The Grothendieck construction and models for dependent types

Erik Palmgren

Notes, March 8, 2013; minor editing May 28, 2016

We show here that presheaves and the Grothendieck construction gives a natural model for dependent types, in the form of a contextual category. This is a variant of Hofmann's presheaf models. The difference is briefly that in Hofmann's models the category of contexts is the presheaf category $\operatorname{PSh}(\mathbb{C})$, whereas in the model here presented, the context objects are iterated Grothendieck constructions $\int\left(\cdots \int\left(\int\left(\mathbb{C}, P_{1}\right), P_{2}\right), \ldots, P_{n}\right)$ and the context morphisms are functors with some restriction. ${ }^{1}$

1 Iterated Grothendieck constructions

Let \mathbb{C} be a small category. Let P be a presheaf on \mathbb{C}. The category of elements of P, denoted

$$
\Sigma(\mathbb{C}, P)
$$

consists of objects (a, x) where a is an object in \mathbb{C} and x is an element of $P(a)$. A morphism $\alpha:(a, x) \longrightarrow(b, y)$ is a \mathbb{C}-morphism $\alpha: a \longrightarrow b$, such that $P(\alpha)(y)=x$. $\Sigma(\mathbb{C}, P)$ is the well-known Grothendieck construction [3] and is usually denoted

$$
\int_{\mathbb{C}} P \quad \text { or perhaps } \quad \int(\mathbb{C}, P)
$$

This category is again small. There is a projection functor $\pi_{P}=\pi: \Sigma(\mathbb{C}, P) \longrightarrow \mathbb{C}$ defined by $\pi(a, x)=a$ and $\pi(\alpha)=\alpha$, for $\alpha:(a, x) \longrightarrow(b, y)$.

It is well-known that the Grothendieck construction gives the following equivalence

$$
\operatorname{PSh}(\mathbb{C}) / P \simeq \operatorname{PSh}(\Sigma(\mathbb{C}, P))
$$

[^0]Thus objects Q over P can be regarded as presheaves over $\Sigma(\mathbb{C}, P)$. This suggests a relation to semantics of dependent types [2]. One can iterate the Grothendieck construction as follows. Write

$$
\begin{gathered}
\Sigma(\mathbb{C})=\mathbb{C} \\
\Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{n}\right)=\Sigma\left(\Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{n-1}\right), P_{n}\right) .
\end{gathered}
$$

Here $P_{k+1} \in \operatorname{PSh}\left(\Sigma\left(\mathbb{C}, P_{1}, \ldots, P_{k}\right)\right)$ for each $k=0, \ldots, n-1$. Note that

$$
\pi_{P_{k+1}}: \Sigma\left(\Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{k}\right), P_{k+1}\right) \longrightarrow \Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{k}\right)
$$

Using these projections, define the iterated first projection functor

$$
\pi_{P_{1}, P_{2}, \ldots, P_{n}}^{*}={ }_{\operatorname{def}} \pi_{P_{1}} \circ \pi_{P_{2}} \circ \cdots \circ \pi_{P_{n}}: \Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{n}\right) \longrightarrow \mathbb{C} .
$$

We explicate these constructions to see the connection to contexts of type theory. The objects of the category $\Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{n}\right)$ have the form $\left(\cdots\left(\left(a, x_{1}\right), x_{2}\right), \ldots, x_{n}\right)$ but we shall write them as $\left(a, x_{1}, \ldots, x_{n}\right)$. Thus $a \in \mathbb{C}, x_{1} \in P_{1}(a), x_{2} \in P_{2}\left(a, x_{1}\right)$, $x_{3} \in P_{3}\left(a, x_{1}, x_{2}\right), \ldots, x_{n} \in P_{n}\left(a, x_{1}, \ldots, x_{n-1}\right)$.

Proposition 1.1. A morphism

$$
\alpha:\left(a, x_{1}, \ldots, x_{n}\right) \longrightarrow\left(b, y_{1}, \ldots, y_{n}\right)
$$

in $\Sigma\left(\mathbb{C}, P_{1}, P_{2}, \ldots, P_{n}\right)$ is given by a morphism $\alpha: a \longrightarrow b$ in \mathbb{C} such that

$$
P_{1}(\alpha)\left(y_{1}\right)=x_{1}, P_{2}(\alpha)\left(y_{2}\right)=x_{2}, \ldots, P_{n}(\alpha)\left(y_{n}\right)=x_{n} .
$$

Proof. Induction on n. For $n=0$, this is trivial, since the condition is void. Suppose it holds for n. A morphism $\alpha:\left(a, x_{1}, \ldots, x_{n+1}\right) \longrightarrow\left(b, y_{1}, \ldots, y_{n+1}\right)$ is by definition a morphism $\alpha:\left(a, x_{1}, \ldots, x_{n}\right) \longrightarrow\left(b, y_{1}, \ldots, y_{n}\right)$ such that $P_{n+1}(\alpha)\left(y_{n+1}\right)=x_{n+1}$. By the induction hypothesis α is a morphism $a \longrightarrow b$ such that

$$
P_{1}(\alpha)\left(y_{1}\right)=x_{1}, P_{2}(\alpha)\left(y_{2}\right)=x_{2}, \ldots, P_{n}(\alpha)\left(y_{n}\right)=x_{n} .
$$

Hence also

$$
P_{1}(\alpha)\left(y_{1}\right)=x_{1}, P_{2}(\alpha)\left(y_{2}\right)=x_{2}, \ldots, P_{n}(\alpha)\left(y_{n}\right)=x_{n}, P_{n+1}\left(y_{n+1}\right)=x_{n+1}
$$

as required.

2 A category with attributes

Let \mathbb{C} be a small category. We first define the category of contexts. Define a category $\operatorname{MPSh}(\mathbb{C})=M$ to have as objects finite sequences $\bar{P}=\left[P_{1}, \ldots, P_{n}\right], n \geq 0$, such that $P_{k+1} \in \operatorname{PSh}\left(\Sigma\left(\mathbb{C}, P_{1}, \ldots, P_{k}\right)\right)$ for each $k=0, \ldots, n-1$. (In commutative diagrams we omit the rectangular brackets for typographical reasons.) We write $\Sigma(\mathbb{C}, \bar{P})$, or $\Sigma(\bar{P})$ when \mathbb{C} is clear from the situation, for $\Sigma\left(\mathbb{C}, P_{1}, \ldots, P_{n}\right)$. Define the set of morphisms $\operatorname{Hom}_{M}(\bar{P}, \bar{Q})$ as a subset of the functors from $\Sigma(\bar{P})$ to $\Sigma(\bar{Q})$, as follows:

$$
\begin{equation*}
\operatorname{Hom}_{M}(\bar{P}, \bar{Q})=\left\{f \in \Sigma(\bar{Q})^{\Sigma(\bar{P})}: \pi_{\bar{Q}}^{*} \circ f=\pi_{\bar{P}}^{*}\right\} \tag{1}
\end{equation*}
$$

Notice that since $\pi_{\bar{Q}}^{*}(\beta)=\beta$ and $\pi_{\bar{P}}^{*}(\alpha)=\alpha$ for all arrows β in $\Sigma(\bar{Q})$, and α in $\Sigma(\bar{P})$, it holds for $f \in \operatorname{Hom}_{M}(\bar{P}, \bar{Q})$,

$$
f(\alpha)=\alpha
$$

To see that M is category we need only to check that it has all identity morphisms and is closed under composition. If $f \in \operatorname{Hom}_{M}(\bar{P}, \bar{Q})$ and $g \in \operatorname{Hom}_{M}(\bar{Q}, \bar{R})$, then

$$
\pi_{\bar{R}}^{*} \circ g \circ f=\pi_{\bar{Q}}^{*} \circ f=\pi_{\bar{P}}^{*} .
$$

Thus closure under composition is clear. Further,

$$
\pi_{\bar{P}}^{*} \circ \operatorname{id}_{\Sigma(\bar{P})}=\pi_{\bar{P}}^{*}
$$

so $\operatorname{id}_{\Sigma(\bar{P})} \in \operatorname{Hom}_{M}(\bar{P}, \bar{P})$. Note that $\operatorname{Hom}_{M}(\bar{P},[])$ consists only of the functor $\pi_{\bar{P}}^{*}$ since if $f \in \operatorname{Hom}_{M}(\bar{P},[])$, then $\pi_{\square}^{*} \circ f=\pi_{\bar{P}}^{*}$. But π_{\square}^{*} is the identity functor on \mathbb{C}, so $f=\pi_{\bar{P}}^{*}$. It seems reasonable to call $\operatorname{MPSh}(\mathbb{C})$ the multivariable presheaves over \mathbb{C}. We conclude from this

Theorem 2.1. $\operatorname{MPSh}(\mathbb{C})$ is a category with terminal object [] , whenever \mathbb{C} is a small category.

The objects form a tree structure via the immediate extension relation: $\bar{P} \triangleleft \bar{Q}$ if and only if $\bar{Q}=[\bar{P}, S]$ for some $S \in \operatorname{PSh}(\bar{P})$.

The following is immediate in view of the definition (1):
Lemma 2.2. Let $M=\operatorname{MPSh}(\mathbb{C})$. The hom-set $\operatorname{Hom}_{M}\left(\bar{P},\left[Q_{1}, \ldots, Q_{m+1}\right]\right)$ consists of those functors $f: \Sigma(\bar{P}) \longrightarrow \Sigma\left(Q_{1}, \ldots, Q_{m+1}\right)$ such that $\pi_{Q_{m+1}} \circ f \in \operatorname{Hom}_{M}\left(\bar{P},\left[Q_{1}, \ldots, Q_{m}\right]\right)$.

The restriction in the hom-sets of MPSh (\mathbb{C}) yields the following characterization.
Lemma 2.3. For $P, Q \in \operatorname{PSh}(\mathbb{C})$ there is a bijection

$$
\operatorname{Hom}_{\operatorname{MPSh}(\mathbb{C})}([P],[Q]) \cong \operatorname{Hom}_{\mathrm{PSh}(\mathbb{C})}(P, Q)
$$

Proof. For $f \in \operatorname{Hom}_{\operatorname{MPSh}(\mathbb{C})}([P],[Q])$ we have by the restriction $\pi_{[Q]}^{*} \circ f=\pi_{(P)}^{*}$ that $f(a, x)=\left(a, \hat{f}_{a}(x)\right)$ and $f(\alpha)=\alpha$. Thus if $x \in P(a)$, then $(a, x) \in \Sigma(\mathbb{C}, P)$, so $\hat{f}_{a}(x) \in Q(a)$. This gives a family of maps $\hat{f}_{a}: P(a) \longrightarrow Q(a), a \in \mathbb{C}$. We check that they form a natural transformation $\tau: P \longrightarrow Q$. Suppose $y \in P(b)$ and $\alpha: a \longrightarrow b$. Then $(a, P(\alpha)(y)) \in \Sigma(\mathbb{C}, P)$ and $\alpha:(a, P(\alpha)(y)) \longrightarrow(b, y)$, so $f(\alpha): f(a, P(\alpha)(y)) \longrightarrow f(b, y)$. This means

$$
\alpha:\left(a, \hat{f}_{a}(P(\alpha)(y))\right) \longrightarrow\left(b, \hat{f}_{b}(y)\right)
$$

Hence $Q(\alpha)\left(\hat{f}_{b}(y)\right)=\hat{f}_{a}(P(\alpha)(y))$, which verifies the naturally condition. Write \hat{f} for the natural transformation constructed from f.

Conversely, suppose that $\tau: P \longrightarrow Q$ is a natural transformation. Define a functor $f: \Sigma(\mathbb{C}, P) \longrightarrow \Sigma(\mathbb{C}, Q)$ by

$$
f(a, x)=\left(a, \tau_{a}(x)\right) \quad f(\alpha)=\alpha
$$

Note that if $x \in P(a)$, then $\tau_{a}(x) \in Q(a)$, so it is well-defined on objects. If α : $(a, x) \longrightarrow(b, y)$ then $P(\alpha)(y)=x$. Now we need to check that $f(\alpha)=\alpha:\left(a, \tau_{a}(x)\right) \longrightarrow\left(b, \tau_{b}(y)\right)$, i.e. that $Q(\alpha)\left(\tau_{b}(y)\right)=\tau_{a}(x)$. Inserting $x=P(\alpha)(y)$, this is

$$
Q(\alpha)\left(\tau_{b}(y)\right)=\tau_{a}(P(\alpha)(y))
$$

which is exactly the naturality of τ. So f is well-defined on arrows as well. The functoriality of f is clear. Write $[\tau]=f$ for the morphism so constructed from τ.

Now for $g \in \operatorname{Hom}_{\operatorname{MPSh}(\mathbb{C})}([P],[Q])$,

$$
[\hat{g}](a, x)=\left(a, \hat{g}_{a}(x)\right)=g(a, x)
$$

and $[\hat{g}](\alpha)=\alpha=g(\alpha)$. Thus $[\hat{g}]=g$. Further for $\sigma \in \operatorname{Hom}_{\text {PSh(}}^{(\mathbb{C})}(P, Q)$, we wish to prove $\widehat{[\sigma]}=\sigma$. For $(a, x) \in \Sigma(P)$, we have by definition

$$
[\sigma](a, x)=\left(a, \sigma_{a}(x)\right)
$$

and further by definition

$$
\widehat{[\sigma]}_{a}(x)=\sigma_{a}(x)
$$

Thus

$$
\widehat{[\sigma]}=\sigma
$$

and this shows that the operations are mutual inverses.
The following may be considered as a secondary Yoneda embedding.
Theorem 2.4. [.] : $\operatorname{PSh}(\mathbb{C}) \longrightarrow \operatorname{MPSh}(\mathbb{C})$ is a full and faithful functor.

Proof. In view of Lemma 2.3 we need only to check that the operation [•] is functorial. Consider identity natural transformation $\iota: P \longrightarrow P$ given by $\iota_{a}=\operatorname{id}_{P(a)}$. We have

$$
[\iota](a, x)=\left(a, \iota_{a}(x)\right)=(a, x) \quad[\iota](\alpha)=\alpha
$$

so clearly (ι) is the identity $[P] \longrightarrow[P]$. Suppose that $\sigma: P \longrightarrow Q$ and $\tau: Q \longrightarrow R$ are natural transformations. We have for objects (a, x) in $\Sigma(P)$:

$$
[\tau \cdot \sigma](a, x)=\left(a,(\tau \cdot \sigma)_{a}(x)\right)=\left(a, \tau_{a}\left(\sigma_{a}(x)\right)\right)
$$

and on the other hand we get the same result evaluating

$$
([\tau] \circ[\sigma])(a, x)=[\tau]([\sigma](a, x))=[\tau]\left(a, \sigma_{a}(x)\right)=\left(a, \tau_{a}\left(\sigma_{a}(x)\right)\right)
$$

For a morphism $\alpha:(a, x) \longrightarrow(b, y)$ in $\Sigma(P)$, we have by definition

$$
[\tau \cdot \sigma](\alpha)=\alpha=[\tau](\alpha)=[\tau](([\sigma])(\alpha))=([\tau] \circ[\sigma])(\alpha) .
$$

This means that [:] is functorial.
Composing the Yoneda embedding with the secondary embedding we get:
Corollary 2.5. [.] $\circ \mathbf{y}: \mathbb{C} \longrightarrow \operatorname{MPSh}(\mathbb{C})$ is a full and faithful functor.
Theorem 2.6. Let $\bar{P}=\left[P_{1}, \ldots, P_{n}\right]$ and $\bar{Q}=\left[Q_{1}, \ldots, Q_{m}\right]$ be objects of $\operatorname{MPSh}(\mathbb{C})$. An $\operatorname{MPSh}(\mathbb{C})$-morphism $f: \bar{P} \longrightarrow \bar{Q}$ is given by m components f_{1}, \ldots, f_{m}, which are such that for objects (a, \bar{x}) of $\Sigma(\bar{P})$:

$$
\begin{equation*}
f(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right) \tag{2}
\end{equation*}
$$

and
$f_{1}(a, \bar{x}) \in Q_{1}(a), f_{2}(a, \bar{x}) \in Q_{2}\left(a, f_{1}(a, \bar{x})\right), \ldots, f_{m}(a, \bar{x}) \in Q_{m}\left(a, f_{1}(a, \bar{x}), \ldots, f_{m-1}(a, \bar{x})\right)$
Moreover for each morphism $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$ in $\Sigma(\bar{P})$, the following naturality equations hold

$$
\begin{aligned}
Q_{1}(\alpha)\left(f_{1}(b, \bar{y})\right) & =f_{1}\left(a, P_{1}(\alpha)\left(y_{1}\right), \ldots, P_{n}(\alpha)\left(y_{n}\right)\right) \\
& \vdots \\
Q_{m}(\alpha)\left(f_{m}(b, \bar{y})\right) & =f_{m}\left(a, P_{1}(\alpha)\left(y_{1}\right), \ldots, P_{n}(\alpha)\left(y_{n}\right)\right)
\end{aligned}
$$

Proof. Induction on m. For $m=0$, we have $f=\pi_{\bar{P}}^{*}$ since [] is the terminal object. Now $\pi_{\bar{P}}^{*}(a, \bar{x})=a$ and $\pi_{\bar{P}}^{*}(\alpha)=\alpha$. Since for $m=0$ there are no side conditions or
naturality equations, we are done. Suppose that the characterization holds for m. Let $f: \bar{P} \longrightarrow\left[Q_{1}, \ldots, Q_{m+1}\right]$ be a $\operatorname{MPSh}(\mathbb{C})$-morphism. Write

$$
f(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m+1}(a, \bar{x})\right) .
$$

By the definition of the domain, (3) is satisfied for $m+1$. According to Lemma 2.2 we have that $\pi_{Q_{m+1}} \circ f: \bar{P} \longrightarrow\left[Q_{1}, \ldots, Q_{m}\right]$ so applying the inductive hypothesis to this we get the naturality equations for Q_{1}, \ldots, Q_{m}. It remains to prove the naturally equation for Q_{m+1}. We have by definition

$$
\begin{aligned}
f(a, \bar{x}) & =\left(\left(\pi_{Q_{m+1}} \circ f\right)(a, \bar{x}), f_{m+1}(a, \bar{x})\right) \\
f(b, \bar{y}) & =\left(\left(\pi_{Q_{m+1}} \circ f\right)(b, \bar{y}), f_{m+1}(b, \bar{y})\right)
\end{aligned}
$$

and for a morphism $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$, we have in $\Sigma\left(\Sigma\left(\mathbb{C}, Q_{1}, \ldots, Q_{m}\right), Q_{m+1}\right)$ the morphism

$$
f(\alpha)=\alpha:\left(\left(\pi_{Q_{m+1}} \circ f\right)(a, \bar{x}), f_{m+1}(a, \bar{x})\right) \longrightarrow\left(\left(\pi_{Q_{m+1}} \circ f\right)(b, \bar{y}), f_{m+1}(b, \bar{y})\right) .
$$

This implies $Q_{m+1}(\alpha)\left(f_{m+1}(b, \bar{y})\right)=f_{m+1}(a, \bar{x})$. Since

$$
\bar{x}=P_{1}(\alpha)\left(y_{1}\right), \ldots, P_{n}(\alpha)\left(y_{n}\right),
$$

we are done.
Conversely, suppose that f_{1}, \ldots, f_{m+1} are satisfying (3) and the naturally equations for $m+1$. Thus these conditions are also satisfied for f_{1}, \ldots, f_{m}. Define

$$
g(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)
$$

By the inductive hypothesis $g: \bar{P} \longrightarrow\left[Q_{1}, \ldots, Q_{m}\right]$ is a morphism. Let

$$
f(a, \bar{x})=\left(g(a, \bar{x}), f_{m+1}(a, \bar{x})\right) \quad f(\alpha)=\alpha .
$$

Note that $\pi_{Q_{m+1}} \circ f=g$, so we need only to check that f is a functor

$$
\Sigma\left(\mathbb{C}, P_{1}, \ldots, P_{n}\right) \longrightarrow \Sigma\left(\Sigma\left(\mathbb{C}, Q_{1}, \ldots, Q_{m}\right), Q_{m+1}\right)
$$

We have $f(a, \bar{x})=\left(g(a, \bar{x}), f_{m+1}(a, \bar{x})\right)$ and $\left.g(a, \bar{x}) \in \Sigma\left(\mathbb{C}, Q_{1}, \ldots, Q_{m}\right)\right)$ so objects are sent to objects. Now since $f(\alpha)=\alpha$ the functoriality is automatic, and we need only to check that a morphism $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$ also forms a morphism

$$
\alpha:\left(g(a, \bar{x}), f_{m+1}(a, \bar{x})\right) \longrightarrow\left(g(b, \bar{y}), f_{m+1}(b, \bar{y})\right) .
$$

Assume $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$. We have $\alpha: a \longrightarrow b$ and

$$
\begin{equation*}
\bar{x}=\left(P_{1}(\alpha)\left(y_{1}\right), \ldots, P_{n}(\alpha)\left(y_{n}\right)\right) . \tag{4}
\end{equation*}
$$

By the induction hypothesis $\alpha: g(a, \bar{x}) \longrightarrow g(b, \bar{y})$ is a morphism. Thus it is enough to show $\left.Q_{m+1}\left(f_{m+1}(b, \bar{y})\right)=f_{m+1}(a, \bar{x})\right)$. But by the assumption and using (4) we get

$$
\begin{aligned}
Q_{m+1}(\alpha)\left(f_{m+1}(b, \bar{y})\right) & =f_{m+1}\left(a, P_{1}(\alpha)\left(y_{1}\right), \ldots, P_{n}(\alpha)\left(y_{n}\right)\right) \\
& =f_{m+1}(a, \bar{x})
\end{aligned}
$$

This concludes the proof.
Remark 2.7. Note that for $m=n=1$ the naturality equations become just the usual condition that f_{1} is a natural transformation. It may be reasonable to call the conditions in the general case multinaturality.
Example 2.8. For $R \in \operatorname{PSh}(\Sigma(\mathbb{C}, \bar{P}))$, the projection functor π_{R} is morphism $[\bar{P}, R] \longrightarrow \bar{P}$ in $\operatorname{MPSh}(\mathbb{C})$.
Example 2.9. (Sections.) Let $Q \in \operatorname{PSh}(\Sigma(\mathbb{C}, \bar{P}))$, where $\bar{P}=\left[P_{1}, \ldots, P_{n}\right]$. Consider a $\operatorname{MPSh}(\mathbb{C})$-morphism $s: \bar{P} \longrightarrow[\bar{P}, Q]$ which is a section of π_{Q}, that is, it satisfies $\pi_{Q} \circ s=\operatorname{id}_{\bar{P}}$. By Theorem 2.6 it follows that s is specified by s^{\prime} such that

$$
s(a, \bar{x})=\left(a, \bar{x}, s^{\prime}(a, \bar{x})\right)
$$

where $s^{\prime}(a, \bar{x}) \in Q(a, \bar{x})$ and $(a, \bar{x}) \in \Sigma(\mathbb{C}, \bar{P})$, and for $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$,

$$
Q(\alpha)\left(s^{\prime}(b, \bar{y})\right)=s^{\prime}\left(a, P_{1}(\alpha)\left(y_{1}\right), \ldots, P_{n}(\alpha)\left(y_{n}\right)\right)
$$

For $n=0$, this is

$$
Q(\alpha)\left(s^{\prime}(b)\right)=s^{\prime}(a) .
$$

For any object \bar{P} of $\operatorname{MPSh}(\mathbb{C})$ define the presheaf $\Sigma^{*}(\bar{P})$ on \mathbb{C} by letting

$$
\Sigma^{*}(\bar{P})(a)=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1} \in P_{1}(a), \ldots, x_{n} \in P_{n}\left(a, x_{1}, \ldots, x_{n}\right)\right\}
$$

and for $\alpha: b \longrightarrow a$, assigning

$$
\Sigma^{*}(\bar{P})(\alpha)\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(P_{1}(\alpha)\left(x_{1}\right), \ldots, P_{n}(\alpha)\left(x_{n}\right)\right)
$$

The following will give the types in a context \bar{P}. Define for each $\bar{P} \in \operatorname{MPSh}(\mathbb{C})$,

$$
\mathrm{T}(\bar{P})=\operatorname{PSh}(\Sigma(\mathbb{C}, \bar{P}))
$$

For a morphism $f: \bar{Q} \longrightarrow \bar{P}$, and $S \in \mathrm{~T}(\bar{P})$, let

$$
\mathrm{T}(f)(S)=S \circ f \in \mathrm{~T}(\bar{Q})
$$

Thus T is a contravariant functor. We write $S\{f\}$ for $S \circ f$.
For $Q \in \mathrm{~T}$ define its set of elements as the sections of π_{Q}

$$
\mathrm{E}(\bar{P}, Q)=\left\{s: \bar{P} \longrightarrow[\bar{P}, Q]: \pi_{Q} \circ s=\operatorname{id}_{\bar{P}}\right\}
$$

These data give rise to a category with attributes.

Theorem 2.10. Let $M=\operatorname{MPSh}(\mathbb{C})$ for a small category \mathbb{C}. For $S \in \mathrm{~T}(\bar{P})$ and $f: \bar{Q} \longrightarrow \bar{P}$, the functor $q_{S, f}=q:[\bar{Q}, S \circ f] \longrightarrow[\bar{P}, S]$ defined by

$$
q(a, \bar{x}, u)=(f(a, \bar{x}), u) \quad \text { and } \quad q(\alpha)=f(\alpha) \quad(\alpha:(a, \bar{x}, u) \longrightarrow(b, \bar{y}, v))
$$

makes the following into a pullback square in M :

Further, if $f=\operatorname{id}_{\Sigma(\bar{P})}: \bar{P} \longrightarrow \bar{P}$, then

$$
\begin{equation*}
q_{S, \mathrm{id}_{\Sigma(\bar{P})}}=\operatorname{id}_{\Sigma(\bar{P}, S)} \tag{6}
\end{equation*}
$$

Suppose $g: \bar{A} \longrightarrow \bar{Q}$, where

is a pullback. Then

$$
\begin{equation*}
q_{S \circ f, g} \circ q_{S, f}=q_{S, f \circ g} \tag{8}
\end{equation*}
$$

where the associated pullback to $q_{S, f \circ g}$ is

Proof. For $\alpha:(a, \bar{x}, u) \longrightarrow(b, \bar{y}, v)$ in $[\bar{Q}, S \circ f]$ we have $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$, and since f is a morphism, this gives

$$
f(\alpha)=\alpha: f(a, \bar{x}) \longrightarrow f(b, \bar{y}) .
$$

Moreover $(S \circ f)(\alpha)(v)=u$. Hence

$$
q(\alpha)=\alpha:(f(a, \bar{x}), v) \longrightarrow(f(b, \bar{y}), u) .
$$

Since $q(\alpha)=\alpha, q$ is clearly a functor. It remains to verify the final condition for q being a morphism, this amounts to checking

$$
\pi_{[\bar{P}, S]}^{*} \circ q=\pi_{[\bar{Q}, S \circ f]}^{*},
$$

i.e. $\pi_{\bar{P}}^{*} \circ \pi_{S} \circ q=\pi_{\bar{Q}}^{*} \circ \pi_{S \circ f}$. We have

$$
\left(\pi_{\bar{P}}^{*} \circ \pi_{S} \circ q\right)(a, \bar{x})=\pi_{\bar{P}}^{*}\left(\pi_{S}(q(a, \bar{x}))\right)=\pi_{\bar{P}}^{*}(f(a, \bar{x}))=\pi_{\bar{Q}}^{*}(a, \bar{x}),
$$

where the last step uses that f is a morphism. Moreover

$$
\left(\pi_{\bar{P}}^{*} \circ \pi_{S} \circ q\right)(\alpha)=\pi_{\bar{P}}^{*}\left(\pi_{S}(\alpha)\right)=\alpha=\pi_{\bar{Q}}^{*}(\alpha)
$$

It is clear that (5) commutes. Suppose that $h: \bar{R} \longrightarrow \bar{Q}$ and $k: \bar{R} \longrightarrow[\bar{P}, S]$ are morphisms such that $f \circ h=\pi_{S} \circ k$. Define $t: \bar{R} \longrightarrow[\bar{Q}, S \circ f]$ by on objects (a, \bar{x}) letting

$$
t(a, \bar{x})=\left(h(a, \bar{x}), k_{2}(a, \bar{x})\right),
$$

where $k(a, \bar{x})=\left(k_{1}(a, \bar{x}), k_{2}(a, \bar{x})\right)$. We have $k_{2}(a, \bar{x}) \in S\left(k_{1}(a, \bar{x})\right)$. Now $f(h(a, \bar{x}))=$ $\pi_{S}(k(a, \bar{x}))=k_{1}(a, \bar{x})$, so $k_{2}(a, \bar{x}) \in(S \circ f)(h(a, \bar{x}))$. Thus $t(a, \bar{x})$ is well-defined on objects. For an arrow $\alpha:(a, \bar{x}) \longrightarrow(b, \bar{y})$, we define (as usual)

$$
t(\alpha)=\alpha
$$

Need to check that $\alpha: t(a, \bar{x}) \longrightarrow t(b, \bar{y})$, i.e. that

$$
\begin{equation*}
h(\alpha)=\alpha: h(a, \bar{x}) \longrightarrow h(b, \bar{y}) \text { and }((S \circ f)(h(\alpha)))\left(k_{2}(b, \bar{y})\right)=k_{2}(a, \bar{x}) . \tag{10}
\end{equation*}
$$

The first statement of (10) follows since h is a functor. As k is a morphism we have $S\left(k_{1}(\alpha)\right)\left(k_{2}(b, \bar{y})\right)=k_{2}(a, \bar{x})$, but

$$
\begin{aligned}
((S \circ f)(h(\alpha)))\left(k_{2}(b, \bar{y})\right) & =S(f(h(\alpha)))\left(k_{2}(b, \bar{y})\right) \\
& =S\left(\pi_{S}(k(\alpha))\right)\left(k_{2}(b, \bar{y})\right) \\
& =S\left(k_{1}(\alpha)\right)\left(k_{2}(b, \bar{y})\right) \\
& =k_{2}(a, \bar{x}) .
\end{aligned}
$$

That t is functorial is trivial since $t(\alpha)=\alpha$. Next we check that t is a morphism $\bar{R} \longrightarrow[\bar{Q}, S \circ f]$, and for this it remains to verify that $\pi_{\bar{Q}, S \circ f}^{*} \circ t=\pi_{\bar{R}}^{*}$. This amounts to checking $\pi_{\bar{Q}}^{*} \circ \pi_{S \circ f} \circ t=\pi_{\bar{R}}^{*}$. Now

$$
\left(\pi_{\bar{Q}}^{*} \circ \pi_{S \circ f} \circ t\right)(a, \bar{x})=\pi_{\frac{*}{Q}}^{*}(h(a, \bar{x}))=\pi_{\bar{R}}^{*}(a, \bar{x})
$$

where using in the last step, the fact that h is a morphism. Moreover, for \mathbb{C}-morphisms α

$$
\begin{aligned}
\left(\pi_{\bar{Q}}^{*} \circ \pi_{S \circ f} \circ t\right)(\alpha) & =\pi_{\bar{Q}}^{*}\left(\pi_{S \circ f}(\alpha)\right) \\
& =\pi_{\bar{Q}}^{*}\left(\pi_{S \circ f}(h(\alpha))\right) \\
& =\pi_{\bar{Q}}^{*}(h(\alpha)) \\
& =\pi_{\bar{R}}^{*}(\alpha)
\end{aligned}
$$

The last step used that h is a morphism. Further
$q_{S, f}(t(a, \bar{x}))=\left(f(h(a, \bar{x})), k_{2}(a, \bar{x})\right)=\left(k_{1}(a, \bar{x}), k_{2}(a, \bar{x})\right)=k(a, \bar{x}) \quad \pi_{S \circ f}(t(a, \bar{x}))=h(a, \bar{x})$.
and

$$
q_{S, f}(t(\alpha))=f(t(\alpha))=f(h(\alpha))=k_{1}(\alpha)=k(\alpha) \quad \pi_{S \circ f}(t(\alpha))=\pi_{S \circ f}(h(\alpha))=h(\alpha) .
$$

Thus t is a mediating morphism for the diagram. We check that it is unique: suppose that $t^{\prime}: \bar{R} \longrightarrow[\bar{Q}, S \circ f]$ is such that

$$
q_{S, f}\left(t^{\prime}(a, \bar{x})\right)=k(a, \bar{x}) \quad \pi_{S \circ f}\left(t^{\prime}(a, \bar{x})\right)=h(a, \bar{x})
$$

and

$$
\begin{equation*}
q_{S, f}\left(t^{\prime}(\alpha)\right)=k(\alpha) \quad \pi_{S \circ f}\left(t^{\prime}(\alpha)\right)=h(\alpha) . \tag{11}
\end{equation*}
$$

Writing $t^{\prime}(a, \bar{x})=\left(t_{1}^{\prime}(a, \bar{x}), t_{2}^{\prime}(a, \bar{x})\right)$ we see that $q_{S, f}\left(t^{\prime}(a, \bar{x})\right)=\left(f\left(t_{1}^{\prime}(a, \bar{x})\right), t_{2}^{\prime}(a, \bar{x})\right)=$ $k(a, \bar{x})=\left(k_{1}(a, \bar{x}), k_{2}(a, \bar{x})\right)$, and $\pi_{S \circ f}\left(t^{\prime}(a, \bar{x})\right)=t_{1}^{\prime}(a, \bar{x})=h(a, \bar{x})$. Hence $t^{\prime}(a, \bar{x})=$ $t(a, \bar{x})$. From (11) we get $g\left(t^{\prime}(\alpha)\right)=k(\alpha)$ and $t^{\prime}(\alpha)=h(\alpha)$. Thus also $t^{\prime}(\alpha)=t(\alpha)$.

Suppose that a pullback square as in (5) is given. For an element $t \in \mathrm{E}(\bar{P}, S)$ we have $\pi_{S} \circ t \circ f=f \circ \mathrm{id}_{\bar{Q}}$. Let $t\{f\}: \bar{Q} \longrightarrow[\bar{Q}, S \circ f]$ be the unique map such that

$$
\pi_{S \circ f} \circ t\{f\}=\operatorname{id}_{\bar{Q}} \text { and } q_{S, f} \circ t\{f\}=t \circ f .
$$

Then $t\{f\} \in \mathrm{E}(\bar{Q}, S\{f\})$, which is the element obtained from t by carrying out the substitution f. What does this look like in its components? Suppose $\bar{Q}=\left[Q_{1}, \ldots, Q_{n}\right]$ and $\bar{P}=\left[P_{1}, \ldots, P_{m}\right]$. Write

$$
f(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)
$$

Moreover write

$$
t(a, \bar{y})=\left(a, \bar{y}, t^{\prime}(a, \bar{y})\right) .
$$

By Theorem 2.10 above

$$
t\{f\}(a, \bar{x})=\left(a, \bar{x}, t^{\prime}\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)\right)
$$

Question: What are the categorical closure conditions of $\operatorname{MPSh}(\mathbb{C})$ in analogy to the closure conditions of $\operatorname{PSh}(\mathbb{C})$ (which is a topos)?

3 Equivalence with standard presheaves

It was noted by Henrik Forssell that the functor []$: \operatorname{PSh}(\mathbb{C}) \longrightarrow \operatorname{MPSh}(\mathbb{C})$ is actually an equivalence of categories. Its inverse can be constructed explicitly.

For a morphism $f: \bar{P} \longrightarrow \bar{Q}$ in $\operatorname{MPSh}(\mathbb{C})$ define a natural transformation

$$
\Sigma^{*}(f): \Sigma^{*}(\bar{P}) \longrightarrow \Sigma^{*}(\bar{Q})
$$

by letting

$$
\Sigma^{*}(f)_{a}\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\left(f_{1}\left(a, x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(a, x_{1}, \ldots, x_{n}\right)\right)
$$

Here f_{1}, \ldots, f_{m} are as in Theorem 2.6.
Lemma 3.1. $\Sigma^{*}: \operatorname{MPSh}(\mathbb{C}) \longrightarrow \operatorname{PSh}(\mathbb{C})$ is a functor.
Proof. It is clear that Σ^{*} sends objects to objects. We check that it is also well-defined on arrows by verifying that $\Sigma^{*}(f)$ is a natural transformation for $f: \bar{P} \longrightarrow \bar{Q}$. Let $\alpha: b \longrightarrow a$ and $\bar{x} \in \Sigma^{*}(\bar{P})(a)$. Then by definition and since $\alpha:(b, \bar{P}(\alpha)(\bar{x})) \longrightarrow(a, \bar{x})$ we get by Theorem 2.6

$$
\begin{aligned}
\Sigma^{*}(\bar{Q})(\alpha)\left(\Sigma^{*}(f)_{a}(\bar{x})\right) & =\left(Q_{1}(\alpha)\left(f_{1}(a, \bar{x})\right), \ldots, Q_{m}(\alpha)\left(f_{m}(a, \bar{x})\right)\right) \\
& =\left(f_{1}(b, \bar{P}(\alpha) \bar{x}), \ldots, f_{m}(b, \bar{P}(\bar{x}))\right) \\
& =\Sigma^{*}(f)_{b}(\bar{P}(\alpha)(\bar{x})) \\
& =\Sigma^{*}(f)_{b}\left(\Sigma^{*}(\bar{P})(\alpha)(\bar{x})\right.
\end{aligned}
$$

as required.
If f is the identity, then $f_{k}(a, \bar{x})=x_{k}$ and hence $\Sigma^{*}(f)_{a}(\bar{x})=\bar{x}$.
Suppose that $f: \bar{P} \longrightarrow \bar{Q}$ and $g: \bar{Q} \longrightarrow \bar{R}$ are morphisms and write

$$
f(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)
$$

and

$$
g(a, \bar{y})=\left(a, g_{1}(a, \bar{y}), \ldots, f_{k}(a, \bar{x})\right)
$$

Then

$$
\begin{aligned}
\Sigma^{*}(g)_{a}\left(\Sigma^{*}(f)_{a}(\bar{x})\right) & =\Sigma^{*}(g)_{a}\left(f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right) \\
& =\left(g_{1}\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right), \ldots, g_{k}\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)\right)
\end{aligned}
$$

But we have

$$
\begin{aligned}
(g \circ f)(a, \bar{x}) & =g(f(a, \bar{x})) \\
& =g\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right) \\
& =\left(a, g_{1}\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right), \ldots, f_{k}\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)\right)
\end{aligned}
$$

Hence

$$
\left.\Sigma^{*}(g)_{a}\left(\Sigma^{*}(f)_{a}(\bar{x})\right)=\Sigma^{*}(g \circ f)_{a}(\bar{x})\right)
$$

as was to be proved.
Theorem 3.2. The functors []$: \operatorname{PSh}(\mathbb{C}) \longrightarrow \operatorname{MPSh}(\mathbb{C})$ and $\Sigma^{*}: \operatorname{MPSh}(\mathbb{C}) \longrightarrow \operatorname{PSh}(\mathbb{C})$ form an equivalence of categories witnessed by the natural isomorphisms

$$
\varepsilon: \Sigma^{*}([-]) \longrightarrow \operatorname{Id}_{\operatorname{PSh}(\mathbb{C})} \text { and } \eta:\left[\Sigma^{*}(-)\right] \longrightarrow \operatorname{Id}_{\operatorname{MPSh}(\mathbb{C})}
$$

where

$$
\left(\varepsilon_{P}\right)_{a}((x))=x
$$

and

$$
\eta_{\bar{P}}: \Sigma\left(\mathbb{C}, \Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)\right) \longrightarrow \Sigma\left(\mathbb{C}, P_{1}, \ldots, P_{n}\right)
$$

is given by $\eta_{\bar{P}}\left(a,\left(x_{1}, \ldots, x_{n}\right)\right)=\left(a, x_{1}, \ldots, x_{n}\right)$.
Proof. Clearly $\left(\varepsilon_{P}\right)_{a}: \Sigma^{*}([P])(a) \longrightarrow P(a)$ is a bijection. For $\alpha: b \longrightarrow a$,

$$
P(\alpha)\left(\left(\varepsilon_{P}\right)_{a}((x))\right)=P(\alpha)(x)=\left(\varepsilon_{P}\right)_{b}((P(\alpha)(x)))=\left(\varepsilon_{P}\right)_{b}\left(\Sigma^{*}([P])(\alpha)((x))\right)
$$

Thus $\varepsilon_{P}: \Sigma^{*}([P]) \longrightarrow P$ is a natural isomorphism, so an iso in $\operatorname{PSh}(\mathbb{C})$. We check that ε is natural in P. Let $\tau: P \longrightarrow Q$ be a natural transformation. We need to verify

$$
\tau \cdot \varepsilon_{P}=\varepsilon_{Q} \cdot \Sigma^{*}([\tau])
$$

i.e. $\tau_{a}\left(\left(\varepsilon_{P}\right)_{a}((x))\right)=\left(\varepsilon_{Q}\right)_{a}\left(\left(\Sigma^{*}([\tau])\right)_{a}((x))\right)$. Now

$$
\tau_{a}\left(\left(\varepsilon_{P}\right)_{a}((x))\right)=\tau_{a}(x)
$$

On the other hand

$$
\left(\varepsilon_{Q}\right)_{a}\left(\left(\Sigma^{*}([\tau])\right)_{a}((x))\right)=\left(\varepsilon_{Q}\right)_{a}\left(\left(\tau_{a}(x)\right)\right)=\tau_{a}(x)
$$

Hence ϵ is a natural transformation.
We verify that η is an natural isomorphism. First check that $\eta_{\bar{P}}$ is a morphism $\left[\Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)\right] \longrightarrow\left[P_{1}, \ldots, P_{n}\right]$ in $\operatorname{MPSh}(\mathbb{C})$ by verifying the multinaturality of Theorem 2.6: Let $\alpha:(b,(\bar{y})) \longrightarrow(a,(\bar{x}))$. We should have

$$
\begin{aligned}
P_{1}(\alpha)\left(f_{1}(b,(\bar{x}))\right) & =f_{1}\left(a, \Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)(\alpha)((\bar{x}))\right) \\
& \vdots \\
P_{n}(\alpha)\left(f_{m}(b,(\bar{x}))\right)= & f_{n}\left(a, \Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)(\alpha)((\bar{x}))\right)
\end{aligned}
$$

where $f_{k}(a,(\bar{x}))=x_{k}$. But $\Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)(\alpha)((\bar{x}))=\left(P_{1}(\alpha)\left(x_{1}\right), \ldots, P_{n}(\alpha)\left(x_{n}\right)\right)$ so this is clear. We claim that $g\left(a, x_{1}, \ldots, x_{n}\right)=\left(a,\left(x_{1}, \ldots, x_{n}\right)\right)$ defines an inverse morphism
to $\eta_{\bar{P}}$. It is clearly an inverse, so it remains to verify it is a morphism. Let α : $(b, \bar{y}) \longrightarrow(a, \bar{x})$. We need to verify

$$
\begin{equation*}
\Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)(\alpha)(f(a, \bar{x}))=f\left(b, P_{1}(\alpha)\left(x_{1}\right), \ldots, P_{n}(\alpha)\left(x_{n}\right)\right) \tag{12}
\end{equation*}
$$

where $f(\bar{x})=(\bar{x})$. But (12) is

$$
\begin{equation*}
\Sigma^{*}\left(P_{1}, \ldots, P_{n}\right)(\alpha)((\bar{x}))=\left(P_{1}(\alpha)\left(x_{1}\right), \ldots, P_{n}(\alpha)\left(x_{n}\right)\right) \tag{13}
\end{equation*}
$$

which follows by definition. Thus each $\eta_{\bar{P}}$ is an isomorphism. We check that $\eta_{\bar{P}}$ is natural in \bar{P}. Suppose that $f: \bar{P} \longrightarrow \bar{Q}$ is a morphism. We need to verify that

$$
f \circ \eta_{\bar{P}}=\eta_{\bar{Q}} \circ\left[\Sigma^{*}(f)\right] .
$$

Write

$$
f(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)
$$

We have

$$
f\left(\eta_{\bar{P}}(a,(\bar{x}))\right)=f(a, \bar{x})=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)
$$

and on the other hand
$\left.\eta_{\bar{Q}}\left(\left[\Sigma^{*}(f)\right](a,(\bar{x}))\right)=\eta_{\bar{Q}}\left(a, \Sigma^{*}(f)_{a}((\bar{x}))\right)\right)=\eta_{\bar{Q}}\left(a,\left(f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)\right)=\left(a, f_{1}(a, \bar{x}), \ldots, f_{m}(a, \bar{x})\right)$.
Thus we are done.

4 П-construction

Let \mathbb{C} be any small category and let $\bar{R}=\left[R_{1}, \ldots, R_{n}\right] \in \operatorname{MPSh}(\mathbb{C})$. Let $P \in \operatorname{PSh}(\Sigma(\bar{R}))$ and $Q \in \operatorname{PSh}(\Sigma(\bar{R}, P))$. We define a presheaf $\Pi(P, Q)$ over $\Sigma(\bar{R})$ as follows. For $(a, \bar{x}) \in \Sigma(\bar{R})$, let

$$
\begin{aligned}
& \Pi(P, Q)(a, \bar{x})=\{h \in(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow a)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \mid \\
& \forall b \in \mathbb{C}, \forall f: b \rightarrow a, \forall v \in P(b, \bar{R}(f)(\bar{x})), \\
& \forall c \in \mathbb{C}, \forall \beta: c \rightarrow b, \\
& Q(\beta)(h(b, f, v))=h(c, f \circ \beta, P(\beta)(v))\}
\end{aligned}
$$

We have written $\bar{R}(f)(\bar{x})$ for $R_{1}(f)\left(x_{1}\right), \ldots, R_{n}(f)\left(x_{n}\right)$. For $\alpha:\left(a^{\prime}, \bar{x}^{\prime}\right) \rightarrow(a, \bar{x})$ and $h \in \Pi(P, Q)(a, \bar{x})$ define $\Pi(P, Q)(\alpha)(h)=h^{\prime}$ by

$$
\begin{equation*}
h^{\prime}(b, f, v)=h(b, \alpha \circ f, v), \tag{14}
\end{equation*}
$$

for $b \in \mathbb{C}, f: b \rightarrow a^{\prime}, v \in P\left(b, \bar{R}(f)\left(\bar{x}^{\prime}\right)\right)$. It is straightforward to verify that $\Pi(P, Q)$ is a presheaf over \mathbb{C}.

Let $s \in \mathrm{E}([\bar{R}, P], Q)$. Thus there is s^{\prime} such that for all $(b, \bar{u}, v) \in \Sigma(\bar{R}, P)$,

$$
s(b, \bar{u}, v)=\left(b, \bar{u}, v, s^{\prime}(b, \bar{u}, v)\right)
$$

where $s^{\prime}(b, \bar{u}, v) \in Q(b, \bar{u}, v)$ and further for all $\alpha:(a, \bar{x}, y) \longrightarrow(b, \bar{u}, v)$

$$
\begin{equation*}
Q(\alpha)\left(s^{\prime}(b, \bar{u}, v)\right)=s^{\prime}(a, \bar{R}(\alpha)(\bar{u}), P(\alpha)(v)) \tag{15}
\end{equation*}
$$

Define

$$
\hat{s}(a, \bar{x})=\lambda b \in \mathbb{C} \cdot \lambda f: b \rightarrow a \cdot \lambda v \in P(b, \bar{R}(f)(\bar{x})) \cdot s^{\prime}(b, \bar{R}(f)(\bar{x}), v) .
$$

We check that $\hat{s}(a, \bar{x}) \in \Pi(P, Q)(a, \bar{x})$: For $b \in \mathbb{C}, f: b \rightarrow a, v \in P(b, \bar{R}(f)(\bar{x}))$ we need to verify that for any $\beta: c \longrightarrow b$,

$$
Q(\beta)(\hat{s}(a, \bar{x})(b, f, v))=\hat{s}(a, \bar{x})(c, f \circ \beta, P(\beta)(v)) .
$$

Indeed, using (18), the following calculation proves this.

$$
\begin{aligned}
Q(\beta)(\hat{s}(a, \bar{x})(b, f, v)) & =Q(\beta)\left(s^{\prime}(b, \bar{R}(f)(\bar{x}), v)\right) \\
& =s^{\prime}(c, \bar{R}(\beta)(\bar{R}(f)(\bar{x})), P(\beta)(v)) \\
& =s^{\prime}(c, \bar{R}(f \circ \beta)(\bar{x}), P(\beta)(v)) \\
& =\hat{s}(a, \bar{x})(c, f \circ \beta, P(\beta)(v)) .
\end{aligned}
$$

Next, define

$$
\boldsymbol{\lambda}_{P, Q}(s)(a, \bar{x})=(a, \bar{x}, \hat{s}(a, \bar{x})) .
$$

We wish to verify that $\boldsymbol{\lambda}_{P, Q}(s) \in \mathrm{E}(\bar{R}, \Pi(P, Q))$. For this it suffices to check that for $\alpha:\left(a^{\prime}, \bar{x}^{\prime}\right) \longrightarrow(a, \bar{x})$,

$$
\begin{equation*}
\Pi(P, Q)(\alpha)(\hat{s}(a, \bar{x}))=\hat{s}\left(a^{\prime}, \bar{R}(\alpha)(\bar{x})\right) . \tag{16}
\end{equation*}
$$

Evaluate the left hand side at $b \in \mathbb{C}, f: b \rightarrow a^{\prime}, v \in P\left(b, \bar{R}(f)\left(\bar{x}^{\prime}\right)\right)$,

$$
\begin{aligned}
\Pi(P, Q)(\alpha)(\hat{s}(a, \bar{x}))(b, f, v) & =\hat{s}(a, \bar{x})(b, \alpha \circ f, v) \\
& =s^{\prime}(b, \bar{R}(\alpha \circ f)(\bar{x}), v) \\
& =s^{\prime}(b, \bar{R}(f)(\bar{R}(\alpha)(\bar{x})), v) \\
& =\hat{s}(a, \bar{R}(\alpha)(\bar{x}))(b, f, v)
\end{aligned}
$$

This verifies (16).
For $f \in \mathrm{E}(\bar{R}, \Pi(P, Q))$ and $t \in \mathrm{E}(\bar{R}, P)$ we write

$$
f(a, \bar{x})=\left(a, \bar{x}, f^{\prime}(a, \bar{x})\right) \quad t(a, \bar{x})=\left(a, \bar{x}, t^{\prime}(a, \bar{x})\right) .
$$

Thus $f^{\prime}(a, \bar{x}) \in \Pi(P, Q)(a, \bar{x})$ and $t^{\prime}(a, \bar{x}) \in P(a, \bar{x})$. It holds that

$$
f^{\prime}(a, \bar{x})\left(a, 1_{a}, t^{\prime}(a, \bar{x})\right) \in Q\left(a, \bar{x}, t^{\prime}(a, \bar{x})\right)=(Q \circ t)(a, \bar{x}) .
$$

Define

$$
\operatorname{App}_{P, Q}(f, t)(a, \bar{x})=\left(a, \bar{x}, f^{\prime}(a, \bar{x})\left(a, 1_{a}, t^{\prime}(a, \bar{x})\right)\right) .
$$

We wish to prove that

$$
\operatorname{App}_{P, Q}(f, t) \in \mathrm{E}(\bar{R}, Q \circ t)
$$

By the form of the definition it suffices to check the naturality condition: for α : $(a, \bar{x}) \longrightarrow(b, \bar{y})$,

$$
(Q \circ t)(\alpha)\left(f^{\prime}(b, \bar{y})\left(b, 1_{b}, t^{\prime}(b, \bar{y})\right)\right)=f^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\left(a, 1_{a}, t^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\right) .
$$

We use the naturality conditions for f, t and naturality of elements in $\Pi(P, Q)(b, \bar{y})$ to verify this:

$$
\begin{aligned}
(Q \circ t)(\alpha)\left(f^{\prime}(b, \bar{y})\left(b, 1_{b}, t^{\prime}(b, \bar{y})\right)\right) & =Q(t(\alpha))\left(f^{\prime}(b, \bar{y})\left(b, 1_{b}, t^{\prime}(b, \bar{y})\right)\right) \\
& =f^{\prime}(b, \bar{y})\left(a, 1_{b} \circ \alpha, P(\alpha)\left(t^{\prime}(b, \bar{y})\right)\right) \\
& =f^{\prime}(b, \bar{y})\left(a, 1_{b} \circ \alpha, t^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\right) \\
& =f^{\prime}(b, \bar{y})\left(a, \alpha \circ 1_{a}, t^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\right) \\
& =\left(\Pi(P, Q)(\alpha)\left(f^{\prime}(b, \bar{y})\right)\right)\left(a, 1_{a}, t^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\right) \\
& =f^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\left(a, 1_{a}, t^{\prime}(a, \bar{R}(\alpha)(\bar{y}))\right) .
\end{aligned}
$$

The λ-computation rule is verified as follows

$$
\begin{aligned}
\operatorname{App}_{P, Q}\left(\boldsymbol{\lambda}_{P, Q}(s), t\right)(a, \bar{x}) & =\left(a, \bar{x}, \hat{s}(a, \bar{x})\left(a, 1_{a}, t^{\prime}(a, \bar{x})\right)\right) \\
& =\left(a, \bar{x}, s^{\prime}\left(a, \bar{x}, t^{\prime}(a, \bar{x})\right)\right) \\
& =s\{t\}(a, \bar{x}) .
\end{aligned}
$$

Thus $\operatorname{App}_{P, Q}\left(\boldsymbol{\lambda}_{P, Q}(s), t\right)=s\{t\}$.
It remains to check that all constructs commute with substitutions. Fix a morphism $f: \bar{S} \longrightarrow \bar{R}$, where $\bar{S}=\left[S_{1}, \ldots, S_{k}\right]$ and $\bar{R}=\left[R_{1}, \ldots, R_{n}\right]$. Then write

$$
f(d, \bar{w})=\left(d, f_{1}(d, \bar{w}), \ldots,, f_{n}(d, \bar{w})\right) .
$$

The components satisfy the naturality conditions: for each morphism $\alpha:(e, \bar{z}) \longrightarrow(d, \bar{w})$ in $\Sigma(\bar{S})$, the following equations hold

$$
\begin{aligned}
R_{1}(\alpha)\left(f_{1}(d, \bar{w})\right) & =f_{1}(e, \bar{S}(\alpha)(\bar{w})) \\
& \vdots \\
R_{n}(\alpha)\left(f_{n}(d, \bar{w})\right) & =f_{n}(e, \bar{S}(\alpha)(\bar{w}))
\end{aligned}
$$

Π-substitution: $P \in \operatorname{PSh}(\Sigma(\bar{R}))$ and $Q \in \operatorname{PSh}(\Sigma(\bar{R}, P))$. We need to check that $\Pi(P, Q)\{f\}=\Pi\left(P\{f\}, Q\left\{q_{P, f}\right\}\right)$ as presheaves. Let $(d, \bar{w}) \in \Sigma(\bar{S})$. We have

$$
\begin{gathered}
\Pi(P, Q)\{f\}(d, \bar{w})=\left\{h \in (\Pi b \in \mathbb { C }) (\Pi g : b \rightarrow d) \left(\Pi v \in P\left(b, \bar{R}(g)\left(f_{1}(d, \bar{w}), \ldots,, f_{n}(d, \bar{w})\right)\right)\right.\right. \\
Q\left(b, \bar{R}(g)\left(f_{1}(d, \bar{w}), \ldots, f_{n}(d, \bar{w})\right), v\right) \mid \\
\forall b \in \mathbb{C}, \forall g: b \rightarrow d, \forall v \in P\left(b, \bar{R}(g)\left(f_{1}(d, \bar{w}), \ldots, f_{n}(d, \bar{w})\right)\right), \\
\forall c \in \mathbb{C}, \forall \beta: c \rightarrow b, \\
Q(\beta)(h(b, g, v))=h(c, g \circ \beta, P(\beta)(v))\}
\end{gathered}
$$

By the naturality condition

$$
\begin{equation*}
\bar{R}(g)\left(f_{1}(d, \bar{w}), \ldots, f_{n}(d, \bar{w})\right)=\left(f_{1}(b, \bar{S}(g)(\bar{w})), \ldots, f_{n}(b, \bar{S}(g)(\bar{w}))\right) . \tag{17}
\end{equation*}
$$

Thus

$$
\begin{aligned}
P\left(b, \bar{R}(g)\left(f_{1}(d, \bar{w}), \ldots, f_{n}(d, \bar{w})\right)\right. & =P\left(b,\left(f_{1}(b, \bar{S}(g)(\bar{w})), \ldots, f_{n}(b, \bar{S}(g)(\bar{w}))\right)\right) \\
& =P(f(b, \bar{S}(g)(\bar{w}))) \\
& =(P\{f\})(b, \bar{S}(g)(\bar{w}))
\end{aligned}
$$

and moreover

$$
\begin{aligned}
Q\left(b, \bar{R}(g)\left(f_{1}(d, \bar{w}), \ldots, f_{n}(d, \bar{w})\right), v\right) & =Q\left(b, f_{1}(b, \bar{S}(g)(\bar{w})), \ldots, f_{n}(b, \bar{S}(g)(\bar{w})), v\right) \\
& =Q(f(b, \bar{S}(g)(\bar{w})), v) \\
& =\left(Q\left\{q_{P, f}\right\}\right)(\bar{S}(g)(\bar{w}), v)
\end{aligned}
$$

We have thereby

$$
\begin{array}{r}
\Pi(P, Q)\{f\}(d, \bar{w})=\{h \in(\Pi b \in \mathbb{C})(\Pi g: b \rightarrow d)(\Pi v \in(P\{f\})(b, \bar{S}(g)(\bar{w}))) \\
\left(Q\left\{q_{P, f}\right\}\right)(\bar{S}(g)(\bar{w}), v) \mid \\
\forall b \in \mathbb{C}, \forall g: b \rightarrow d, \forall v \in(P\{f\})(b, \bar{S}(g)(\bar{w})), \\
\forall c \in \mathbb{C}, \forall \beta: c \rightarrow b, \\
Q(\beta)(h(b, g, v))=h(c, g \circ \beta, P(\beta)(v))\}
\end{array}
$$

But $Q(\beta)=Q\left(q_{P, f}(\beta)\right)$ and $P(\beta)=P(f(\beta))$, so

$$
\Pi(P, Q)\{f\}(d, \bar{w})=\Pi\left(P\{f\}, Q\left\{q_{P, f}\right\}\right)(d, \bar{w})
$$

Suppose $\alpha:(e, \bar{z}) \longrightarrow(d, \bar{w})$ in $\Sigma(\bar{S})$,
$\Pi(P, Q)\{f\}(\alpha)(h)(b, f, v)=\Pi(P, Q)(f(\alpha))(h)(b, f, v)=\Pi(P, Q)(\alpha)(h)(b, f, v)=(b, \alpha \circ f, v)$
and on the other hand

$$
\Pi\left(P\{f\}, Q\left\{q_{P, f}\right\}\right)(\alpha)(h)(b, f, v)=(b, \alpha \circ f, v) .
$$

Hence $\Pi(P, Q)\{f\}=\Pi\left(P\{f\}, Q\left\{q_{P, f}\right\}\right)$.
λ-substitution: Let $s \in \mathrm{E}([\bar{R}, P], Q)$. Thus there is s^{\prime} such that for all $(b, \bar{u}, v) \in$ $\Sigma(\bar{R}, P)$,

$$
s(b, \bar{u}, v)=\left(b, \bar{u}, v, s^{\prime}(b, \bar{u}, v)\right)
$$

where $s^{\prime}(b, \bar{u}, v) \in Q(b, \bar{u}, v)$ and further for all $\alpha:(a, \bar{x}, y) \longrightarrow(b, \bar{u}, v)$

$$
\begin{equation*}
Q(\alpha)\left(s^{\prime}(b, \bar{u}, v)\right)=s^{\prime}(a, \bar{R}(\alpha)(\bar{u}), P(\alpha)(v)) \tag{18}
\end{equation*}
$$

We have

$$
\hat{s}(a, \bar{x})=\lambda b \in \mathbb{C} \cdot \lambda f: b \rightarrow a \cdot \lambda v \in P(b, \bar{R}(f)(\bar{x})) \cdot s^{\prime}(b, \bar{R}(f)(\bar{x}), v) .
$$

and

$$
\boldsymbol{\lambda}_{P, Q}(s)(a, \bar{x})=(a, \bar{x}, \hat{s}(a, \bar{x}))
$$

Further,

$$
\boldsymbol{\lambda}_{P, Q}(s)\{f\}(d, \bar{w})=\left(d, \bar{w}, \hat{s}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\right)
$$

Now $s\left\{q_{P, f}\right\} \in \mathrm{E}\left([\bar{S}, P\{f\}], Q\left\{q_{P, f}\right\}\right)$, and so

$$
\boldsymbol{\lambda}_{P\{f\}, Q\left\{q_{P, f}\right\}}\left(s\left\{q_{P, f}\right\}\right) \in \mathrm{E}\left(\bar{S}, \Pi\left(P\{f\}, Q\left\{q_{P, f}\right\}\right)\right)
$$

and

$$
\boldsymbol{\lambda}_{P\{f\}, Q\left\{q_{P, f}\right\}}\left(s\left\{q_{P, f}\right\}\right)(d, \bar{w})=\left(d, \bar{w}, \widehat{s\left\{q_{P, f}\right\}}(d, \bar{w})\right)
$$

We have

$$
q_{P, f}(d, \bar{w}, v)=(f(d, \bar{w}), v)=\left(d, f_{1}(d, \bar{w}), \ldots, f_{m}(d, \bar{w}), v\right) .
$$

By construction of substitution on terms

$$
s\left\{q_{P, f}\right\}(d, \bar{w}, v)=\left(d, \bar{w}, v, s^{\prime}\left(d, f_{1}(d, \bar{w}), \ldots, f_{m}(d, \bar{w}), v\right)\right)
$$

Thus
$\left.\widehat{s\left\{q_{P, f}\right\}}(d, \bar{w})=\lambda b \in \mathbb{C} \cdot \lambda g: b \rightarrow d \cdot \lambda v \in P\{f\}(b, \bar{S}(g)(\bar{w})) \cdot s^{\prime}\left(b, f_{1}(b, \bar{S}(g)(\bar{w})), \ldots, f_{m}(b, \bar{S}(g)(\bar{w})), v\right)\right)$.
We compare

$$
\left.\widehat{s\left\{q_{P, f}\right\}}(d, \bar{w})(b, g, v)=s^{\prime}\left(b, f_{1}(b, \bar{S}(g)(\bar{w})), \ldots, f_{m}(b, \bar{S}(g)(\bar{w})), v\right)\right)
$$

and

$$
\hat{s}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)(b, g, v)=s^{\prime}\left(b, \bar{R}(g)\left(f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right), v\right)
$$

By the condition (17) we see that the two expressions are equal.
App-substitution: For $g \in \mathrm{E}(\bar{R}, \Pi(P, Q))$ and $t \in \mathrm{E}(\bar{R}, P)$ we write

$$
g(a, \bar{x})=\left(a, \bar{x}, g^{\prime}(a, \bar{x})\right) \quad t(a, \bar{x})=\left(a, \bar{x}, t^{\prime}(a, \bar{x})\right)
$$

Thus $g^{\prime}(a, \bar{x}) \in \Pi(P, Q)(a, \bar{x})$ and $t^{\prime}(a, \bar{x}) \in P(a, \bar{x})$. It holds that

$$
g^{\prime}(a, \bar{x})\left(a, 1_{a}, t^{\prime}(a, \bar{x})\right) \in Q\left(a, \bar{x}, t^{\prime}(a, \bar{x})\right)=(Q \circ t)(a, \bar{x}) .
$$

We have by definition

$$
\operatorname{App}_{P, Q}(g, t)(a, \bar{x})=\left(a, \bar{x}, g^{\prime}(a, \bar{x})\left(a, 1_{a}, t^{\prime}(a, \bar{x})\right)\right)
$$

We shall prove

$$
\operatorname{App}_{P, Q}(g, t)\{f\}=\operatorname{App}_{P\{f\}, Q\left\{q_{P, f}\right\}}(g\{f\}, t\{f\})
$$

On the one hand

$$
\begin{aligned}
& \operatorname{App}_{P, Q}(g, t)\{f\}(d, \bar{w}) \\
= & \left(d, \bar{w}, g^{\prime}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\left(d, 1_{d}, t^{\prime}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\right)\right) .
\end{aligned}
$$

We have further

$$
g\{f\}(d, \bar{w})=\left(d, \bar{w}, g^{\prime}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\right)
$$

and

$$
t\{f\}(d, \bar{w})=\left(d, \bar{w}, t^{\prime}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\right)
$$

Now on the other hand

$$
\begin{aligned}
& \operatorname{App}_{P\{f\}, Q\left\{q_{P, f}\right\}}(g\{f\}, t\{f\})(d, \bar{w}) \\
& =\left(d, \bar{w}, g^{\prime}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\left(d, 1_{d}, t^{\prime}\left(d, f_{1}(a, \bar{w}), \ldots, f_{m}(d, \bar{w})\right)\right)\right)
\end{aligned}
$$

which is indeed the same.

5 -construction

Let \mathbb{C} be any small category and let $\bar{R}=\left[R_{1}, \ldots, R_{n}\right] \in \operatorname{MPSh}(\mathbb{C})$. Let $P \in \operatorname{PSh}(\Sigma(\bar{R}))$ and $Q \in \operatorname{PSh}(\Sigma(\bar{R}, P))$. We define a presheaf $\dot{\Sigma}(P, Q)$ over $\Sigma(\bar{R})$ as follows. For $(a, \bar{x}) \in \Sigma(\bar{R})$, let

$$
\dot{\Sigma}(P, Q)(a, \bar{x})=\{(u, v): u \in P(a, \bar{x}), v \in Q(a, \bar{x}, u)\}
$$

For $\alpha:\left(a^{\prime}, \bar{x}^{\prime}\right) \rightarrow(a, \bar{x})$ and $h \in \dot{\Sigma}(P, Q)(a, \bar{x})$ define

$$
\dot{\Sigma}(P, Q)(\alpha)(u, v)=(P(\alpha)(u), Q(\alpha)(v)) .
$$

It is straightforward to verify that $\dot{\Sigma}(P, Q)$ is a presheaf over \mathbb{C}.

6 Explication of the constructions over some categories

Suppose that \mathbb{C} is the category $0 \rightarrow 2 \leftarrow 1$, where all other arrows are identities. Let $\bar{R}=\left[R_{1}, \ldots, R_{n}\right] \in \operatorname{MPSh}(\mathbb{C})$. Let $P \in \operatorname{PSh}(\Sigma(\bar{R}))$ and $Q \in \operatorname{PSh}(\Sigma(\bar{R}, P))$. Now the definition of $\Pi(P, Q)$ simples for $a=0,1$, since there are only identity arrows into a, the naturality condition becomes void, so we have:

$$
\begin{aligned}
\Pi(P, Q)(a, \bar{x}) & =(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow a)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \\
& \cong(\Pi v \in P(b, \bar{x}) Q(b, \bar{x}, v)
\end{aligned}
$$

For $a=2$, the naturality condition has a few nontrivial cases:

$$
\begin{aligned}
& \Pi(P, Q)(2, \bar{x})=\{h \in(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow 2)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \mid \\
& \forall b \in \mathbb{C}, \forall f: b \rightarrow 2, \forall v \in P(b, \bar{R}(f)(\bar{x})), \\
& \forall c \in \mathbb{C}, \forall \beta: c \rightarrow b \text {, } \\
& Q(\beta)(h(b, f, v))=h(c, f \circ \beta, P(\beta)(v))\}
\end{aligned}
$$

Writing out the cases explicitly we get

$$
\begin{gathered}
\Pi(P, Q)(2, \bar{x})=\{h \in(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow 2)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \mid \\
\forall f: 0 \rightarrow 2, \forall v \in P(0, \bar{R}(f)(\bar{x})), \\
\forall c \in \mathbb{C}, \forall \beta: c \rightarrow 0, \\
Q(\beta)(h(0, f, v))=h(c, f \circ \beta, P(\beta)(v)), \\
\forall f: 1 \rightarrow 2, \forall v \in P(b, \bar{R}(f)(\bar{x})), \\
\forall c \in \mathbb{C}, \forall \beta: c \rightarrow 1, \\
Q(\beta)(h(1, f, v))=h(c, f \circ \beta, P(\beta)(v)) \\
\forall f: 2 \rightarrow 2, \forall v \in P(2, \bar{R}(f)(\bar{x})), \\
\forall c \in \mathbb{C}, \forall \beta: c \rightarrow 2, \\
Q(\beta)(h(2, f, v))=h(c, f \circ \beta, P(\beta)(v))\}
\end{gathered}
$$

Simplifying this the first two conditions become void.

$$
\begin{aligned}
& \Pi(P, Q)(2, \bar{x})=\{h \in(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow 2)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \mid \\
& \forall f: 2 \rightarrow 2, \forall v \in P(2, \bar{R}(f)(\bar{x})), \\
& \forall c \in \mathbb{C}, \forall \beta: c \rightarrow 2, \\
& Q(\beta)(h(2, f, v))=h(c, f \circ \beta, P(\beta)(v))\}
\end{aligned}
$$

Further, simplifying the remaining condition

$$
\begin{aligned}
& \Pi(P, Q)(2, \bar{x})=\{h \in(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow 2)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \mid \\
& \forall v \in P(2, \bar{x}), \forall c \in \mathbb{C}, \forall \beta: c \rightarrow 2, \\
& \left.Q(\beta)\left(h\left(2,1_{2}, v\right)\right)=h(c, \beta, P(\beta)(v))\right\}
\end{aligned}
$$

Finally, instantiating c to $0,1,2$ what remains after simplification ($c=2$ gives an empty condition):

$$
\begin{aligned}
& \Pi(P, Q)(2, \bar{x})=\{h \in(\Pi b \in \mathbb{C})(\Pi f: b \rightarrow 2)(\Pi v \in P(b, \bar{R}(f)(\bar{x})) Q(b, \bar{R}(f)(\bar{x}), v) \mid \\
& \forall v \in P(2, \bar{x}), \\
& Q\left(f_{02}\right)\left(h\left(2,1_{2}, v\right)\right)=h\left(0, f_{02}, P\left(f_{02}\right)(v)\right), \\
& \left.Q\left(f_{12}\right)\left(h\left(2,1_{2}, v\right)\right)=h\left(1, f_{12}, P\left(f_{12}\right)(v)\right)\right\}
\end{aligned}
$$

6.1 Simplicial sets

Let Δ be the category whose objects are the natural number $\mathbb{N}=\{0,1,2, \ldots\}$. Denote by $[n]$ the set $\{0, \ldots, n\}$ for $n \in \mathbb{N}$. A morphism $f: m \longrightarrow n$ in Δ is a monotone function $f:[m] \longrightarrow[n]$. The presheaves over Δ, is called the category of simplicial sets. The Yoneda embedding $y: \Delta \longrightarrow \operatorname{PSh}(\Delta)$ satisfies by the Yoneda lemma

$$
\operatorname{Hom}_{\mathrm{PSh}(\mathbb{C})}(y(n), F) \cong F(n)
$$

for any $n \in \mathbb{N}$ and any $F \in \operatorname{PSh}(\mathbb{C})$. The canonical n-simplex is $\Delta^{n}=y(n)$.
For $i=0, \ldots, n+1$, let $\delta_{i}^{n}:[n] \longrightarrow[n+1]$ be the unique monotone function such that $\delta_{i}^{n}[\{0, \ldots, n\}]=\{0, \ldots, i-1, i+1, \ldots, n+1\} . F\left(\delta_{i}^{n}\right): F(n+1) \longrightarrow F(n)$ is the ith face map.

The presheaf $F \in \operatorname{PSh}(\Delta)$ is a Kan complex if for any n and any $x_{0}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n+1} \in$ $F(n)$ such that $F\left(\delta_{i}\right)\left(x_{j}\right)=F\left(\delta_{j-1}\right)\left(x_{i}\right)$ for all $i<j, i \neq k, j \neq k$, there exists $x \in F(n+1)$ such that $F\left(\delta_{i}\right)(x)=x_{i}$ for all $i \neq k$.

Spelling out:
$n=1, k=0$: for any x_{1}, x_{2} with $F\left(\delta_{1}\right)\left(x_{2}\right)=F\left(\delta_{1}\right)\left(x_{1}\right)$, there is $x \in F(2)$ such that $F\left(\delta_{1}\right)(x)=x_{1}, F\left(\delta_{2}\right)(x)=x_{2}$.
$n=1, k=1$: for any x_{0}, x_{2} with $F\left(\delta_{0}\right)\left(x_{2}\right)=F\left(\delta_{1}\right)\left(x_{0}\right)$, there is $x \in F(2)$ such that $F\left(\delta_{0}\right)(x)=x_{0}, F\left(\delta_{2}\right)(x)=x_{2}$.
$n=1, k=2$: for any x_{0}, x_{1} with $F\left(\delta_{0}\right)\left(x_{1}\right)=F\left(\delta_{0}\right)\left(x_{0}\right)$, there is $x \in F(2)$ such that $F\left(\delta_{0}\right)(x)=x_{0}, F\left(\delta_{1}\right)(x)=x_{1}$.
$n=2, k=0$: for any x_{1}, x_{2}, x_{3} with $F\left(\delta_{1}\right)\left(x_{2}\right)=F\left(\delta_{1}\right)\left(x_{1}\right), F\left(\delta_{1}\right)\left(x_{3}\right)=F\left(\delta_{2}\right)\left(x_{1}\right)$, $F\left(\delta_{2}\right)\left(x_{3}\right)=F\left(\delta_{2}\right)\left(x_{2}\right)$, there is $x \in F(3)$ such that $F\left(\delta_{1}\right)(x)=x_{1}, F\left(\delta_{2}\right)(x)=x_{2}$, $F\left(\delta_{3}\right)(x)=x_{3}$.

References

[1] J. Cartmell. Generalised Algebraic Theories and Contextual Categories. Annals of Pure and Applied Logic 32 (1986), 209 - 243.
[2] M. Hofmann. The Syntax and Semantics of Dependent Types. 1994.
[3] S. MacLane and I. Moerdijk. Sheaves and Geometry: A First Introduction to Topos Theory. Springer 1992.
[4] T. Streicher. Semantics of Type Theory. Birkhäuser 1991.

Appendix

Definition 6.1. A category with attributes (cwa) consists of the data
(a) A category \mathcal{C} with a terminal object 1 . This is the called the category of contexts and substitutions.
(b) A functor $T: \mathcal{C}^{\mathrm{op}} \longrightarrow$ Set. This functor is intended to assign to each context Γ a set $T(\Gamma)$ of types in the context and tells how substitutions act on these types. For $f: B \longrightarrow \Gamma$ and $\sigma \in T(\Gamma)$ we write

$$
\sigma\{f\} \text { for } T(f)(\sigma)
$$

(c) For each $\sigma \in T(\Gamma)$, an object $\Gamma . \sigma$ in \mathcal{C} and a morphism

$$
\mathrm{p}(\sigma)=\mathrm{p}_{\Gamma}(\sigma): \Gamma \cdot \sigma \longrightarrow \Gamma \text { in } \mathcal{C} .
$$

This tells that each context can be extended by a type in the context, and that there is a projection from the extended context to the original one.
(d) The final datum tells how substitutions interact with context extensions: For each $f: B \longrightarrow \Gamma$ and $\sigma \in T(\Gamma)$, there is a morphism $\mathrm{q}(f, \sigma)=\mathrm{q}_{\Gamma}(f, \sigma)$: $B .(T(f)(\sigma)) \longrightarrow \Gamma . \sigma$ in \mathcal{C} such that

is a pullback, and furthermore
$(\mathrm{d} .1) \mathrm{q}\left(1_{\Gamma}, \sigma\right)=1_{\Gamma . \sigma}$
$(\mathrm{d} .2) \mathrm{q}(f \circ g, \sigma)=\mathrm{q}(f, \sigma) \circ \mathrm{q}(g, \sigma\{f\})$ for $A \xrightarrow{g} B \xrightarrow{f} \Gamma$.
From [2] we take the following definition, but adapt it in the obvious way to cwas.
Definition 6.2. A cwa supports Π-types if for $\sigma \in T(\Gamma)$ and $\tau \in T(\Gamma . \sigma)$ there is a type

$$
\Pi(\sigma, \tau) \in T(\Gamma)
$$

and moreover for every $P \in E(\Gamma . \sigma, \tau)$ there is an element

$$
\lambda_{\sigma, \tau}(P) \in E(\Gamma, \Pi(\sigma, \tau))
$$

and furthermore for any $M \in E(\Gamma, \Pi(\sigma, \tau))$ and any $N \in E(\Gamma, \sigma)$ there is an element

$$
\operatorname{App}_{\sigma, \tau}(M, N) \in E(\Gamma, \tau\{N\})
$$

such that the following equations hold for any substitution $f: B \longrightarrow \Gamma$:
$\left(\lambda\right.$-comp) $\operatorname{App}_{\sigma, \tau}\left(\lambda_{\sigma, \tau}(P), N\right)=P\{N\}$,
(Π-subst) $\Pi(\sigma, \tau)\{f\}=\Pi(\sigma\{f\}, \tau\{\mathbf{q}(f, \sigma)\})$,
$\left(\lambda\right.$-subst) $\lambda_{\sigma, \tau}(P)\{f\}=\lambda_{\sigma\{f\}, \tau\{\mathbf{q}(f, \sigma)\}}(P\{\mathbf{q}(f, \sigma)\})$,
(App-subst) $\operatorname{App}_{\sigma, \tau}(M, N)\{f\}=\operatorname{App}_{\sigma\{f\}, \tau\{\mathrm{q}(f, \sigma)\}}(M\{f\}, N\{f\})$.

[^0]: ${ }^{1}$ Henrik Forssell observed after seeing the first version of these notes (dated February 28, 2013) that these restrictions amount to imposing a fibration condition, so that new iterated presheaf category is actually equivalent to the standard presheaf category. See Section 3.

