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Background

A dependently typed (or sorted) system of first-order logic, FOLDS,
was introduced and studied by Makkai (1995, 1998, 2013).

The purpose of FOLDS is to provide a natural logical system for
formalizing (higher) category theory.

FOLDS can also be considered as a so-called logic enriched type
theory (Maietti-Sambin 2005, Gambino-Aczel 2006) where the
underlying type theory is very rudimentary.

Belo (2007, 2008) and Aczel (2004) introduced similar systems
which are based on Cartmell’s (1986) generalized algebraic theories.
Unlike FOLDS they allow function symbols, and may also allow
equality, even between sorts.
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Lawvere signatures and theories

Lawvere’s approach to first-order signatures and theories appears is
here extended to dependently sorted first-order logic. Earlier
approaches applies only to restricted sort systems (Makkai, no
functions) or to limited semantical domains (Belo 2007). The use
of categories with families achieves the full generality.

Here we shall present the pertaining parts of the paper P. (2016)
Categories with families, FOLDS and logic enriched type theory
(arXiv:1605.01586).
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Dependent signatures

Example: The signature ΣCat for a category is given by the
sequence of declarations below

Ob type ()
X → Y type (X : Ob,Y : Ob)
1X : X → X (X : Ob)
g ◦ f : X → Z (X : Ob,Y : Ob,Z : Ob, g : Y → Z , f : X → Y )

How do we assign semantical objects to the components of the
signature?

For standard many-sorted (non-dependent) signatures we can do
this individually for each symbol and type/sort. A category with
finite products can serve as a semantic domain.
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Equality on dependent types and families of setoids

No built in equality assumed in DFOL. Let A be a type with an
equivalence relation =A. For a dependent type B over A we may
introduce an equivalence relation =B,x (write =B(x)) as follows

u =B(x) v formula (x : A, u, v : B(x))
u =B(x) u (x : A, u : B(x))
u =B(x) v =⇒ v =B(x) u (x : A, u, v : B(x))
u =B(x) v ∧ v =B(x) w =⇒ u =B(x) w (x : A, u, v ,w : B(x))

How do elements of B(x) and B(y) compare if x =A y is true? We
associate =A with a proposition-type EA as follows

EA(x , y) type (x , y : A)
x =A y (x , y : A, p : EA(x , y))
x =A y =⇒ (∃p : EA(x , y))> (x , y : A).
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Next introduce transport functions trp to be able to relate elements
of B(x) and B(y) when x =A y

trp(u) : B(y) (x , y : A, p : EA(x , y), u : B(x))
u =B(x) v ⇒ trp(u) =B(y) trp(v) (x , y : A, p : EA(x , y), u, v : B(x))
trp(u) =B(y) trq(u) (x , y : A, p, q : EA(x , y), u : B(x))
trp(u) =B(x) u (x : A, p : EA(x , x), u : B(x))
trq(trp(u)) =B(z) trr (u) (x , y , z : A, q : EA(y , z), p : EA(x , y),

r : EA(x , z), u : B(x))

Note that second equation says that the transport function is
independent of the particular value of the proof object in EA(x , y).
This makes the family B over A proof-irrelevant.
These definitions can be extended to arbitrary contexts of setoids,
see (Maietti 2009).
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Categories with families

— a standard semantical structure for dependent types, which may
be thought of a dependent version of finite product categories (cf
Lawvere theories).
A category with families (cwf) consists of the following data
(a) A category C with a terminal object >.
(b) A functor Ty : Cop // Set. Write: A{f } = Ty(f )(A).
(c) For each A ∈ Ty(Γ), an object Γ.A in C and a morphism

p(A) = pΓ(A) : Γ.A // Γ.
(d) For each A ∈ Ty(Γ), there is a set Tm(Γ,A) — thought of as

the terms of type A. It should be such that for f : ∆ // Γ
there is a function Tm(f ) : Tm(Γ,A)→ Tm(∆,A{f }), where
we write a{f } for Tm(f )(a), satisfying the following
(i) a{1Γ} = a for a ∈ Tm(Γ,A)
(ii) a{f ◦ g} = a{f }{g} for a ∈ Tm(Γ,A)
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(e) For each A ∈ Ty(∆) there is an element
vA ∈ Tm(∆.A,A{p(A)}).

(f) For any morphism f : Γ //∆ and a ∈ Tm(Γ,A{f }), there is

〈f , a〉A : Γ //∆.A.

This construction should satisfy
(i) p(A) ◦ 〈f , a〉A = f ,
(ii) vA{〈f , a〉A} = a,
(iii) 〈p(A) ◦ h, vA{h}〉A = h for any h : Γ //∆.A.
(iv) for any g : Θ // Γ,

〈f , a〉A ◦ g = 〈f ◦ g , a{g}〉A
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Cwf morphisms
Dybjer (1996) defines a notion of morphism between cwfs.

A (strict) cwf morphism

(C,Ty,Tm) −→ (C′,Ty′,Tm′)

is a triple (F , σ, θ) consisting of a functor F : C → C′ such that

F (>C) = >C′ (1)

and a family of functions σΓ : Ty(Γ)→ Ty′(F (Γ)) satisfying the
condition for f : ∆→ Γ, and A ∈ Ty(Γ),

Ty(∆) Ty′(F (∆)).σ∆

//

Ty(Γ)

Ty(∆)

_{f }

��

Ty(Γ) Ty′(F (Γ))
σΓ // Ty′(F (Γ))

Ty′(F (∆)).

_{F (f )}

��

(2)

commutes (that is σ : Ty // Ty′ ◦ F is a natural transformation)
and ... 9 / 36



such that
F (Γ.A) = F (Γ).σΓ(A)

and
F (pΓ(A)) = pF (Γ)(σΓ(A)) (3)

and as third component a family of functions

θΓ,A : Tm(Γ,A)→ Tm′(F (Γ), σΓ(A))

such that for f : ∆→ Γ, A ∈ Ty(Γ) the following diagram
commutes

Tm(∆,A{f }) Tm′(F (∆), σ∆(A{f })).
θ∆,A{f }

//

Tm(Γ,A)

Tm(∆,A{f })

_{f }

��

Tm(Γ,A) Tm′(F (Γ), σΓ(A))
θΓ,A // Tm′(F (Γ), σΓ(A))

Tm′(F (∆), σ∆(A{f })).

_{F (f )}

��

(4)

Moreover ...
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it is required that for A ∈ Ty(Γ),

θΓ.A,A{p(A)}(vA) = vσΓ(A) (5)

and furthermore it is required that for f : ∆ // Γ and
a ∈ Tm(∆,A{f }),

F (〈f , a〉A) = 〈F (f ), θ∆,A{f }(a)〉σΓ(A). (6)

Theorem
The cwfs and cwf morphisms form a category.
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Free cwfs from DFOL signatures
(following Belo 2007) Fix a symbol system S = ((V , (ϕ, fr)),F ,T ).
For any presignature Σ over S, let J (Σ) be the smallest set of
judgement expressions closed under the five rules below.

〈〉 context

Γ context A type (Γ)

Γ, x : A context x ∈ Fresh(Γ)

x1 : A1, . . . , xn : An context
xi : Ai (x1 : A1, . . . , xn : An)

ā : ∆ // Γ
S(ā ī ) type (∆)

(Γ, S , ī) in Σ

ā : ∆ // Γ U[ā/Γ] type (∆)

f (ā ī ) : U[ā/Γ] (∆)
(Γ, f , ī ,U) in Σ

(̄i = (1, . . . , n), n = |Γ| when no hidden variables are considered.) 12 / 36



We define following (Belo 2007) a pre-signature Σ to be a
signature if the following correctness conditions hold:

I If (Γ, S , ī) ∈ Σ, then (Γ context) ∈ J (Σ),
I If (Γ, f , ī ,U) ∈ Σ, then (U type (Γ)) ∈ J (Σ).

Apart from taking consistent unions, we have two possibilities to
extend a signature.

Lemma
Let Σ be a signature. Suppose that (Γ context) ∈ J (Σ).
(i) If S ∈ T is a type symbol not declared in Σ and ī ∈ DS(Γ),

then Σ ∪ {(Γ, S , ī)} is a signature.
(ii) Suppose that (U type (Γ)) ∈ J (Σ). If f ∈ F is a function

symbol not declared in Σ and ī ∈ DS(Γ), then
Σ ∪ {(Γ, f , ī ,U)} is a signature.
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Theorem
The contexts and context maps for a fixed signature Σ form a
category with families FΣ.

By restricting the fresh variable providers (fvps) (ϕ, fr) we get even
a contextual category:

Theorem
The contexts and context maps for a fixed signature Σ, where the
fvp is of de Bruijn type, form a contextual category with families
FΣ.

14 / 36



Models for type systems

A model of a type system over the signature Σ is a cwf morphism
(F , σ, θ) : FΣ → C into some cwf C. Such models are determined
by their values on the components of the signature. However it is
not obvious how to construct such a cwf morphism.

The extension problem is given a cwf morphism

G = (G , σ, θ) : FΣ → C,

a signature Σ′ ⊇ Σ, and some suitable data in C, find a cwf
morphism

G ′ = (G ′, σ′, θ′) : FΣ′ → C

mapping the new syntactic entities to this data and such that
G ′ ◦ E = G , where E is the canonical cwf embedding FΣ → FΣ′ .
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Fix a signature Σ and a cwf morphism G = (G , σ, θ) : FΣ → C.

Theorem
Suppose that S is a type symbol not in Σ and
(ΓS context) ∈ J (Σ), so that Σ′ = Σ ∪ {(ΓS , S)} is a signature.
For A ∈ TyC(G (ΓS)), there is a unique cwf morphism
G ′ = (G ′, σ′, θ′) : FΣ′ → C with G ′ ◦ E = G and

σ′(ΓS , S(x̄)) = A,

where x̄ = OV(ΓS).

Theorem
Suppose that f is a function symbol not in Σ, and
(Uf type (Γf )) ∈ J (Σf ) so that Σ′ = Σ ∪ {(Γf , f ,Uf )} is a
signature. For a ∈ TmC(G (Γf ), σΓf (Γf ,Uf )), there is a unique cwf
morphism G ′ = (G ′, σ′, θ′) : FΣ′ → C with G ′ ◦ E = G and

θ′(Γf ,Uf , f (x̄)) = a,

where x̄ = OV(Γf ).
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Hyperdoctrines over CwFs

A natural generalization of hyperdoctrines to dependent types:
semantics of first-order logic over a cwf is given by the following
data

I A category with families C.
I A functor Pr : Cop //Heyting into the category of Heyting

algebras (preorder formulation). For f : ∆ // Γ we write

R{f } =def Pr(f )(R).

I For any Γ ∈ Ob(C) and S ∈ Ty(Γ) monotone operations
∀S ,∃S : Pr(Γ.S) // Pr(Γ) such that

1.
Q ≤ ∀S(R)⇐⇒ Q{p(S)} ≤ R

2.
∃S(R) ≤ Q ⇐⇒ R ≤ Q{p(S)}.
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I (Beck-Chevalley) For the pullback square

∆ Γ
f

//

∆.S{f }

∆

p(S{f })

��

∆.S{f } Γ.Sf .S // Γ.S

Γ

p(S)

��

(7)

we have for R ∈ Pr(Γ.S),

∀S(R){f } = ∀S{f }(R{f .S}) ∃S(R){f } = ∃S{f }(R{f .S}).

The resulting structure H = (C,Pr, ∀, ∃) is called a first-order
hyperdoctrine over C. Write CH = C and PrH = Pr.
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Propositions-as-types interpretation into a category with
families and type constructions

Let C be a cwf. Define for Γ ∈ C,

PrC(Γ) = (Ty(Γ),≤)

where

A ≤ B ⇐⇒def Tm(Γ.A,B{p(A)}) is inhabited.

For σ : ∆ // Γ, define

PrC(f )(A) =def Ty(f )(A).

Theorem
If C is a cwf which admits the type constructions Σ,Π,+,N0 and
N1 then (C,PrC) is a cwf with first-order doctrine.
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Morphisms of hyperdoctrines
Suppose that F : C // C′ is a cwf morphism. Assume that
H = (C,Pr,∀,∃) and H′ = (C′,Pr′, ∀′, ∃′) are two hyperdoctrines
over the respective cwfs. An F -based morphism of hyperdoctrines

G : H //H′

is a natural transformation G : Pr // Pr′ ◦ F

Pr(∆) Pr′(F∆)
G∆

//

Pr(Γ)

Pr(∆)

_{f }

��

Pr(Γ) Pr′(FΓ)
GΓ // Pr′(FΓ)

Pr′(F∆)

_{Ff }

��

such that for R ∈ Pr(Γ.S),
1. GΓ(∀S(R)) = ∀′σΓ(S)(GΓ.S(R)),

2. GΓ(∃S(R)) = ∃′σΓ(S)(GΓ.S(R)).
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Dependently typed first-order logic

Here we consider versions dependently typed first-order logic based
on (Belo 2007) which generalizes the standard presentation of
many-sorted first-order logic (Johnstone 2002). The first version
DFOL uses capture avoiding substitutions and standardized
contexts, and is suitable for an easy completeness proof. The
second version DFOL* is closer to (Belo 2007) and is conservative
over DFOL.
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(F1) For each predicate declaration (∆, ī ,R) in Π, and
(ā : Γ //∆) ∈ J (Σ) we have

R(āi ) form (Γ)

(F2) For (Γ context) ∈ J (Σ),

⊥ form (Γ) > form (Γ)

(F3) For the connectives © = ∧,∨,→:

φ form (Γ) ψ form (Γ)

(φ© ψ) form (Γ)

(F4) For the quantifiers Q = ∀,∃, and for (A type (Γ)) ∈ J (Σ),

φ form (Γ, x : A)

(Qx : A)φ form (Γ)
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Capture avoiding substitution:
We define for (φ form (Γ)) ∈ Form(Σ,Π) and
(ā : ∆ // Γ) ∈ J (Σ) the capture avoiding substitution instance

φ{(∆, Γ, ā)}
by induction on formulas:

I if (φ form (Γ)) ∈ Form(Σ,Π) and φ is atomic, then

φ{(∆, Γ, ā)} = φ[ā/Γ]

(syntactic substitution).
I if (φ form (Γ)), (ψ form (Γ)) ∈ Form(Σ,Π), then

(φ© ψ){(∆, Γ, ā)} = φ{(∆, Γ, ā)}© ψ{(∆, Γ, ā)}
for © = ∧,∨,→.

I if (θ form (Γ, x : A)) ∈ Form(Σ,Π), then for Q = ∀,∃,
((Qx : A)θ){(∆, Γ, ā)} =

(Qy : A[ā/Γ])
(
θ{(〈∆, y : A[ā/Γ]〉, 〈Γ, x : A〉, (ā, y))}

)
where y = fresh(∆).
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Let T be a theory with respect to the signature (Π,Σ). Let
Thm(Π,Σ,T ) denote the smallest set of sequents containing T
and closed under the propositional and quantificational rules, and
the substitution rules below.
Propositional rules. For
(φ form (Γ)), (ψ form (Γ)), (θ form (Γ)) ∈ Form(Σ,Π)

(ref)

φ
Γ

==⇒ φ.

(cut)
φ

Γ
==⇒ θ θ

Γ
==⇒ ψ

φ
Γ

==⇒ ψ

(conj)

θ ∧ ψ Γ
==⇒ θ θ ∧ ψ Γ

==⇒ ψ

φ
Γ

==⇒ θ φ
Γ

==⇒ ψ

φ
Γ

==⇒ θ ∧ ψ φ
Γ

==⇒ >

etc ....
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Write for the canonical projection

pΓ(x : A) = (〈Γ, x : A〉, Γ,OV(Γ)). (8)

Quantificational rules. For
(φ form (Γ)), (ψ form (Γ, x : A)) ∈ Form(Σ,Π):

(univ)

φ{pΓ(x : A)} Γ,x :A
====⇒ ψ

φ
Γ

==⇒ (∀x : A)ψ

φ
Γ

==⇒ (∀x : A)ψ

φ{pΓ(x : A)} Γ,x :A
====⇒ ψ

(exis)

ψ
Γ,x :A

====⇒ φ{pΓ(x : A)}

(∃x : A)ψ
Γ

==⇒ φ

(∃x : A)ψ
Γ

==⇒ φ

ψ
Γ,x :A

====⇒ φ{pΓ(x : A)}
Substitution rule. For (φ form (Γ)), (ψ form (Γ)) ∈ Form(Σ,Π),
and (ā : ∆ // Γ) ∈ J (Σ),

(subs)
φ

Γ
==⇒ ψ

φ{(∆, Γ, ā)} ∆
==⇒ ψ{(∆, Γ, ā)}.
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Lindenbaum-Tarski algebra

We assume here that the variable system of Σ has the de Bruijn
property. We show that the Lindenbaum-Tarski algebra T over
(Σ,Π) forms a first-order hyperdoctrine over FΣ.
For Γ ∈ FΣ, define

PrΣ,Π,T (Γ) = Pr(Γ) =def {(Γ, φ) : (φ form (Γ)) ∈ Form(Σ,Π)}.

and define its order relation (≤Pr(Γ)) = (≤) as follows

(Γ, φ) ≤ (Γ, ψ) iff (φ
Γ

==⇒ ψ) ∈ Thm(Σ,Π,T )

It is clear that (Pr(Γ),≤) is a Heyting algebra. For an arrow
(∆, Γ, ā) from ∆ to Γ in FΣ, define for (Γ, φ) ∈ Pr(Γ),

Pr((∆, Γ, ā))(Γ, φ) = (∆, φ{(∆, Γ, ā)})
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Theorem
(Completeness: Universal model) The Lindenbaum-Tarski algebra
for a theory T over (Σ,Π),

HΣ,Π,T =def (FΣ,PrΣ,Π,T , ∀, ∃)

is a hyperdoctrine over FΣ. It has the universal model property, i.e.
that

(Γ, φ) ≤ (Γ, ψ) if, and only if, (φ
Γ

==⇒ ψ) ∈ Thm(Σ,Π,T ).
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Let T be a dependent first-order theory over (Σ,Π). Let H be the
hyperdoctrine HΣ,Π,T = (FΣ,PrΣ,Π,T , ∀, ∃). A dependent
first-order model of T consists of a Σ-structure given by a cwf
morphism

F : FΣ
// C

together with a hyperdoctrine D = (C,PrD, ∀′, ∃′) and an F -based
hyperdoctrine morphism

G : H //D.
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Extension by new predicates is easier:

Theorem
Let Σ be a signature on standard form and F : FΣ

// C a cwf
morphism. Suppose that Π is a predicate signature on standard
form over Σ. Let D be a hyperdoctrine based on C, and suppose
that for each R = (ΓR ,PR) ∈ Π, there is R∗ ∈ PrC(ΓR). Then
there is a unique F -based hyperdoctrine morphism
G : HΣ,Π,∅ //D with

GΓR (PR(OV(ΓR))) = R∗

for each R ∈ Π.
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Theorem
(Soundness) Let Σ be a signature on standard form and
F : FΣ

// C a cwf morphism. Suppose that Π is a predicate
signature on standard form over Σ. Let D be a hyperdoctrine based
on C. Suppose that G : HΣ,Π,∅ //D is an F -based hyperdoctrine
morphism. Let T be a theory over Σ,Π and assume that for every
sequent (φ

Γ
==⇒ ψ) ∈ T,

GΓ(Γ, φ) ≤ GΓ(Γ, ψ).

Then G : HΣ,Π,T //D is also model of T .

The standard formulation of soundness follows since the theorems
of T are automatically true in HΣ,Π,T , so by they will be true in D.
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Variable free and variable full formulations of DFOL
Let V be an infinite discrete set. A fresh variable provider (fvp) for
V is a pair of functions (ϕ, fr) which to each finite subset X ⊆ V
(’already used variables’) assigns an inhabited subset

ϕ(X ) ⊆ V \ X ,

and an element
fr(X ) ∈ ϕ(X ).

Example 1: Variable full/unrestricted.

ϕ∞({x1, . . . , xn}) = {y ∈ V : ¬y = xi for all i = 1, . . . , n}, (9)

and fr∞({x1, . . . , xn}) selects some element in the set.

Example 2: Variable free/de Bruijn style. Let V = N+,
fr1({x1, . . . , xn}) = max{1, x1 + 1, . . . , xn + 1},

ϕ1({x1, . . . , xn}) = {fr1({x1, . . . , xn})}
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DFOL* — formulation with α-conversion
Syntactic substitution rule. For
(φ form (Γ)), (ψ form (Γ)) ∈ Form∗(Σ,Π), and any
(ā : ∆ // Γ) ∈ J (Σ)

(sub*)
φ

Γ
==⇒ ψ

φ[ā/Γ]
∆

==⇒ ψ[ā/Γ].

Quantificational rules. For
(φ form (Γ)), (ψ form (Γ, x : A)) ∈ Form∗(Σ,Π):

(univ*)

φ
Γ,x :A

====⇒ ψ

φ
Γ

==⇒ (∀x : A)ψ

φ
Γ

==⇒ (∀x : A)ψ

φ
Γ,x :A

====⇒ ψ

(exis*)

ψ
Γ,x :A

====⇒ φ

(∃x : A)ψ
Γ

==⇒ φ

(∃x : A)ψ
Γ

==⇒ φ

ψ
Γ,x :A

====⇒ φ
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DFOL vs DFOL*

Let (Σ,Π) be a signature with the de Bruijn property, and let
Σ(∞) be Σ but with unrestricted fvp.

Theorem
Let T be a theory on standard form over (Σ,Π). If
(φ

Γ
==⇒ ψ) ∈ Thm(Σ,Π,T ), then (φ

Γ
==⇒ ψ) ∈ Thm∗(Σ(∞),Π,T ).

Theorem
Let T be a theory over (Σ,Π). If (φ

Γ
==⇒ ψ) ∈ Thm∗(Σ(∞),Π,T ),

then (φσ
Γσ

===⇒ ψσ) ∈ Thm(Σ,Π,T σ), where σ = σΣ.
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