On dependently typed first-order logic

Erik Palmgren
Stockholm University
www.math.su.se

Logic Seminar
Stockholm, September 18, 2013

1/50

Introduction

A dependently typed (or sorted) system of first-order logic, FOLDS,
was introduced and studied by Makkai (1995, 1998, 2013).

The purpose of FOLDS is to provide a natural logical system for
formalizing (higher) category theory.

FOLDS can be considered as a so-called logic enriched type theory
(Maietti-Sambin 2005, Gambino-Aczel 2006) where the underlying
type theory is very rudimentary.

We present a system like FOLDS which is based on Cartmell’s
(1986) generalized algebraic theories but without equality of types.
Unlike Makkai we allow function symbols.

2/50

Single-sorted vs multi-sorted first-order logic

The standard classical (or intutionistic) first-order logic assumes

one non-empty (inhabited) domain of quantification. The latter

restriction is due to the formulation of the existence introduction
rule

F Tt
£

Fax.T (1)
(we may let t = x)
In many-sorted logics, especially those used in the categorical logic,
one specifies the possible free variables of involved formulas

X1 1AL X D A A E Y[t/X]
X1 AL Xn A A E (X A

€l

if FV(t) C {x1,...,xn} and t has sort A. The derivation (1) is not
possible for n = 0.

3/50

Many-sorted logic can be formulated (sequent-style) using
judgements of the form

MAEF¢

where
N=x1:A1,....xp: Ay

is a sequence of variables x; with associated sort A;, and where
A=¢1,...,0m

is a sequence of formulas assumed to be true, and with their free
variables listed in T, the formula proved true ¢ has also its free
variables in T.

4 /50

In standard many-sorted logic the sorts A; belong to a given set of
sorts and the order of the variables x; does not matter
X1 : AL Xn DA AE

We may generalize this situation by letting the sort or types be
given by a type theory. This is the idea of logic enriched type
theory (Gambino and Aczel 2006).

We introduce three new judgement forms

A type — Alis a type
a:A — a is an element (term) of type A
¢ formula

5/50

. and their hypothetical versions

x1: AL, ..., Xxp Ap = Atype

x1 AL, Xt Ap=—a: A

x1: A1, ..., X, . Ay = ¢ formula

6/50

We will consider a type theory in which it is possible to introduce a
finite number of dependent types and dependent function.

A representative example is the language of a category (cf. Cartmell
1986, Makkai 1995).

1. () = Ob type

2. x: 0b,y : Ob = Hom(x, y) type

3. x:0b =1, : Hom(x, x)

4. x:0b,y:0b,z:0b,g:Hom(y,z),f: Hom(x,y) =

g ox,y.- f : Hom(x, z)

This is will be considered as a dependent signature declaring the
constants Ob, Hom, 1 and o.
A complication is that we have to know that constants are declared

in legal contexts, e.g. in (4) above we have to know its context is
legal relative to (1) — (3).

7/50

Example 1: E-category
Signature as above but add an equality predicate only on
Hom-types

x,y 1 Ob,f,g : Hom(x,y) = f =, g formula.
Axioms in DTFOL /type theory

x,y : Ob, f : Hom(x,y); - f =, f.
X,y - Obv fag : Hom(X7y); f =xy & = & =xy -
X,y,Z . Ob7 fagah : Hom(X7.y); f =X,y 8,8 =X,y h l_ f =X,y h
x,y,z:0b,f h:Hom(x,y), g,k : Hom(y, z);
f =x,y h,g =y,z k 8 Ox,y,z f =x,z k Ox,y,z h

x,y 1 Ob, f : Hom(x,y);F 1,05, f =, f.
x,y :Ob, f : Hom(x,y);F f oxxy 1x =« f.
x,y,z,w: Ob, f:Hom(x,y),g : Hom(y, z), h : Hom(z, w);

= h Ox,z,w (g Ox,y,z f) =x,w (h Oy z,w g) Ox,y,w f.

8/50

Example 2: E-bicategory
Signature for a bicategory (objects, arrows, transformations):
1. () = O type
x,y : O = A(x,y) type
x: 0= 1,:A(x,x)
x,y,2:0,8 1 A(y,z),f : A(x,y) = g oxy,- f 1 A(x, 2).
x,y:0,f,g:A(x,y) = T(x,y,f,g) type
x,y: O, f:Alx,y) = ir : T(x,y,f,f) type
x,y:0,f,g,h:Alx,y),B:T(x,y,g,h),a:T(x,y,f,g) =
B sy fehc: T(x,y, f h)
8. x,y,z:0,f,h:A(x,y), g,k :Aly,z),8:T(g, k), :
T(f,h) = B ey zfhgk: T(X,2,8 0%y, koxy,h)
9. x,y,z,w:0,f : A(x,y),g : Aly,z),h: A(z,w) =
Ax,y,z,w,f,g,h - T(X, w, (h Oy zw g) Ox,y,w f, h Ox,z,w (g Ox,y,z f))
10. x,y : O, f : A(x,y) = lf : T(x,y,1y 0xy, f,f)
11 x,y : O, f : A(x,y) = rr : T(x,y, f oxxy 1x, f)
Further we add only congruence relations on the transformations:

Nooak~wn

x,y:0,f, g A(x,y),0,8:T(x,y,f,g) = a =4 rg B formula.

9/50

Depently typed first-order logic: Pre-syntax

We assume that F and T are two disjoint sets of symbols equipped
with arities 0,1,2,.. ..

Pre-terms: formed using F as function symbols and variables in the

usual way

Pre-types: S(ti1,...,t,) where S € T is a type symbol, and
ti,...,ty are pre-terms, n = ar(S)

Pre-contexts: (x1 : A1,...,Xn : An), where xi, ..., x, are distinct

variables, A1, ..., A, are pre-types and FV(A;) C {xq,...,Xj—1}.

10/50

Pre-syntax (cont.)

Pre-declarations: Either
of types:
X1 1AL o Xn D Ap = S(x1, ..., Xxn) type
encoded as a pair (I',S) where I = x1 : A1,...,x, : A, pre-context,
SeTandar(S) =1l
or of functions:
x1: AL xn t Ap = f(x1,...,xn) s U

endcoded as a triple (I', f, U) where I = x3 : A1,...,xp : Ap
pre-context, U pre-type, FV(U) C FV(I), ar(f) = |T|.

Pre-signature: a finite sequence [Dy, ..., D,] of pre-declarations.

11/50

Legal syntax — syntactic judgements

Contexts, types, elements and signatures are generated by
simultaneous induction given by rules (R1) — (R9)

> signature
() context [X]

(R1)

Y signature [context [X] = Atype[X] x € Var\FV(I)
I, x : A context [X]

(R2)

Y signature xj : Aj...,x,: Ap context [X]
x1: AL, Xn A = A; type [Z]

(R3)

Y sig. xp:A1..., %Xy Apcont. [E] x1:Ar..., X Ay = A type [X]

X1 1AL Xnt Ap = x;i D A [Z]

12/50

To formulate the next two rules we introduce the notion of context

map. Let Aand ' =xy : Aq,...,x, : A, be two contexts relative
to . A sequence (ai,...,a,) of preterms is called a context map
A—Tif

A = A; type [X]

A — ai . A1 [Z]

A = Az[a1/x1] type [X]
A — a . Az[al/xl] [Z]

A= Aplai...,an-1/x1,...,%n—1] type [Z]
A= a,:Apfa1...,an-1/x1,...,xn—1] [X]

We write (a1, ...,an) : A—T [X] for the conjunction of these
judgements.

13/50

The sequence (a1, ..., a,) can be plugged into correct function and
type declarations according to the next rules.

(a1,.-.,an) : A—=(x1: A1,...,xn: Ap) [£] X signature
((x1:A1...,xn: Ap),S) decl. in X A context [X]

R5
A = S(ai,...,an) type [X] (R5)
(a1, an) : A—=(x1: A1,...,xn : Apn) [Z]
((x1:A1...,xp: Ap), f,U) decl. in X ¥ signature
A = Ula1,...,an/x1,...,%n] type [Z] A context [X] (R6)

A= f(a1,...,an): Ula1,...,an/x1,...,xn] [¥]

14 /50

The final three rules are concerned with the formation of correct
signatures, i.e. sequences of function and type declarations.

(R7)

[] signature

Y sig. lceon.[X¥] S€T Snotdecl inX [I|=ar(S)
[, (T, S)] sig.

(R8)

Y sig. lcon. [X] == Utype[X] f € Fnotdecl. inX || =ar(f
[x, (T, f, U)] sig.

15 /50

The necessary substitution and weakening lemmas can be proved by
induction on the derivations:

Substitution lemma Let (s1,...,s,) : © —T be a context map,
where I = x1 : A1,...,Xn : An.
(a) If T = B type, then © = B|s1,...,sn/x1, ..., Xn] type.

(b) If ' = b: B, then
© = b[s1,...,Sn/X1,---,Xn] : B[s1,--.,Sn/X1, ..., Xn] type

Weakening lemma Suppose that => B type. Let y be a
variable not in FV(I', ©).

(a) If T',© context, then ',y : B, © context

(b) If I,© = Atype, then [,y : B,© = A type

(c) f{r,©=a:A thenlT,y: BO = a: A

16 /50

First-order formulas with dependent sorts

Similar to ordinary many-sorted first-order logic.
Predicate symbols are given by a set P of symbols with an arity.

Given a term signature ¥, we may to any
x1: A1, ..., X 0 Ay context [X]

assign a new n-ary predicate symbol R € P. This gives a predicate
declaration

(1t Ar, X0 2 An), R).

Thus a signature for first-order logic with dependent sorts consists
of a term signature ¥ and a sequence of predicate declarations 1 =
[E1,..., Em], where all predicates declared are distinct. Given this

we can form the set of formulas in each variable context I' over
[=; N]:

17 /50

» For each predicate declaration (A, R) in I1, we assume the rule

I context [X] (a1,...,an) : T—A
= R(ai1,...,an) formula [X; M]

I context [X] I context [X]
= 1 formula [X;] = T formula [X;]

= ¢ formula I = ¢ formula [X;]
= (¢ A1) formula [X;]

= ¢ formula [= ¢ formula [¥;]
= (¢ V) formula [X; M]

= ¢ formula [= v formula [X;]
= (¢ —) formula [X;]

M x:A= ¢ formula [X;] Mx:A= ¢ formula [X;]
= (Vx: A)¢ formula [X;] = (3x : A)¢ formula [X;]

18/50

Logic
Assumption rule:

M= ¢1,..., ¢, formulas
r;gbl?"'aqu'_gbi

Propositional rules:

[= ¢ formula AR L (LE) I = A formulas (T

FAFg FAFT
[AFG TAFY LA oA LA GAY
rareng M TrRare VB TRREg (MR

[aoky 0 TAFe—Y LARG
NrETAad FAFD

—E)

19/50

M AF¢ = formula M ARy = ¢ formula

(Vh)

(Vh)

NMAFoVY AFoVY

AFOVY A GFE TAQYES
NG

(VE)

20/50

Quantifier rules: (usual variable conditions in blue)

Mx:AAFY F:>Aformulas()
HAF(Vx: Ay

HAFMWx:A)Y T=t:A
M AR Y[t/x]

(VE)

N=t:A Ix:A=1formula [AF¢[t/x] 3
MAE(3x: Ay (30)

AR @x:Ay Tx:AANYEO = A ¢ formulas oy
N (3E)

We assume capture free substitution and a-equivalence, so that
substitutions into quantified formulas are always possible.

21/50

Partial functions - in classical logic

In classical (non-dependent, many-sorted,) logic a functional
relation, can be extended to a function.
Suppose

x=pu,y=pz,¢(x,y)F ¢(u,z)

and
¢(X7y)a¢(xa Z) H y=BZ

Suppose * is some constant in B. We can introduce a total
function symbol f : A — B with defining axiom

f(x)=py < d¢(x,y)Vy =g xA—-(Jy: B)o(x,y).

In intuitionistic logic this is not possible, unless the domain of
definition of the relation ¢ is decidable.

22/50

Partial functions - in dependently typed FOL
Suppose again
X =AUy =B Z7¢(Xay) + ¢(U,Z)

and
¢(X7y)7¢(xa Z) - y=B2Z
Introduce a type D for the domain of definition of ¢

x: A= D(x) type
and an axiom
x: Ay Bid(x,y) - (Ip: D(x))T
and a dependent function symbol f
x:Ap:D(x)= f(x,p): B
with axiom
x: Ap: D(x): - 8(x, F(x, p))

This works out as it should ...
23 /50

Local propositions-as-types

Consider a fixed signature. Suppose ' = x1 : A1, ..., X : Ap is a
context and that ¢ is a formula in that context.

Add a new dependent type to the signature
= F(x1,...,%n) type
Then add two axioms over the extended signature
Mp: F(xi,...,xn);E ¢

Mok Gp: Flxa,. .., xn))T

Truth of ¢(= ¢(x1,...,xn)) has thus been encoded as
inhabitedness of F(xi, ..., Xp).

24 /50

Standard semantics in Martin-Lof type theory

A signature X, I is interpreted by a sequence of constant
declarations. These will be postulates of type theory.

The standard semantics of a judgement in dependently typed
first-order logic

X1 AL s Xn DA 1, O E Y
will be the type-theoretic judgement
x1: AL .. Xp D Ay d1 true, .. L Oy true = 9 true
which can be paraphrased as the existence of a term g such that
X1 AL ey Xn D ARPL I DL, Pm O = q 5 .

This is interpretation is straightforward in Coq and Agda and
should be easily supported by these proof assistants.

25 /50

As we consider the standard semantics to be M-L type theory
(MLTT) the notion of function will be the (intensional) functions or
operations of that theory. The axiom of choice is valid in MLTT
with this notion of function, since it does not require the functions
to respect prescribed equivalence relations. In E-categories we may
for example have functions that chose pullbacks and projections
from the arrow data.

pl(X,y,Z,f,g)

P(X’ Y’ Z? f’ g) X

p2(x,y,z,f.g) f

Y z Z

But it is not necessary that these functions respect equalities.
Functions that respect equalities will be called extensional functions.

26 /50

CETCS - constructive version of Lawvere's ETCS

The Elementary Theory of the Category of Sets (ETCS) is a
classical first-order axiomatization of the category of sets and
function (Lawvere 1963). The set-theoretic constructions possible
are basically those of Zermelo's set theory Z. In modern categorical
terms ETCS is a well-pointed boolean topos with the axiom of
choice. S. MacLane has argued (not quite successfully) such
theories are enough for mathematical practice.

Unlike set theory its theorems are invariant under set-isomorphism

¢(A) and A= B implies ¢(B) (A, B are sets)

CETCS is a constructive version of ETCS suitable for formalizing
elementary parts of Bishop's constructive mathematics (P. 2012).

27 /50

CETCS

Signature: to L, We add declarations for terminal object and
pullbacks

1. () = 1:0b

2. x,y,z:0b,f : Hom(x, z),g : Hom(y,z) = P(x,y,z,f,g) :
Ob

3. -"—= Pl(X,Ya Z, fag) : HOHl(P(X,y,Z, f,g),X)
4, —"'— = p2(X7)/aZa fag) : Hom(P(X7y’Z’ f,g),_)/)

and similarly for initial object and pushouts. Further we can add
the TM-construction

5. x,y,z:0b,f : Hom(x,y), g : Hom(z,x) = MN(x,y,z,f,g) :
Ob

6. —"— = m(x,y,z,f,g): Hom(N(x,y,z,f,g),y)

7. —"— = ev(x,y,z,f,g8):
Hom(P(x,N(x,y,z,f,g),y,f,7(x,y,2,f,g)), z)

28 /50

That the object 1 is terminal is formalized as

X :0b,f,g:Hom(X,1);Ff=x1g (2)
X : Ob; - (3f : Hom(X,1))T

That pullbacks exists are given by (dropping some subscripts and
derivable arguments)

X,Y,Z:0b,f:Hom(X,Z),g:Hom(Y,Z);F
fopl(f,g) :gop2(f,g)
X, Y, Z,W :0b,f:Hom(X,Z),g:Hom(Y,Z),h:Hom(W,X), k : Hor
foh=gokt
(3t : Hom(W,P(f, g)))
p1(f,g) ot =wx hApa(f,g)ot =k
X, Y, Z,W:0b,f:Hom(X,Z),g: Hom(Y,Z),t,s: Hom(w,P(f,g)))
pi(f.g)ot=pi(f,g)os,
p2(f,g)ot =pao(f,g)oskt=s

(3)

29 /50

A morphism x : 1 — X is called an element of X. We write this as
x € X. For x,x" € X we write x =1 x x’ as x =x x’. A morphism
f: X —=Y is called surjective if for every y € Y, there is x € X
such that f o x =y y. The following axiom states that 1 is a strong
generator of the category:

(G) Every surjective mono X — Y is an isomorphism.

We consider as in (P. 2012) a sequence of maps

a1 P—=Xi,...,a1 : P—= X, that are jointly monic as a relation

between Xi,..., X, and for elements x; € X1,...,x, € X, we write
(Xl,...,Xn)E(Oél,...,an)

if there is p € P with aj o p =x, x1,...,an0 p =x, xn. A relation

a1 P—=X{,an : P—= X5 is called a partial function from Xy to
Xs if o is mono.

30/50

Existence of dependent products I is formulated as follows

For any mappings Y —£- X —F~ | we have a commutative diagram

Y & P(f7 T((f’g)) L> n(f7g)
p2 n(f.g) (4)

X - /

where for any for any element i € | and any partial function
1 =qef (£ : R—= X, v : R—Y) satisfying (a) and (b):
(a) forall x e X, y €Y, (x,y) et implies gy =x x and fx = i,
(b) if fx = i, then there is y € Y with (x,y) e
there is a unique s € 1(f, g) s.t. ©(f,g) os =, i and for all x € X,
yey,

(s,x,y)ea <= (x,y) €. (5)

Here o =gef (p1, P2, ev(f, 8)).

31/50

Further axioms include: Natural numbers object (for recursion and
induction), non-triviality of binary sums.
and optionally a presentation axiom with new constants

8. x: Ob = Pre(x) : Ob

9. x : Ob = pre, : Hom(Pre(x), x)

(PA) For every object x, Pre(x) is projective and pre, : Pre(x) — x
is surjective.

This says that every object is a quotient of an object on which the
axiom of choice is valid.

32/50

Axiomatizing the category of small categories

An early proposal:

F.W. Lawvere: The category of categories as a foundation for
mathematics, In: La Jolla conference on categorical algebra,
Springer-Verlag, 1966, pp. 1-20.

Is there a constructive version of this theory ?
A start:

O.Wilander: An E-bicategory of E-categories exemplifying a
type-theoretic approach to bicategories. In: O.Wilander, On
constructive sets and partial structures. PhD Thesis, Uppsala
University 2011.

Project: carry out such a axiomatization using dependently typed
FOL, with E-categories in type theory rather than categories in sets
as intended model.

33/50

General semantics of dependently typed FOL

The type system we introduced may be interpreted by a Category
with Attributes. This is a category £ (contexts and context maps)
with a contravariant functor Ty : £°P — Set (the possible types in
a context and the action on them by substitution). There is
moreover an operation . that extends contexts ' € Ob(E) by a type
B € Ty(I'): I.B € Ob(&). The extended context has a projection
down to the orginal context

Pr,s : rB—1T

The logic is then interpreted using another contravariant functor
£°P — Heyting similarly to a hyper doctrine or tripos.

34 /50

In detail:

» A category with attributes £ consists of a category with
terminal object, a functor Ty : £°P — Sets, for each
I € Ob(&) and each B € Ty(I') an object I'.B and a
morphism in £
pr.s: B—TI

and for each o : A —T and morphism
aar.e(c) : A-(Ty(o)(B)) —=T.B such that

da,r,s(o)

A - (Ty(o)(B)) r-B
PA,Ty(0)(B) pr.B
A r

is a pullback square in £.

35 /50

The following functoriality conditions should hold:
For A=T and o = 1r

arre(lr) =1rs:
Forr:©@—A, c: A—T

do,r,8(c07) =aar,8(0) o de A Ty(s)B)(T)

(and consequently the corresponding domains and codomains
should be equal).

36 /50

The logical part :

» A functor P : £°° — Heyting into the category of
Heyting-algebras with maps preserving all propositional logic
operations (A, V, —,T,L1)

» Forany ' € Ob(€) and S € Ty(I') monotone operations

Vrs,3rs: P(r.S)—P(I)
such that for Q € P(I'), R € P(T.S),
> Q<Vrs(R) < P(prs)(Q) <R

» 3r.s(R) < Q <= R < P(pr.s)(Q).

37 /50

> (Beck-Chevalley) For the pullback square

da,r,s(o)

A.S{c} r.s

PA,S{c} Pr,s (6)

A r
we have for R € P(T.S),

> P(0)(Vr,s(R)) = Yasio3(Plaar.s)(o)(R)).

> P(0)(3Fr.s(R)) = 3a,5(c3(P(gar.s)(0)(R)).

38 /50

The Lindenbaum-Tarski model

We indicate how to construct a universal Heyting-algebra model.

Theorem. The contexts and context maps for a fixed signature
form a category with attributes.

Proof. Let X be a fixed signature. Let I = x3 : A1,...,x,: A, be
a context with respect to the signature. By rules (R3) and (R3) we

have forall i=1,...,n
= A, type
and
N— x; : A;
Now trivially, A; = Aj[x1,...,Xi—1/x1,...,Xi—1] so
Ir =gef (X1, %n) : [—T

is a context map. This will be the identity.

39/50

Suppose that A=y : By,...,ym: By and
© =2z :C,...,z: C are contexts and that

o= (51,...,Sm) :—A and T:(tl,...,tk) :A—0
are context maps. The vector of terms

T OO0 =(ef (tl[sla"'usm/yL"'7.ym]7"‘7tk[517°"7Sm/y1)"'7ym])

is a context map —= ©, the composition of 7 and o.

It is straightforward to show that this gives a category where the
empty context () is terminal.

40 /50

The following square is a pullback diagram for any variable
vé FV(A), and u ¢ FV(IN):

(517"'7Sn7v)

Ayvi:S[si, ... Sn/X1y. . Xn] MNu:S

u
(yl’“‘ﬁym) ‘(xl,...,x,,)
r

A

(517---75")

41/50

Assume that the variables form a set V with decidable equality, and
that there is a function fresh such that for any list of variables
X1y ooy Xn,

fresh(xi, ..., xn) € V\ {x1,..., Xn}.
For a context [= xy : A1,...,x, : A, write
fresh(l") = fresh(x, ..., xn).
Then this becomes the required pullback diagram of the CwA:

(s1,---,5n,fresh(I"))
SR A AL

A, fresh(A) : S[s1,...,Sn/X1, ., Xn] I, fresh(A): S

(y1,-,Ym) (X1,++,Xn)

A r

(slw'-vsn)

42 /50

Let Cs be the category of contexts and context maps relative to a
signature . We define a functor Ty : Cg¥ — Set which assigns
types to contexts

Ty(') = {S € pretype : [= S type}
and for a context map o : A—=T, let
Ty(o)(S) = S[o/T].

Here

Slo/T] = S[s1,---ysn/X1, .., Xn]

43 /50

Let S = [X,] be a fixed signature.

Theorem. Let I' be a context in the signature. Then the set of
formulas in the context

PN ={¢:T = ¢}
is a Heyting pre-algebra ordered (<) by derivability

¢ < =qer ;0.

44 /50

Substitution is an operation that preserves order and the
propositional connectives.
For a context map f : A—=T define P(f) : P(I')— P(A) by

P(f)(0) = olf/T]

Theorem. For a context map o : A—T, P(o) is a morphism of
pre-Heyting algebras, i.e. it preserves the order and the operations
A, V, =, T and L. Moreover this assignment is pseudo-functorial
in the sense that for another context map 7: © — A

P(ro0)(¢) = P(1)(P(0)(#))

and
P(1r)(¢) = ¢.
Here ¢ = 1 means ¢ < 1 and ¢ < ¢.

45 /50

Suppose I context and ' = S : type. We have the projection
context map pr,s;[.S—T. Define Vr s,3r s : P(I.A)—P(I') by

Vrs(¢) = (Vfr(T) - $)(¢)

and

Ir.s(¢) = Bfr(M) : 5)().

Theorem. Suppose I context and [= S : type. Then
(a) Vr,s and 3r s are monotone
(b) For Q € P(T'), R € P(T.S),

Q@ <Vrs(R) < P(prs)(Q) <R
(c) For Qe P(I'), R e P(T.S),

Trs(R) < Q <= R < P(pr5)(Q).

46 / 50

Theorem. (Beck-Chevalley condition) Suppose that I is a context
and S is a type in context . Let 0 : A —T be a context map.
Then for ¢ € P(T.S)

(a) P(o)(Vr,s(#)) = Vary(o)s)(Plaars(o)(¢)))

(b) P(e)(3r.s(¢)) = 3a,1y(0)5)(Plaar.s(o)(¢)))

47 /50

References

N. Gambino and P. Aczel. The generalized type-theoretic
interpretation of constructive set theory. Journal of Symbolic Logic
71(2006), 67 — 103.

J. Cartmell. Generalized algebraic theories and contextual
categories. Annals of Pure and Applied Logic, 32(1986), 209 — 243.

T. Coquand, P. Dybjer, E. Palmgren and A. Setzer. Type-theoretic
foundation of constructive mathematics. Notes distributed at
TYPES Summer School, Goéteborg, August 2005.

P.T. Johnstone. Sketches of an Elephant: A Topos Theory
Compendium. Vol 1 and 2. Oxford University Press 2002.

M. Hofmann. Syntax and semantics of dependent types. In:
Semantics and Logics of Computation. Cambridge University Press
1997.

48 /50

References (cont.)

M.E. Maietti and G. Sambin. Towards a minimalist foundation for
constructive mathematics. In: From Sets and Types to Topology
and Analysis (eds. L. Crosilla and P. Schuster) Oxford University
Press 2005, 91 — 114.

M.E. Maietti. Modular correspondence between dependent type
theories and categories including pretopoi and topoi. Mathematical
Structures in Computer Science 15(2005), 1089 —1149.

M. Makkai. First-order logic with dependent sorts, with
applications to category theory. Preprint 1995. Available from the
author’'s webpages.

M. Makkai. Towards a categorical foundation of mathematics. In:
Logic Colloquium '95 (eds. J.A. Makowsky and E.V. Ravve)
Lecture Notes in Logic, vol. 11, Association for Symbolic Logic
1998, 153 - 190.

M. Makkai. The theory of abstract sets based on first-order logic
with depend types. Preprint 2013. Available from the author's
webpages. 49 /50

References (cont.)

P. Martin-L6f (1984). Intuitionistic Type Theory. Notes by
Giovanni Sambin of a series of lectures given in Padua, June 1980.
Bibliopolis.

E. Palmgren and S. Vickers. Partial Horn logic and cartesian
categories. Annals of Pure and Applied Logic, 145(2007), 314 —
355.

E. Palmgren. Constructivist and structuralist foundations: Bishop's
and Lawvere's theories of sets. Annals of Pure and Applied Logic,
163(2012), 1384 — 1399.

O. Wilander. On Constructive Sets and Partial Structures. PhD
dissertation in Mathematics. Uppsala University 2011.

50 /50

