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Abstract

When formalizing mathematics in (generalized predicative) constructive type
theories, or more practically in proof assistants such as Coq or Agda, one is
often using setoids (which are types with explicit equivalence relations). In this
note we consider two categories of setoids with equality on objects and show
that they are isomorphic. Both categories are constructed from a fixed proof-
irrelevant family F of setoids. The objects of the categories are the index setoid
I of the family, whereas the definition of arrows differs. The first category has for
arrows triples (a, b, f : F (a) // F (b)) where f is an extensional function. Two
such arrows are identified if appropriate composition with transportation maps
(given by F ) makes them equal. In the second category the arrows are triples
(a, b, R ⊂ Σ(I, F )2) where R is a functional relation between the subobjects
F (a), F (b) ↪→ Σ(I, F ) of the setoid sum of the family. This category is simpler to
use as the transportation maps disappear. Moreover we also show that the full
image of a category along an E-functor into an E-category is category.

1 Introduction

In type theory there is a choice whether categories should be equipped with an equality
on objects or not. Categories without such equality are called E-categories. For some
purposes equality on objects seem necessary, but here one already encounter problems
to construct rich categories of setoids. (Setoids are types with equivalence relations,
the natural notion of set in type theory). From any proof-irrelevant family of setoids F
over a setoid A arises a category C(A,F ) of setoids as shown in [4, 3]. This is perhaps
the category which is closest to the type-theoretic language: the setoid A constitutes
the objects, a morphism (a, b, f) consists of an extensional function f : F (a) // F (b)
where a, b ∈ A. Composition with another morphism (b′, c, g) is possible if b =A b′
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and is defined using a transportation function F (p) : F (b) //F (b′) associated with the
proof p : b =A b′. Equality of two morphisms (a, b, f) and (a′, b′, f ′) is taken to mean
that there are proofs p : a =A a

′ and q : b =A b
′ such that

F (a′) F (b′)
f ′
//

F (a)

F (a′)

F (p)

��

F (a) F (b)
f // F (b)

F (b′)

F (q)

��

commutes. This equality is a slightly cumbersome notion when working with this
category. We show (Theorem 3.1) that this category is isomorphic to another category
S(A,F ) where the morphisms corresponds to functional relations on Σ(A,F ) the setoid-
sum of the family. In this category the transportation functions are invisible, which
makes for a smoother treatment of the category of setoids akin to a category of sets in
set theory. As shown in [3] we may chose F so that C(A,F ) is isomorphic to a category
of sets in a model of constructive set theory CZF, thus ensuring rich properties of the
category.

2 Families of setoids

Recall from, for instance [2] or [3], that a good notion of a family of setoids over a setoids
is the following. A proof-irrelevant family F of setoids over A — or just family of setoids
— consists of a setoid F (x) = (|F (x)|,=F (x)) for each x ∈ A, and for p : (x =A y) an
extensional function F (p) : F (x) // F (y) (the transportation function) which satisfies
the three conditions:

(F1) F (ref(x)) =ext idF (x) for x ∈ A. Here ref(x) is the canonical proof object for
x =A x and =ext denotes the extensional equality of functions.

(F2) F (p) =ext F (q) for p, q : x =A y and x, y ∈ A. Since F (p) does not depend on p,
this is the proof-irrelevance condition.

(F3) F (q) ◦ F (p) =ext F (q ◦ p) for p : x =A y, q : y =A z and x, y, z ∈ A.

Proof-irrelevant families may arise as functions I // P(A) from the index setoid
I into the collection of subsetoids of a fixed setoid A in the following way. Let A be
the fixed setoid. Let P(A) denote the following preorder. Its elements are injections
m : U // A, where U is setoid. Let n : V // A be another injection. We say that
it includes m : U // A, in symbols (U,m) ⊆̇ (V, n), if there is a function k : U // V
such that n ◦ k = m. (Note that k is unique and an injection.) Now define m : U //A
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and n : V // A to be equal, or in symbols (U,m) =̇ (V, n), if (U,m) ⊆̇ (V, n) and
(V, n) ⊆̇ (U,m). Thus P(A) has an equivalence relation. Indeed, defining for x ∈ A
and (U,m) ∈ P(A), a membership relation

x ∈̇ (U,m)⇐⇒def (∃u ∈ U)x =A m(u),

we get using unique choice

(U,m) ⊆̇ (V, n) iff (∀x ∈ X)(x ∈̇ (U,m)⇒ x ∈̇ (V, n)).

Thus we see that (U,m) =̇ (V, n) is extensional equality.
A family of subsetoids of A indexed by a setoid I is an extensional function F :

I // P(A). Write F (i) = (F̂ (i),mi). We may now extend F̂ to a proof-irrelevant
family in a canonical way: for a proof p of i =I j, we have F (i) =̇ F (j) so there is a
unique f such that the following diagram commute

F̂ (i)

A

��

mi

��?
??

??
??

??
??

F̂ (i) F̂ (j)
f // F̂ (j)

A

��

mj

����
��
��
��
��
�

We let F̂ (p) =def f . By the above it is unique and independent of p, so (F2) holds. If
i = j definitionally, then f is extensionally equal to the identity on F̂ (i). This verifies
(F1). The condition (F3) of F̂ is easy to check using uniqueness.

Conversely, from every proof-irrelevant family F on I we get a family F̌ : I //P(A)
for a canonical A; see Proposition 2.1 below. To prove this we introduce the setoid-sum
construction. Let F be a family of setoids over the setoid I. The disjoint sum of the
family exists in Setoids and may be explicitly given by

Σ(I, F ) =def

(
(Σx : |I|)|F (x)|,∼

)
where the equivalence is given by

(x, y) ∼ (x′, y′) iff (∃p : x =I x
′)(F (p)(y) =F (x′) y

′).

The injections

F (x)
ιx // Σ(I, F )

are given by ιx(y) = (x, y), and satisfy

ιx′ ◦ F (p) =ext ιx for p : x =I x
′. (1)

This construction satisfies the universal property that if C is a setoid and jx : F (x) //C
(x ∈ I) are extensional functions with jx′ ◦ F (p) =ext jx for all p : x =A x

′, then there
is a unique extensional k : Σ(I, F ) // C with k ◦ ιx =ext jx for all x ∈ I.
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Proposition 2.1. Let F be a family of setoids indexed by the setoid I. Then F induces
an extensional function

F̌ : I // P(Σ(I, F ))

where F̌ (x) = (F (x), ιx) and ιx : F (x) // Σ(I, F ) is the canonical injection.

Proof. It follows from (1) that p : x =I y, implies F̌ (x) ⊆̇ F̌ (y) and similarly p−1 : y =I

x implies F̌ (y) ⊆̇ F̌ (x). Thus F̌ (x) =̇ F̌ (y).

3 Two categories of setoids and their isomorphism

We provide some more details to the construction sketched in the introduction; see [3]
for full details. A family F of setoids over a setoid I gives rise to a category of setoids
C = C(I, F ) as follows. The objects are given by the index setoid C0 = I, and are thus
equipped with equality, and the setoid of arrows C1 is

((Σi, j : |I|)Ext(F (i), F (j)),∼)

which, thus, consists of triples (i, j, f) where f : F (i) //F (j) is an extensional function,
and where two arrows are equal (i, j, f) ∼ (i′, j′, f ′) if, and only if, there are proof objects
p : i =I i

′ and q : j =I j
′ such that the diagram

F (i′) F (j′)
f ′
//

F (i)

F (i′)

F (p)

��

F (i) F (j)
f // F (j)

F (j′)

F (q)

��

(2)

commutes. The domain of the arrow (i, j, f) is i and its codomain is j. Arrows (i, j, f)
and (j′, k, g) are composable if there is p : j =I j

′ and their composition is (i, k, g◦F (p)◦
f). Note that F (p) and hence the composition is independent of p. The setoid C2 of
composable arrows consists of such triples ((i, j, f), (j′, k, g), p). Then C is a category in
the essentially algebraic sense as shown in [3]. (See Appendix for the formal definition
of essentially algebraic category.)

The second construction is as follows. Define a category S(I, F ) whose setoid of
objects is I, and whose arrows1 are triples (i, j, R) where R is functional binary relation
on S = Σ(I, F ) with dom(R) =̇ F (i) and ran(R) ⊆̇ F (j). Two arrows (i, j, R) and
(i′, j′, R′) are equal when i =I i

′, j =I j
′ and R =̇ R′. The domain and codomain of

1The triples actually form a setoid since they can be represented by graphs of functions, as the
isomorphism theorem shows later.
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(i, j, R) are i and j respectively. The composition of (i, j, R) and (j′, k, Q) is (i, k,Q◦R)
when j =I j

′. Here Q ◦R denotes the relational composition.
Now define a functor M : C(I, F ) //S(I, F ) by letting M be the identity on objects,

M(i) = i, and for an arrow (i, j, f) letting M(i, j, f) = (i, j,Gf ) where Gf is the graph
of f on S × S defined by

(u, v) ∈̇ Gf ⇐⇒def (∃x ∈ F (i))[u =S 〈i, x〉 ∧ v =S 〈j, f(x)〉] (3)

We show that M is well-defined on arrows: Suppose that (i, j, f) and (i′, j′, f ′) are
equal arrows in C(I, F ), that is, there are p : i =I i

′ and q : j =J j′ such that the
diagram (2) commutes. Note that for x ∈ F (i), 〈i, x〉 =S 〈i′, F (p)(x)〉 and 〈j, f(x)〉 =
〈j′, F (q)(f(x))〉. Inserting this in (3), substituting x = F (p−1)(x′) and then using the
commutative square we get

(u, v) ∈̇ Gf ⇐⇒ (∃x ∈ Fi)[u =S 〈i′, F (p)(x)〉 ∧ v =S 〈j′, F (q)(fx)〉]
⇐⇒ (∃x′ ∈ Fi′)[u =S 〈i′, F (p)(F (p−1)(x′)))〉 ∧

v =S 〈j′, F (q)(f(F (p−1)(x′)))〉]
⇐⇒ (u, v) ∈̇ Gf ′

Thus M is well-defined.
For objects (i, j, f) and (j′, k, g) with p : j =I j

′ we check functoriality by verifying
that

Gg ◦ Gf =̇ Gg◦F (p)◦f (4)

and that
GidF (i)

(5)

is the identity relation on the subset F̌ (i). To see (4) expand the definition and use
that F (p) = F (q) for q : j =I j

′:

(∗) (u, v) ∈̇ Gg ◦ Gf ⇐⇒ (∃x ∈ Fi)(∃y ∈ Fj′)
(u = 〈i, x〉 ∧ 〈j′, y〉 = 〈j, fx〉 ∧ v = 〈k, gy))

⇐⇒ (∃x ∈ Fi)(∃y ∈ Fj′)(∃q : j =I j
′)

(u = 〈i, x〉 ∧ F (q)(fx) =Fj′ y ∧ v = 〈k, gy))

⇐⇒ (∃x ∈ Fi)(∃y ∈ Fj′)
(u = 〈i, x〉 ∧ F (p)(fx) =Fj′ y ∧ v = 〈k, gy))

⇐⇒ (∃x ∈ Fi)
(u = 〈i, x〉 ∧ v = 〈k, g(F (p)(fx))〉)

⇐⇒ (u, v) ∈̇ Gg◦F (p)◦f

Further

(∗∗) (u, v) ∈̇ GidFi
⇐⇒ (∃x ∈ Fi)[u =S 〈i, x〉 ∧ v =S 〈i, idFi(x))〉]
⇐⇒ u =S v ∧ (∃x ∈ Fi)u =S 〈i, x〉
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which is the identity relation on F̌ (i). Call this relation IF̌ (i) for later use.

Define in the opposite direction a functor N : S(I, F ) // C(I, F ) by letting it be
the identity on objects, and for a morphism (i, j, R) let f : F (i) //F (j) be the unique
extensional function such that

Gf =̇ R. (6)

Let
N(i, j, R) =def (i, j, f).

Existence of f : Suppose (i, j, R) is morphism. Hence

(∀x ∈ Fi)(∃!y ∈ Fj)(〈i, x〉, 〈j, y〉) ∈̇R.

Thus there is a unique extensional f : F (i) // F (j) such that

(∀x ∈ Fi)(〈i, x〉, 〈j, f(x)〉) ∈̇R. (7)

If (u, v) ∈̇ Gf , then by (3) there is x ∈ F (i) such that

u =S 〈i, x〉 ∧ v =S 〈j, f(x)〉.

Thus by (7): (u, v) ∈̇R. Conversely, suppose (u, v) ∈̇R. Then since dom(R) = F̌ (i)
and ran(R) ⊆̇ F̌ (j), there is x ∈ F (i) and y ∈ F (j), with u =S 〈i, x〉 and v =S 〈j, y〉.
By uniqueness in (7), y = f(x), so indeed (u, v) ∈̇ Gf . Thus (6) holds.

Uniqueness of f : Suppose that Gf ′ =̇ R for some f ′ : F (i) // F (j). Then (∀x ∈
Fi)(〈i, x〉, 〈j, f ′x〉) ∈̇R. By uniqueness in (7), f ′ = f .

We show N is well-defined on arrows: Suppose (i, j, R) and (i′, j′, R′) are equal
morphisms with N(i, j, R) = (i, j, f) and N(i′, j′, R′) = (i′, j′, f ′). Thus p : i =I i

′ and
q : j =J j

′ and R =̇ R′, and hence
Gf =̇ Gf ′ .

We show that (2) commutes. Let x ∈ F (i). Then by definition of the graph Gf , we get
(〈i, x〉, 〈j, f(x)〉) ∈̇ Gf , and hence also (〈i, x〉, 〈j, f(x)〉) ∈̇ Gf ′ . Again by the definition of
graph:

(∃x′ ∈ Fi′)[〈i, x〉 =S 〈i′, x′〉 ∧ 〈j, fx〉 =S 〈j′, f ′x′〉].

Thus for some x′ ∈ Fi′, p′ : i =I i
′ and some q′ : j =I j

′ we have

F (p′)(x) =Fi′ x
′ F (q′)(fx) =Fj′ f

′x′.

Hence
F (q′)(fx) =Fj′ f

′(F (p′)(x)),

and since F (q) = F (q′) and F (p) = F (p′), we are done proving that the diagram
commutes.
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We check that N is functorial: Suppose that N(i, j, R) = (i, j, f) and N(j′, k, Q) =
(j′, k, g) with p : j =I j

′. Then

N(j′, k, Q) ◦N(i, j, R) = (i, k, g ◦ F (p) ◦ f).

Now
N((j′, k, Q) ◦ (i, j, R)) = N(i, k,Q ◦R) = (i, k, h)

where h : F (i) // F (k) is unique such that Gh =̇ Q ◦ R. Moreover f : F (i) // F (j) is
unique such that Gf =̇ R, and g : F (j′) // F (k) is unique such that Gg =̇ Q. By (*)
above we have

Q ◦R =̇ Gg ◦ Gf =̇ Gg◦F (p)◦f .

Hence h = g ◦ F (p) ◦ f as required.
Suppose N(i, i, IF̌ (i)) = (i, i, f) where f : F (i) // F (i) is unique such that

Gf =̇ IF̌ (i).

By (**) above
GidF (i)

=̇ IF̌ (i).

Hence f = idF (i) as required.
The functors M and N form an isomorphism of categories. This is clear for objects.

Let (i, j, R) be an arrow of S(I, F ). Then N(i, j, R) = (i, j, f) where f : F (i) // F (j)
is unique such that Gf =̇ R. Now

M(N(i, j, R)) = M(i, j, f) = (i, j,Gf ) = (i, j, R).

Conversely
N(M(i, j, f)) = N(i, j, Gf ) = (i, j, f).

Thus we have established:

Theorem 3.1. S(I, F ) ∼= C(I, F )

4 Full images of categories in E-categories

The construction of C(I, F ) may actually be constructed as a full image of F regarded
as an E-functor from I (as discrete category) into the E-category of setoids. This follows
from a general full image construction (Theorem 4.1). To prepare for a formal proof of
this we need to present some more notions.

An equivalent formulation of category is the following (see Appendix for a proof
of equivalence). A hom family presented category C (or just HF-category) consists of
a setoid Ob C = Ob and a (proof-irrelevant) family HomC of setoids indexed by the

7



setoid Ob× Ob. We often write, as is usual, C(a, b) for HomC(a, b). For each a ∈ Ob,
there is an element ida ∈ Hom(a, a). Moreover for all a, b, c ∈ Ob there is an extensional
function

◦a,b,c = ◦ : Hom(b, c)× Hom(a, b) // Hom(a, c).

These satisfies the usual equations of identity and associativity. Moreover, for p : a =Ob

a′,
ida′ = Hom(p, p)(ida) (8)

and for p : a =Ob a
′, q : b =Ob b

′ and r : c =Ob c
′ this diagram commutes:

Hom(b′, c′)× Hom(a′, b′) Hom(a′, c′)◦a′,b′,c′
//

Hom(b, c)× Hom(a, b)

Hom(b′, c′)× Hom(a′, b′)

Hom(q,r)×Hom(p,q)

��

Hom(b, c)× Hom(a, b) Hom(a, c)
◦a,b,c // Hom(a, c)

Hom(a′, c′)

Hom(p,r)

��

(9)

The equations (8) and (9) are coherence conditions for the transportation maps of the
hom-family.

A weaker notion is that of a E-category, where we require in the above instead that
Ob is type, and that Hom is family of setoids indexed by the type Ob×Ob. Moreover
we drop equations (8) and (9). Any HF-category may be considered as an E-category
by omitting the equality on objects.

A functor F from the HF-category C to the HF-category D consists of an exten-
sional function F0 : Ob C // Ob D and for each pair of objects a, b ∈ Ob C, an
extensional function Fa,b : HomC(a, b) //HomD(F0(a), F0(b)) satisfying the usual func-
toriality equations. Moreover it is required that for p : a =Ob C a′, q : b =Ob C b′, the
diagram

Hom(a′, b′) Hom(F0(a′), F0(b′))
Fa′,b′

//

Hom(a, b)

Hom(a′, b′)

Hom(p,q)

��

Hom(a, b) Hom(F0(a), F0(b))
Fa,b // Hom(F0(a), F0(b))

Hom(F0(a′), F0(b′))

Hom(ext(F0,p),ext(F0,q))

��

(10)

commutes. Here ext(F0, r) denotes the canonical proof that F0(c) =Ob D F0(c′) for
r : c =Ob C c

′. (Because of the proof-irrelevance of Hom, it does not matter what this
proof object actually is the diagram above.)

For an E-functor between E-categories the condition that F0 is extensional is omit-
ted, and the coherence condition (10) is dropped.

We may construct the full image of an E-functor as an HF-category if the source
category is an HF-category.
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Theorem 4.1. Let F : C //D be an E-functor from an HF-category C to an E-category
D. Then for the HF-category S with objects Ob S =def Ob C and

S(a, b) =def D(F (a), F (b)),

and where
idS
a =def idD

F (a), ◦Sa,b,c =def ◦DF (a),F (b),F (c),

there is a functor G : C // S given by G(a) =def a and Ga,b(f) =def Fa,b(f) which is
surjective on objects. The HF-category S is a full E-subcategory of D.

Proof. It is clear that S is an E-category. We show it is an HF-category as well. For
p : a =Ob S a

′ and q : b =Ob S b
′, we need to define the transportation map

S(p, q) : S(a, b) // S(a′, b′)

From the transportation maps of C, we have C(p, r(a)) : C(a, a) // C(a′, a) and
C(r(b), q) : C(b, b) //C(b, b′) so C(p, r(a))(ida) ∈ C(a′, a) and C(r(b), q)(idb) ∈ C(b, b′).
Thus let

S(p, q)(f) = F (C(r(b), q)(idb)) ◦ f ◦ F (C(p, r(a))(ida)).

It is clear that S(p, q) is extensional. We also have S(p, q) =ext S(p′, q′) for all p, p′ :
a =S a

′ and all q, q′ : b =S b
′, since C is a proof-irrelevant family. Moreover

S(r(a), r(b))(f) = idb ◦ f ◦ ida = f.

For q : b =S b
′, q′ : b′ =S b

′′, p : a =S a
′, p′ : a′ =S a

′′,

S(p′ ◦ p, q′ ◦ q)(f) = F (C(r(b), q′ ◦ q)(idb)) ◦ f ◦ F (C(p′ ◦ p, r(a))(ida)).

By using the coherence conditions for hom-setoids we obtain

C(r(b′), q′)(idb′) ◦ C(r(b), q)(idb)
(8)
= C(r(b′), q′)(C(q, q)(idb)) ◦ C(r(b), q)(idb)

(F3)
= C(r(b′) ◦ q, q′ ◦ q)(idb) ◦ C(r(b), q)(idb)

= C(q, q′ ◦ q)(idb) ◦ C(r(b), q)(idb)
(9)
= C(r(b), q′ ◦ q)(idb ◦ idb) = C(r(b), q′ ◦ q)(idb)

Similarly,

C(p, r(a))(ida) ◦ C(p′, r(a′))(ida′)
(8)
= C(p, r(a))(ida) ◦ C(p′, r(a′))(C(p, p)(ida))

(F3)
= C(p, r(a))(ida) ◦ C(p′ ◦ p, r(a′) ◦ p)(ida)
(9)
= C(p′ ◦ p, r(a))(ida)
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Thus

S(p′ ◦ p, q′ ◦ q)(f)

= FC(r(b′), q′)(id′b)) ◦ F (C(r(b), q)(idb)) ◦
f ◦ F (C(p, r(a))(ida)) ◦ F (C(p′, r(a′))(ida′))

= S(p′, q′)(S(p, q)(f))

Hence HomS is a proof-irrelevant family over Ob S×Ob S. The equations for identity
and associativity are clearly fulfilled, since they are inherited from D. The coherence
conditions (8) and (9) follows by functoriality of F : As for (8) suppose p : a =Ob S a

′.

S(p, p)(idS
a) = F (C(r(a), p)(ida)) ◦ idD

F (a) ◦ F (C(p, r(a))(ida))

= F (C(r(a), p)(ida)) ◦ F (C(p, r(a))(ida))

= F (C(r(a), p)(ida) ◦ C(p, r(a))(ida))

= F (C(p, p)(ida)) = F (ida′) = idD
F (a′) = idS

a′

Regarding the condition (9) suppose that p : a =Ob S a
′, q : b =Ob S b

′ and r : c =Ob S c
′

and that f ∈ S(b, c) and g ∈ S(a, b),

S(q, r)(f) ◦ S(p, q)(g) = F (C(r(c), r)(idc)) ◦ f ◦ F (C(q, r(b))(idb)) ◦
F (C(r(b), q)(idb)) ◦ g ◦ F (C(p, r(a))(ida))

= F (C(r(c), r)(idc)) ◦ f ◦
F (C(q, r(b))(idb) ◦ C(r(b), q)(idb)) ◦ g ◦ F (C(p, r(a))(ida))

= F (C(r(c), r)(idc)) ◦ f ◦
F (C(q, q)(idb)) ◦ g ◦ F (C(p, r(a))(ida))

= F (C(r(c), r)(idc)) ◦ f ◦ g ◦ F (C(p, r(a))(ida))

= S(p, r)(f ◦ g).

G is evidently an E-functor surjective on objects. We check the coherence condition
(10): Suppose that p : a =Ob C a′, q : b =Ob C b′ and that f ∈ C(a, b). Write p′ =
ext(G, p) and q′ = ext(G, q).

S(p′, q′)(G(f)) = F (C(r(b), q′)(idb)) ◦Ga,b(f) ◦ F (C(p′, r(a))(ida))

= F (C(r(b), q′)(idb)) ◦ F (f) ◦ F (C(p′, r(a))(ida))

= F (C(r(b), q′)(idb) ◦ f ◦ C(p′, r(a))(ida))

= F (C(r(b), q′)(idb) ◦ C(r(a), r(b))(f) ◦ C(p′, r(a))(ida))
(9)
= F (C(r(a), q′)(idb ◦ f) ◦ C(p′, r(a))(ida))
(9)
= F (C(p′, q′)(idb ◦ f ◦ ida))

= F (C(p′, q′)(f)) = G(C(p′, q′)(f))
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Example 4.2. Let C be discrete category arising from a setoid A and let D = Setoids
be the E-category of setoids. Suppose that F is a proof-irrelevant family of setoids
indexed by A. Then F may be considered as an E-functor C // Setoids, and the full
image S is essentially C(A,F ).

Appendix: Categories in type theory

Essentially Algebraic Formulation

Similarly to the standard set-theoretic definition, we define in type theory a category
C as a triple of setoids C0, C1, C2 consisting of objects, arrows and composable ar-
rows, equipped with extensional functions id : C0

// C1, dom, cod : C1
// C0 and

cmp, fst, snd : C2
// C1 that satisfy the axioms

A1. dom(id(x)) = x,

A2. cod(id(x)) = x,

A3. dom(cmp(u)) = dom(fst(u)),

A4. cod(cmp(u)) = cod(snd(u)),

and

A5. fst(u) = fst(v), snd(u) = snd(v) =⇒ u = v,

A6. dom(f) = cod(g) =⇒ ∃u ∈ C2(snd(u) = f ∧ fst(u) = g),

A7. fst(u) = id(y) =⇒ cmp(u) = snd(u),

A8. snd(u) = id(x) =⇒ cmp(u) = fst(u),

A9. fst(w) = fst(v), snd(v) = fst(u), snd(u) = snd(z), snd(w) = cmp(u), cmp(v) =
fst(z) =⇒ cmp(w) = cmp(z).

A functor F : B //C is a triple of extensional functions Fk : Bk //Ck, k = 0, 1, 2,
such that all operations of the categories are preserved, that is

F1 ◦ id = id ◦ F0,

F0 ◦ dom = dom ◦ F1,

F0 ◦ cod = cod ◦ F1,

F1 ◦ fst = fst ◦ F2,

F1 ◦ snd = snd ◦ F2,

F1 ◦ cmp = cmp ◦ F2.
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Equivalence to the Hom Family Formulation

Let C be a category formulated in the algebraic formulation. We define an HF-category
C. The objects of C is C0. For a, b ∈ C define the setoid

HomC(a, b) = (Σf ∈ C1.dom(f) =C0 a ∧ cod(f) =C0 b,∼)

where (f, r) ∼ (f ′, r′) if and only if f =C1 f
′. For p : a =C0 a

′ and q : b =C0 b
′, define

an extensional function

Hom(p, q) : Hom(a, b) // Hom(a′, b′)

by letting
Hom(p, q)(f, r) = (f, r′),

where r′ is some proof of dom(f) = a′ ∧ cod(f) = b′ obtained from r, p and g. As
the second component r′ is irrelevant, Hom is a proof-irrelevant family of setoids on
C0 × C0.

For a ∈ C0, let ida = (id(a), r) where r is some proof that dom(id(a)) =C0 a ∧
cod(id(a)) =C0 a. This uses (A1) and (A2). For p : a =C0 a

′

Hom(p, p)(ida) ∼ Hom(p, p)(id(a), r) ∼ (id(a), r′′) ∼ (id(a′), r′) ∼ ida′

as required by (8). Define composition

◦ : Hom(b, c)× Hom(a, b) // Hom(a, c)

as follows. For (g, r) ∈ Hom(b, c) and (f, s) ∈ Hom(a, b), we have cod(f) = dom(g) = b.
By (A5) and (A6) there is a unique u ∈ C2 such that snd(u) = g and fat(u) = f .
Let h = cmp(u). By (A3) and (A4) follows then dom(h) = a and cod(h) = c. Hence
(h, r′) ∈ Hom(a, c) for some r′ (which is irrelevant). Let thus

(g, r) ◦a,b,c (f, s) =def (h, r′).

Since the second components are irrelevant (H1) – (H3) below follows easily from (A7)
– (A9).

(H1) idb ◦ f =Hom(a,b) f for f ∈ Hom(a, b),

(H2) f ◦ ida =Hom(a,b) f for f ∈ Hom(a, b),

(H3) f ◦ (g ◦h) =Hom(a,d) (f ◦g)◦h for h ∈ Hom(a, b), g ∈ Hom(b, c) and f ∈ Hom(a, b).
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The irrelevance property of the second component also entails (9).

Conversely suppose that C is an HF-category. Define an essentially algebraic cate-
gory C, by letting C0 = Ob C. Then define C1 to be the setoid consisting of triples

(a, b, f)

where f ∈ HomC(a, b). Define a relation ∼ by letting

(a, b, f) ∼ (a′, b′, f ′)⇐⇒def (∃p : a =C0 a
′)(∃q : b =C0 b

′)HomC(p, q)(f) = f ′.

This is an equivalence relation since HomC is a proof-irrelevant family. Define dom(a, b, f) =
a and cod(a, b, f) = b.

The setoid C2 of composable maps consists of triples

(f ,g, p)

where f ∈ C1, g ∈ C1 and p : cod(f) =C0 dom(g). Define

(f ,g, p) =C2 (f ′,g′, p′)⇐⇒def f =C1 f
′ ∧ g =C1 g

′.

Define cmp : C2
// C1 as follows

cmp((a, b, f), (c, d, g), p) = (a, d, g ◦ F (p) ◦ f).

Here F (p) = Hom(r(a), p)(ida), where r(a) : a =C0 a. The conditions (A1) – (A9) may
be verified straightforwardly using identities such as

Hom(p, q)(ida) ◦ g = Hom(q−1 ◦ p, r(b))(g),

f ◦ Hom(p, q)(ida) = Hom(p ◦ q−1, r(b))(f).

and the fact that Hom is a proof irrelevant family.
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