then
(a, P (α)(y)) ∈ Σ(C, P ) and α : (a, P (α)(y)) //(b, y), so f(α) : f(a, P (α)(y)) //f(b, y).
This means

α : (a, f̂a(P (α)(y))) // (b, f̂b(y)).

Hence Q(α)(f̂b(y)) = f̂a(P (α)(y)), which verifies the naturally condition. Write f̂ for
the natural transformation constructed from f .

Conversely, suppose that τ : P //Q is a natural transformation. Define a functor
f : Σ(C, P ) // Σ(C, Q) by

f(a, x) = (a, τa(x)) f(α) = α.

Note that if x ∈ P (a), then τa(x) ∈ Q(a), so it is well-defined on objects. If α :
(a, x) //(b, y) then P (α)(y) = x. Now we need to check that f(α) = α : (a, τa(x)) //(b, τb(y)),
i.e. that Q(α)(τb(y)) = τa(x). Inserting x = P (α)(y), this is

Q(α)(τb(y)) = τa(P (α)(y))

which is exactly the naturality of τ . So f is well-defined on arrows as well. The
functoriality of f is clear. Write [τ ] = f for the morphism so constructed from τ .

Now for g ∈ HomMPSh(C)([P ], [Q]),

[ĝ](a, x) = (a, ĝa(x)) = g(a, x)

and [ĝ](α) = α = g(α). Thus [ĝ] = g. Further for σ ∈ HomPSh(C)(P,Q), we wish to

prove [̂σ] = σ. For (a, x) ∈ Σ(P ), we have by definition

[σ](a, x) = (a, σa(x)),

and further by definition

[̂σ]a(x) = σa(x).

Thus
[̂σ] = σ

and this shows that the operations are mutual inverses.

The following may be considered as a secondary Yoneda embedding.

Theorem 2.4. [·] : PSh(C) //MPSh(C) is a full and faithful functor.
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Proof. In view of Lemma 2.3 we need only to check that the operation [·] is functorial.
Consider identity natural transformation ι : P // P given by ιa = idP (a). We have

[ι](a, x) = (a, ιa(x)) = (a, x) [ι](α) = α,

so clearly (ι) is the identity [P ] // [P ]. Suppose that σ : P //Q and τ : Q // R are
natural transformations. We have for objects (a, x) in Σ(P ):

[τ · σ](a, x) = (a, (τ · σ)a(x)) = (a, τa(σa(x)))

and on the other hand we get the same result evaluating

([τ ] ◦ [σ])(a, x) = [τ ]([σ](a, x)) = [τ ](a, σa(x)) = (a, τa(σa(x))).

For a morphism α : (a, x) // (b, y) in Σ(P ), we have by definition

[τ · σ](α) = α = [τ ](α) = [τ ](([σ])(α)) = ([τ ] ◦ [σ])(α).

This means that [·] is functorial.

Composing the Yoneda embedding with the secondary embedding we get:

Corollary 2.5. [·] ◦ y : C //MPSh(C) is a full and faithful functor.

Theorem 2.6. Let P = [P1, . . . , Pn] and Q = [Q1, . . . , Qm] be objects of MPSh(C). An
MPSh(C)-morphism f : P //Q is given by m components f1, . . . , fm, which are such
that for objects (a, x) of Σ(P ):

f(a, x) = (a, f1(a, x), . . . , fm(a, x)) (2)

and

f1(a, x) ∈ Q1(a), f2(a, x) ∈ Q2(a, f1(a, x)), . . . , fm(a, x) ∈ Qm(a, f1(a, x), . . . , fm−1(a, x))
(3)

Moreover for each morphism α : (a, x) // (b, y) in Σ(P ), the following naturality
equations hold

Q1(α)(f1(b, y)) = f1(a, P1(α)(y1), . . . , Pn(α)(yn))
...

Qm(α)(fm(b, y)) = fm(a, P1(α)(y1), . . . , Pn(α)(yn))

Proof. Induction on m. For m = 0, we have f = π∗
P

since [] is the terminal object.
Now π∗

P
(a, x) = a and π∗

P
(α) = α. Since for m = 0 there are no side conditions or
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naturality equations, we are done. Suppose that the characterization holds for m. Let
f : P // [Q1, . . . , Qm+1] be a MPSh(C)-morphism. Write

f(a, x) = (a, f1(a, x), . . . , fm+1(a, x)).

By the definition of the domain, (3) is satisfied for m+ 1. According to Lemma 2.2 we
have that πQm+1 ◦f : P // [Q1, . . . , Qm] so applying the inductive hypothesis to this we
get the naturality equations for Q1, . . . , Qm. It remains to prove the naturally equation
for Qm+1. We have by definition

f(a, x) = ((πQm+1 ◦ f)(a, x), fm+1(a, x))

f(b, y) = ((πQm+1 ◦ f)(b, y), fm+1(b, y))

and for a morphism α : (a, x) // (b, y), we have in Σ(Σ(C, Q1, . . . , Qm), Qm+1) the
morphism

f(α) = α : ((πQm+1 ◦ f)(a, x), fm+1(a, x)) // ((πQm+1 ◦ f)(b, y), fm+1(b, y)).

This implies Qm+1(α)(fm+1(b, y)) = fm+1(a, x). Since

x = P1(α)(y1), . . . , Pn(α)(yn),

we are done.
Conversely, suppose that f1, . . . , fm+1 are satisfying (3) and the naturally equations

for m+ 1. Thus these conditions are also satisfied for f1, . . . , fm. Define

g(a, x) = (a, f1(a, x), . . . , fm(a, x)).

By the inductive hypothesis g : P // [Q1, . . . , Qm] is a morphism. Let

f(a, x) = (g(a, x), fm+1(a, x)) f(α) = α.

Note that πQm+1 ◦ f = g, so we need only to check that f is a functor

Σ(C, P1, . . . , Pn) // Σ(Σ(C, Q1, . . . , Qm), Qm+1)

We have f(a, x) = (g(a, x), fm+1(a, x)) and g(a, x) ∈ Σ(C, Q1, . . . , Qm)) so objects are
sent to objects. Now since f(α) = α the functoriality is automatic, and we need only
to check that a morphism α : (a, x) // (b, y) also forms a morphism

α : (g(a, x), fm+1(a, x)) // (g(b, y), fm+1(b, y)).

Assume α : (a, x) // (b, y). We have α : a // b and

x = (P1(α)(y1), . . . , Pn(α)(yn)). (4)
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By the induction hypothesis α : g(a, x) // g(b, y) is a morphism. Thus it is enough to
show Qm+1(fm+1(b, y)) = fm+1(a, x)). But by the assumption and using (4) we get

Qm+1(α)(fm+1(b, y)) = fm+1(a, P1(α)(y1), . . . , Pn(α)(yn))

= fm+1(a, x).

This concludes the proof.

Remark 2.7. Note that for m = n = 1 the naturality equations become just the
usual condition that f1 is a natural transformation. It may be reasonable to call the
conditions in the general case multinaturality.

Example 2.8. ForR ∈ PSh(Σ(C, P )), the projection functor πR is morphism [P ,R] //P
in MPSh(C).

Example 2.9. (Sections.) Let Q ∈ PSh(Σ(C, P )), where P = [P1, . . . , Pn]. Consider
a MPSh(C)-morphism s : P // [P ,Q] which is a section of πQ, that is, it satisfies
πQ ◦ s = idP . By Theorem 2.6 it follows that s is specified by s′ such that

s(a, x) = (a, x, s′(a, x)),

where s′(a, x) ∈ Q(a, x) and (a, x) ∈ Σ(C, P ), and for α : (a, x) // (b, y),

Q(α)(s′(b, y)) = s′(a, P1(α)(y1), . . . , Pn(α)(yn)).

For n = 0, this is
Q(α)(s′(b)) = s′(a).

For any object P of MPSh(C) define the presheaf Σ∗(P ) on C by letting

Σ∗(P )(a) = {(x1, . . . , xn) : x1 ∈ P1(a), . . . , xn ∈ Pn(a, x1, . . . , xn)},

and for α : b // a, assigning

Σ∗(P )(α)((x1, . . . , xn)) = (P1(α)(x1), . . . , Pn(α)(xn)).

The following will give the types in a context P . Define for each P ∈ MPSh(C),

T(P ) = PSh(Σ(C, P )).

For a morphism f : Q // P , and S ∈ T(P ), let

T(f)(S) = S ◦ f ∈ T(Q).

Thus T is a contravariant functor. We write S{f} for S ◦ f .
For Q ∈ T define its set of elements as the sections of πQ

E(P ,Q) = {s : P // [P ,Q] : πQ ◦ s = idP}

These data give rise to a category with attributes.
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Theorem 2.10. Let M = MPSh(C) for a small category C. For S ∈ T(P ) and
f : Q // P , the functor qS,f = q : [Q,S ◦ f ] // [P , S] defined by

q(a, x, u) = (f(a, x), u) and q(α) = f(α) (α : (a, x, u) // (b, y, v))

makes the following into a pullback square in M :

Q P
f

//

Q,S ◦ f

Q

πS◦f

��

Q,S ◦ f P , S
qS,f // P , S

P

πS

��
(5)

Further, if f = idΣ(P ) : P // P , then

qS,idΣ(P )
= idΣ(P ,S). (6)

Suppose g : A //Q, where

A Qg
//

A, S ◦ f ◦ g

A

πS◦f◦g

��

A, S ◦ f ◦ g Q, S ◦ f
qS◦f,g // Q,S ◦ f

Q

πS◦f

��
(7)

is a pullback. Then
qS◦f,g ◦ qS,f = qS,f◦g (8)

where the associated pullback to qS,f◦g is

A P
f◦g

//

A, S ◦ f ◦ g

A

πS◦f◦g

��

A, S ◦ f ◦ g P , S
qS,f◦g // P , S

P

πS

��
(9)

Proof. For α : (a, x, u) // (b, y, v) in [Q,S ◦ f ] we have α : (a, x) // (b, y) , and since
f is a morphism, this gives

f(α) = α : f(a, x) // f(b, y).

Moreover (S ◦ f)(α)(v) = u. Hence

q(α) = α : (f(a, x), v) // (f(b, y), u).
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Since q(α) = α, q is clearly a functor. It remains to verify the final condition for q
being a morphism, this amounts to checking

π∗
[P ,S]
◦ q = π∗

[Q,S◦f ]
,

i.e. π∗
P
◦ πS ◦ q = π∗

Q
◦ πS◦f . We have

(π∗
P
◦ πS ◦ q)(a, x) = π∗

P
(πS(q(a, x))) = π∗

P
(f(a, x)) = π∗

Q
(a, x),

where the last step uses that f is a morphism. Moreover

(π∗
P
◦ πS ◦ q)(α) = π∗

P
(πS(α)) = α = π∗

Q
(α).

It is clear that (5) commutes. Suppose that h : R // Q and k : R // [P , S] are
morphisms such that f ◦ h = πS ◦ k. Define t : R // [Q,S ◦ f ] by on objects (a, x)
letting

t(a, x) = (h(a, x), k2(a, x)),

where k(a, x) = (k1(a, x), k2(a, x)). We have k2(a, x) ∈ S(k1(a, x)). Now f(h(a, x)) =
πS(k(a, x)) = k1(a, x), so k2(a, x) ∈ (S ◦ f)(h(a, x)). Thus t(a, x) is well-defined on
objects. For an arrow α : (a, x) // (b, y), we define (as usual)

t(α) = α.

Need to check that α : t(a, x) // t(b, y), i.e. that

h(α) = α : h(a, x) // h(b, y) and ((S ◦ f)(h(α)))(k2(b, y)) = k2(a, x). (10)

The first statement of (10) follows since h is a functor. As k is a morphism we have
S(k1(α))(k2(b, y)) = k2(a, x), but

((S ◦ f)(h(α)))(k2(b, y)) = S(f(h(α)))(k2(b, y))

= S(πS(k(α)))(k2(b, y))

= S(k1(α))(k2(b, y))

= k2(a, x).

That t is functorial is trivial since t(α) = α. Next we check that t is a morphism
R // [Q,S ◦ f ], and for this it remains to verify that π∗

Q,S◦f ◦ t = π∗
R

. This amounts to

checking π∗
Q
◦ πS◦f ◦ t = π∗

R
. Now

(π∗
Q
◦ πS◦f ◦ t)(a, x) = π∗

Q
(h(a, x)) = π∗

R
(a, x)
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where using in the last step, the fact that h is a morphism. Moreover, for C-morphisms
α

(π∗
Q
◦ πS◦f ◦ t)(α) = π∗

Q
(πS◦f (α))

= π∗
Q

(πS◦f (h(α)))

= π∗
Q

(h(α))

= π∗
R

(α)

The last step used that h is a morphism. Further

qS,f (t(a, x)) = (f(h(a, x)), k2(a, x)) = (k1(a, x), k2(a, x)) = k(a, x) πS◦f (t(a, x)) = h(a, x).

and

qS,f (t(α)) = f(t(α)) = f(h(α)) = k1(α) = k(α) πS◦f (t(α)) = πS◦f (h(α)) = h(α).

Thus t is a mediating morphism for the diagram. We check that it is unique: suppose
that t′ : R // [Q,S ◦ f ] is such that

qS,f (t
′(a, x)) = k(a, x) πS◦f (t

′(a, x)) = h(a, x)

and
qS,f (t

′(α)) = k(α) πS◦f (t
′(α)) = h(α). (11)

Writing t′(a, x) = (t′1(a, x), t′2(a, x)) we see that qS,f (t
′(a, x)) = (f(t′1(a, x)), t′2(a, x)) =

k(a, x) = (k1(a, x), k2(a, x)), and πS◦f (t
′(a, x)) = t′1(a, x) = h(a, x). Hence t′(a, x) =

t(a, x). From (11) we get g(t′(α)) = k(α) and t′(α) = h(α). Thus also t′(α) = t(α).

Suppose that a pullback square as in (5) is given. For an element t ∈ E(P , S) we
have πS ◦ t ◦ f = f ◦ idQ. Let t{f} : Q // [Q,S ◦ f ] be the unique map such that

πS◦f ◦ t{f} = idQ and qS,f ◦ t{f} = t ◦ f.

Then t{f} ∈ E(Q,S{f}), which is the element obtained from t by carrying out the
substitution f . What does this look like in its components? Suppose Q = [Q1, . . . , Qn]
and P = [P1, . . . , Pm]. Write

f(a, x) = (a, f1(a, x), . . . , fm(a, x)).

Moreover write
t(a, y) = (a, y, t′(a, y)).

By Theorem 2.10 above

t{f}(a, x) = (a, x, t′(a, f1(a, x), . . . , fm(a, x))).

Question: What are the categorical closure conditions of MPSh(C) in analogy to
the closure conditions of PSh(C) (which is a topos)?

10



3 Equivalence with standard presheaves

It was noted by Henrik Forssell that the functor [] : PSh(C) //MPSh(C) is actually
an equivalence of categories. Its inverse can be constructed explicitly.

For a morphism f : P //Q in MPSh(C) define a natural transformation

Σ∗(f) : Σ∗(P ) // Σ∗(Q)

by letting

Σ∗(f)a((x1, . . . , xn)) = (f1(a, x1, . . . , xn), . . . , fm(a, x1, . . . , xn)).

Here f1, . . . , fm are as in Theorem 2.6.

Lemma 3.1. Σ∗ : MPSh(C) // PSh(C) is a functor.

Proof. It is clear that Σ∗ sends objects to objects. We check that it is also well-defined
on arrows by verifying that Σ∗(f) is a natural transformation for f : P // Q. Let
α : b // a and x ∈ Σ∗(P )(a). Then by definition and since α : (b, P (α)(x)) // (a, x)
we get by Theorem 2.6

Σ∗(Q)(α)(Σ∗(f)a(x)) = (Q1(α)(f1(a, x)), . . . , Qm(α)(fm(a, x)))

= (f1(b, P (α)x), . . . , fm(b, P (x)))

= Σ∗(f)b(P (α)(x))

= Σ∗(f)b(Σ
∗(P )(α)(x)

as required.
If f is the identity, then fk(a, x) = xk and hence Σ∗(f)a(x) = x.
Suppose that f : P //Q and g : Q //R are morphisms and write

f(a, x) = (a, f1(a, x), . . . , fm(a, x))

and
g(a, y) = (a, g1(a, y), . . . , fk(a, x))

Then

Σ∗(g)a(Σ
∗(f)a(x)) = Σ∗(g)a(f1(a, x), . . . , fm(a, x))

= (g1(a, f1(a, x), . . . , fm(a, x)), . . . , gk(a, f1(a, x), . . . , fm(a, x)))

But we have

(g ◦ f)(a, x) = g(f(a, x))

= g(a, f1(a, x), . . . , fm(a, x))

= (a, g1(a, f1(a, x), . . . , fm(a, x)), . . . , fk(a, f1(a, x), . . . , fm(a, x)))
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Hence
Σ∗(g)a(Σ

∗(f)a(x)) = Σ∗(g ◦ f)a(x))

as was to be proved.

Theorem 3.2. The functors [] : PSh(C) //MPSh(C) and Σ∗ : MPSh(C) // PSh(C)
form an equivalence of categories witnessed by the natural isomorphisms

ε : Σ∗([−]) // IdPSh(C) and η : [Σ∗(−)] // IdMPSh(C)

where
(εP )a((x)) = x

and
ηP : Σ(C,Σ∗(P1, . . . , Pn)) // Σ(C, P1, . . . , Pn)

is given by ηP (a, (x1, . . . , xn)) = (a, x1, . . . , xn).

Proof. Clearly (εP )a : Σ∗([P ])(a) // P (a) is a bijection. For α : b // a,

P (α)((εP )a((x))) = P (α)(x) = (εP )b((P (α)(x))) = (εP )b(Σ
∗([P ])(α)((x))).

Thus εP : Σ∗([P ]) // P is a natural isomorphism, so an iso in PSh(C). We check that
ε is natural in P . Let τ : P //Q be a natural transformation. We need to verify

τ · εP = εQ · Σ∗([τ ]),

i.e. τa((εP )a((x))) = (εQ)a((Σ
∗([τ ]))a((x))). Now

τa((εP )a((x))) = τa(x).

On the other hand

(εQ)a((Σ
∗([τ ]))a((x))) = (εQ)a((τa(x))) = τa(x).

Hence ε is a natural transformation.
We verify that η is an natural isomorphism. First check that ηP is a morphism

[Σ∗(P1, . . . , Pn)] //[P1, . . . , Pn] in MPSh(C) by verifying the multinaturality of Theorem
2.6: Let α : (b, (y)) // (a, (x)). We should have

P1(α)(f1(b, (x))) = f1(a,Σ∗(P1, . . . , Pn)(α)((x)))
...

Pn(α)(fm(b, (x))) = fn(a,Σ∗(P1, . . . , Pn)(α)((x)))

where fk(a, (x)) = xk. But Σ∗(P1, . . . , Pn)(α)((x)) = (P1(α)(x1), . . . , Pn(α)(xn)) so this
is clear. We claim that g(a, x1, . . . , xn) = (a, (x1, . . . , xn)) defines an inverse morphism
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to ηP . It is clearly an inverse, so it remains to verify it is a morphism. Let α :
(b, y) // (a, x). We need to verify

Σ∗(P1, . . . , Pn)(α)(f(a, x)) = f(b, P1(α)(x1), . . . , Pn(α)(xn)) (12)

where f(x) = (x). But (12) is

Σ∗(P1, . . . , Pn)(α)((x)) = (P1(α)(x1), . . . , Pn(α)(xn)) (13)

which follows by definition. Thus each ηP is an isomorphism. We check that ηP is
natural in P . Suppose that f : P //Q is a morphism. We need to verify that

f ◦ ηP = ηQ ◦ [Σ∗(f)].

Write
f(a, x) = (a, f1(a, x), . . . , fm(a, x))

We have
f(ηP (a, (x))) = f(a, x) = (a, f1(a, x), . . . , fm(a, x))

and on the other hand

ηQ([Σ∗(f)](a, (x))) = ηQ(a,Σ∗(f)a((x)))) = ηQ(a, (f1(a, x), . . . , fm(a, x))) = (a, f1(a, x), . . . , fm(a, x)).

Thus we are done.

4 Π-construction

Let C be any small category and let R = [R1, . . . , Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R))
and Q ∈ PSh(Σ(R,P )). We define a presheaf Π(P,Q) over Σ(R) as follows. For
(a, x) ∈ Σ(R), let

Π(P,Q)(a, x) =
{
h ∈ (Πb ∈ C)(Πf : b→ a)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v) |

∀b ∈ C,∀f : b→ a,∀v ∈ P (b, R(f)(x)),

∀c ∈ C,∀β : c→ b,

Q(β)(h(b, f, v)) = h(c, f ◦ β, P (β)(v))
}

We have written R(f)(x) for R1(f)(x1), . . . , Rn(f)(xn). For α : (a′, x′) → (a, x) and
h ∈ Π(P,Q)(a, x) define Π(P,Q)(α)(h) = h′ by

h′(b, f, v) = h(b, α ◦ f, v), (14)
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for b ∈ C, f : b→ a′, v ∈ P (b, R(f)(x′)). It is straightforward to verify that Π(P,Q) is
a presheaf over C.

Let s ∈ E([R,P ], Q). Thus there is s′ such that for all (b, u, v) ∈ Σ(R,P ),

s(b, u, v) = (b, u, v, s′(b, u, v))

where s′(b, u, v) ∈ Q(b, u, v) and further for all α : (a, x, y) // (b, u, v)

Q(α)(s′(b, u, v)) = s′(a,R(α)(u), P (α)(v)). (15)

Define
ŝ(a, x) = λb ∈ C.λf : b→ a.λv ∈ P (b, R(f)(x)).s′(b, R(f)(x), v).

We check that ŝ(a, x) ∈ Π(P,Q)(a, x): For b ∈ C, f : b→ a, v ∈ P (b, R(f)(x)) we need
to verify that for any β : c // b,

Q(β)(ŝ(a, x)(b, f, v)) = ŝ(a, x)(c, f ◦ β, P (β)(v)).

Indeed, using (18), the following calculation proves this.

Q(β)(ŝ(a, x)(b, f, v)) = Q(β)(s′(b, R(f)(x), v))

= s′(c, R(β)(R(f)(x)), P (β)(v))

= s′(c, R(f ◦ β)(x), P (β)(v))

= ŝ(a, x)(c, f ◦ β, P (β)(v)).

Next, define
λP,Q(s)(a, x) = (a, x, ŝ(a, x)).

We wish to verify that λP,Q(s) ∈ E(R,Π(P,Q)). For this it suffices to check that for
α : (a′, x′) // (a, x),

Π(P,Q)(α)(ŝ(a, x)) = ŝ(a′, R(α)(x)). (16)

Evaluate the left hand side at b ∈ C, f : b→ a′, v ∈ P (b, R(f)(x′)),

Π(P,Q)(α)(ŝ(a, x))(b, f, v) = ŝ(a, x)(b, α ◦ f, v)

= s′(b, R(α ◦ f)(x), v)

= s′(b, R(f)(R(α)(x)), v)

= ŝ(a,R(α)(x))(b, f, v)

This verifies (16).
For f ∈ E(R,Π(P,Q)) and t ∈ E(R,P ) we write

f(a, x) = (a, x, f ′(a, x)) t(a, x) = (a, x, t′(a, x)).
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Thus f ′(a, x) ∈ Π(P,Q)(a, x) and t′(a, x) ∈ P (a, x). It holds that

f ′(a, x)(a, 1a, t
′(a, x)) ∈ Q(a, x, t′(a, x)) = (Q ◦ t)(a, x).

Define
AppP,Q(f, t)(a, x) = (a, x, f ′(a, x)(a, 1a, t

′(a, x))).

We wish to prove that
AppP,Q(f, t) ∈ E(R,Q ◦ t).

By the form of the definition it suffices to check the naturality condition: for α :
(a, x) // (b, y),

(Q ◦ t)(α)(f ′(b, y)(b, 1b, t
′(b, y))) = f ′(a,R(α)(y))(a, 1a, t

′(a,R(α)(y))).

We use the naturality conditions for f , t and naturality of elements in Π(P,Q)(b, y) to
verify this:

(Q ◦ t)(α)(f ′(b, y)(b, 1b, t
′(b, y))) = Q(t(α))(f ′(b, y)(b, 1b, t

′(b, y)))

= f ′(b, y)(a, 1b ◦ α, P (α)(t′(b, y)))

= f ′(b, y)(a, 1b ◦ α, t′(a,R(α)(y)))

= f ′(b, y)(a, α ◦ 1a, t
′(a,R(α)(y)))

= (Π(P,Q)(α)(f ′(b, y)))(a, 1a, t
′(a,R(α)(y)))

= f ′(a,R(α)(y))(a, 1a, t
′(a,R(α)(y))).

The λ-computation rule is verified as follows

AppP,Q(λP,Q(s), t)(a, x) = (a, x, ŝ(a, x)(a, 1a, t
′(a, x)))

= (a, x, s′(a, x, t′(a, x)))

= s{t}(a, x).

Thus AppP,Q(λP,Q(s), t) = s{t}.
It remains to check that all constructs commute with substitutions. Fix a morphism

f : S //R, where S = [S1, . . . , Sk] and R = [R1, . . . , Rn]. Then write

f(d, w) = (d, f1(d, w), . . . , , fn(d, w)).

The components satisfy the naturality conditions: for each morphism α : (e, z) //(d, w)
in Σ(S), the following equations hold

R1(α)(f1(d, w)) = f1(e, S(α)(w))
...

Rn(α)(fn(d, w)) = fn(e, S(α)(w))
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Π-substitution: P ∈ PSh(Σ(R)) and Q ∈ PSh(Σ(R,P )). We need to check that
Π(P,Q){f} = Π(P{f}, Q{qP,f}) as presheaves. Let (d, w) ∈ Σ(S). We have

Π(P,Q){f}(d, w) =
{
h ∈ (Πb ∈ C)(Πg : b→ d)(Πv ∈ P (b, R(g)(f1(d, w), . . . , , fn(d, w)))

Q(b, R(g)(f1(d, w), . . . , , fn(d, w)), v) |
∀b ∈ C,∀g : b→ d,∀v ∈ P (b, R(g)(f1(d, w), . . . , , fn(d, w))),

∀c ∈ C,∀β : c→ b,

Q(β)(h(b, g, v)) = h(c, g ◦ β, P (β)(v))
}

By the naturality condition

R(g)(f1(d, w), . . . , fn(d, w)) = (f1(b, S(g)(w)), . . . , fn(b, S(g)(w))). (17)

Thus

P (b, R(g)(f1(d, w), . . . , , fn(d, w)) = P (b, (f1(b, S(g)(w)), . . . , , fn(b, S(g)(w))))

= P (f(b, S(g)(w)))

= (P{f})(b, S(g)(w))

and moreover

Q(b, R(g)(f1(d, w), . . . , fn(d, w)), v) = Q(b, f1(b, S(g)(w)), . . . , fn(b, S(g)(w)), v)

= Q(f(b, S(g)(w)), v)

= (Q{qP,f})(S(g)(w), v)

We have thereby

Π(P,Q){f}(d, w) =
{
h ∈ (Πb ∈ C)(Πg : b→ d)(Πv ∈ (P{f})(b, S(g)(w)))

(Q{qP,f})(S(g)(w), v) |
∀b ∈ C, ∀g : b→ d,∀v ∈ (P{f})(b, S(g)(w)),

∀c ∈ C,∀β : c→ b,

Q(β)(h(b, g, v)) = h(c, g ◦ β, P (β)(v))
}

But Q(β) = Q(qP,f (β)) and P (β) = P (f(β)), so

Π(P,Q){f}(d, w) = Π(P{f}, Q{qP,f})(d, w).

Suppose α : (e, z) // (d, w) in Σ(S),

Π(P,Q){f}(α)(h)(b, f, v) = Π(P,Q)(f(α))(h)(b, f, v) = Π(P,Q)(α)(h)(b, f, v) = (b, α◦f, v)
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and on the other hand

Π(P{f}, Q{qP,f})(α)(h)(b, f, v) = (b, α ◦ f, v).

Hence Π(P,Q){f} = Π(P{f}, Q{qP,f}).
λ-substitution: Let s ∈ E([R,P ], Q). Thus there is s′ such that for all (b, u, v) ∈

Σ(R,P ),
s(b, u, v) = (b, u, v, s′(b, u, v))

where s′(b, u, v) ∈ Q(b, u, v) and further for all α : (a, x, y) // (b, u, v)

Q(α)(s′(b, u, v)) = s′(a,R(α)(u), P (α)(v)). (18)

We have

ŝ(a, x) = λb ∈ C.λf : b→ a.λv ∈ P (b, R(f)(x)).s′(b, R(f)(x), v).

and
λP,Q(s)(a, x) = (a, x, ŝ(a, x)).

Further,
λP,Q(s){f}(d, w) = (d, w, ŝ(d, f1(a, w), . . . , fm(d, w)))

Now s{qP,f} ∈ E([S, P{f}], Q{qP,f}), and so

λP{f},Q{qP,f}(s{qP,f}) ∈ E(S,Π(P{f}, Q{qP,f})).

and
λP{f},Q{qP,f}(s{qP,f})(d, w) = (d, w, ŝ{qP,f}(d, w))

We have
qP,f (d, w, v) = (f(d, w), v) = (d, f1(d, w), . . . , fm(d, w), v).

By construction of substitution on terms

s{qP,f}(d, w, v) = (d, w, v, s′(d, f1(d, w), . . . , fm(d, w), v))

Thus

ŝ{qP,f}(d, w) = λb ∈ C.λg : b→ d.λv ∈ P{f}(b, S(g)(w)).s′(b, f1(b, S(g)(w)), . . . , fm(b, S(g)(w)), v)).

We compare

ŝ{qP,f}(d, w)(b, g, v) = s′(b, f1(b, S(g)(w)), . . . , fm(b, S(g)(w)), v))

and
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ŝ(d, f1(a, w), . . . , fm(d, w))(b, g, v) = s′(b, R(g)(f1(a, w), . . . , fm(d, w)), v)

By the condition (17) we see that the two expressions are equal.

App-substitution: For g ∈ E(R,Π(P,Q)) and t ∈ E(R,P ) we write

g(a, x) = (a, x, g′(a, x)) t(a, x) = (a, x, t′(a, x)).

Thus g′(a, x) ∈ Π(P,Q)(a, x) and t′(a, x) ∈ P (a, x). It holds that

g′(a, x)(a, 1a, t
′(a, x)) ∈ Q(a, x, t′(a, x)) = (Q ◦ t)(a, x).

We have by definition

AppP,Q(g, t)(a, x) = (a, x, g′(a, x)(a, 1a, t
′(a, x))).

We shall prove
AppP,Q(g, t){f} = AppP{f},Q{qP,f}(g{f}, t{f})

On the one hand

AppP,Q(g, t){f}(d, w)

= (d, w, g′(d, f1(a, w), . . . , fm(d, w))(d, 1d, t
′(d, f1(a, w), . . . , fm(d, w)))).

We have further

g{f}(d, w) = (d, w, g′(d, f1(a, w), . . . , fm(d, w)))

and
t{f}(d, w) = (d, w, t′(d, f1(a, w), . . . , fm(d, w)))

Now on the other hand

AppP{f},Q{qP,f}(g{f}, t{f})(d, w)

= (d, w, g′(d, f1(a, w), . . . , fm(d, w))(d, 1d, t
′(d, f1(a, w), . . . , fm(d, w))))

which is indeed the same.

5 Σ-construction

Let C be any small category and let R = [R1, . . . , Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R))
and Q ∈ PSh(Σ(R,P )). We define a presheaf Σ̇(P,Q) over Σ(R) as follows. For
(a, x) ∈ Σ(R), let

Σ̇(P,Q)(a, x) = {(u, v) : u ∈ P (a, x), v ∈ Q(a, x, u)}.
For α : (a′, x′)→ (a, x) and h ∈ Σ̇(P,Q)(a, x) define

Σ̇(P,Q)(α)(u, v) = (P (α)(u), Q(α)(v)).

It is straightforward to verify that Σ̇(P,Q) is a presheaf over C.
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6 Explication of the constructions over some cate-

gories

.
Suppose that C is the category 0 → 2 ← 1, where all other arrows are identities.

Let R = [R1, . . . , Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R)) and Q ∈ PSh(Σ(R,P )). Now
the definition of Π(P,Q) simples for a = 0, 1, since there are only identity arrows into
a, the naturality condition becomes void, so we have:

Π(P,Q)(a, x) = (Πb ∈ C)(Πf : b→ a)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v)
∼= (Πv ∈ P (b, x)Q(b, x, v)

For a = 2, the naturality condition has a few nontrivial cases:

Π(P,Q)(2, x) =
{
h ∈ (Πb ∈ C)(Πf : b→ 2)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v) |

∀b ∈ C,∀f : b→ 2,∀v ∈ P (b, R(f)(x)),

∀c ∈ C,∀β : c→ b,

Q(β)(h(b, f, v)) = h(c, f ◦ β, P (β)(v))
}

Writing out the cases explicitly we get

Π(P,Q)(2, x) =
{
h ∈ (Πb ∈ C)(Πf : b→ 2)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v) |

∀f : 0→ 2,∀v ∈ P (0, R(f)(x)),

∀c ∈ C,∀β : c→ 0,

Q(β)(h(0, f, v)) = h(c, f ◦ β, P (β)(v)),

∀f : 1→ 2,∀v ∈ P (b, R(f)(x)),

∀c ∈ C,∀β : c→ 1,

Q(β)(h(1, f, v)) = h(c, f ◦ β, P (β)(v))

∀f : 2→ 2,∀v ∈ P (2, R(f)(x)),

∀c ∈ C,∀β : c→ 2,

Q(β)(h(2, f, v)) = h(c, f ◦ β, P (β)(v))
}

Simplifying this the first two conditions become void.

Π(P,Q)(2, x) =
{
h ∈ (Πb ∈ C)(Πf : b→ 2)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v) |

∀f : 2→ 2,∀v ∈ P (2, R(f)(x)),

∀c ∈ C,∀β : c→ 2,

Q(β)(h(2, f, v)) = h(c, f ◦ β, P (β)(v))
}
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Further, simplifying the remaining condition

Π(P,Q)(2, x) =
{
h ∈ (Πb ∈ C)(Πf : b→ 2)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v) |

∀v ∈ P (2, x),∀c ∈ C,∀β : c→ 2,

Q(β)(h(2, 12, v)) = h(c, β, P (β)(v))
}

Finally, instantiating c to 0, 1, 2 what remains after simplification (c = 2 gives an empty
condition):

Π(P,Q)(2, x) =
{
h ∈ (Πb ∈ C)(Πf : b→ 2)(Πv ∈ P (b, R(f)(x))Q(b, R(f)(x), v) |

∀v ∈ P (2, x),

Q(f02)(h(2, 12, v)) = h(0, f02, P (f02)(v)),

Q(f12)(h(2, 12, v)) = h(1, f12, P (f12)(v))
}

6.1 Simplicial sets

Let ∆ be the category whose objects are the natural number N = {0, 1, 2, . . .}. Denote
by [n] the set {0, . . . , n} for n ∈ N. A morphism f : m //n in ∆ is a monotone function
f : [m] // [n]. The presheaves over ∆, is called the category of simplicial sets. The
Yoneda embedding y : ∆ // PSh(∆) satisfies by the Yoneda lemma

HomPSh(C)(y(n), F ) ∼= F (n)

for any n ∈ N and any F ∈ PSh(C). The canonical n-simplex is ∆n = y(n).
For i = 0, . . . , n + 1, let δni : [n] // [n + 1] be the unique monotone function such

that δni [{0, . . . , n}] = {0, . . . , i − 1, i + 1, . . . , n + 1}. F (δni ) : F (n + 1) // F (n) is the
ith face map.

The presheaf F ∈ PSh(∆) is a Kan complex if for any n and any x0, . . . , xk−1, xk+1, . . . , xn+1 ∈
F (n) such that F (δi)(xj) = F (δj−1)(xi) for all i < j, i 6= k, j 6= k, there exists
x ∈ F (n+ 1) such that F (δi)(x) = xi for all i 6= k.

Spelling out:
n = 1, k = 0: for any x1, x2 with F (δ1)(x2) = F (δ1)(x1), there is x ∈ F (2) such that

F (δ1)(x) = x1, F (δ2)(x) = x2.
n = 1, k = 1: for any x0, x2 with F (δ0)(x2) = F (δ1)(x0), there is x ∈ F (2) such that

F (δ0)(x) = x0, F (δ2)(x) = x2.
n = 1, k = 2: for any x0, x1 with F (δ0)(x1) = F (δ0)(x0), there is x ∈ F (2) such that

F (δ0)(x) = x0, F (δ1)(x) = x1.
n = 2, k = 0: for any x1, x2, x3 with F (δ1)(x2) = F (δ1)(x1), F (δ1)(x3) = F (δ2)(x1),

F (δ2)(x3) = F (δ2)(x2), there is x ∈ F (3) such that F (δ1)(x) = x1, F (δ2)(x) = x2,
F (δ3)(x) = x3.
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Appendix

Definition 6.1. A category with attributes (cwa) consists of the data

(a) A category C with a terminal object 1. This is the called the category of contexts
and substitutions.

(b) A functor T : Cop // Set. This functor is intended to assign to each context Γ a
set T (Γ) of types in the context and tells how substitutions act on these types.
For f : B // Γ and σ ∈ T (Γ) we write

σ{f} for T (f)(σ).

(c) For each σ ∈ T (Γ), an object Γ.σ in C and a morphism

p(σ) = pΓ(σ) : Γ.σ // Γ in C.

This tells that each context can be extended by a type in the context, and that
there is a projection from the extended context to the original one.

(d) The final datum tells how substitutions interact with context extensions: For
each f : B // Γ and σ ∈ T (Γ), there is a morphism q(f, σ) = qΓ(f, σ) :
B.(T (f)(σ)) // Γ.σ in C such that

B Γ
f

//

B.(σ{f})

B

p(σ{f})

��

B.(σ{f}) Γ.σ
q(f,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore

(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g, σ) = q(f, σ) ◦ q(g, σ{f}) for A
g //B

f // Γ.

From [2] we take the following definition, but adapt it in the obvious way to cwas.

Definition 6.2. A cwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E(Γ.σ, τ) there is an element

λσ,τ (P ) ∈ E(Γ,Π(σ, τ)),
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and furthermore for any M ∈ E(Γ,Π(σ, τ)) and any N ∈ E(Γ, σ) there is an element

Appσ,τ (M,N) ∈ E(Γ, τ{N}),

such that the following equations hold for any substitution f : B // Γ:

(λ-comp) Appσ,τ (λσ,τ (P ), N) = P{N},

(Π-subst) Π(σ, τ){f} = Π(σ{f}, τ{q(f, σ)}),

(λ-subst) λσ,τ (P ){f} = λσ{f},τ{q(f,σ)}(P{q(f, σ)}),

(App-subst) Appσ,τ (M,N){f} = Appσ{f},τ{q(f,σ)}(M{f}, N{f}).
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