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Overview of this talk

(I) General goal and some obstacles
(II) Categories with families - some variants
(III) Formalizing models of type theory in type theory
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I. General goal and some obstacles
A longstanding goal: A constructive model theory of depedent type
theory, more specifically Martin-Löf style type theories (MLTT).

I usable model-theoretic methods for obtaining effective results
about theories and their relations, or to interpret richer type
theories constructively.

I implement syntax and models in type theory, to be able to
formally check correctness, facilitate reasoning and extract
algorithms.

Obstacles:
I usual constructivity or predicativity issues.
I MLTT is a priori not as flexible as set theory as a meta-theory,

and introduces coherence problems in the sense of category
theory (Dybjer 1995). (What can MLTT + Univalence Axiom
do to ameliorate this?)
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Two kinds of models

Kind (α): Interpretations of A=MLTT + Ax in B=MLTT*: one
judgements in A are translated to possible several judgements,
possibly of different kinds, in B , preferable so that definitional
equalities in A are translated to definitional equalities in B .

Kind (β): The model of A is a structure in B . In general MLTT*
has to be a stronger theory than MLTT to succeed (by Gödel’s
theorem).
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II. Categories with families

One standard framework for interpreting dependent type theory is a
category with attributes (Cartmell) or equivalently category with
families (Dybjer).

I This modeling usually takes place in set theory.
I However, it is of interest to do the modeling in type theory

itself, e.g. for the purpose of formal verification, and for
foundational reasons. (Dybjer, Internal Type Theory, 1995 and
onwards).
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Definition
1. A category with families (cwf) consists of the data
(a) A category C with a terminal object 1.

This is the called the category of contexts and substitutions.

(b) A functor Ty : Cop // Set.
This functor is intended to assign to each context Γ a set
Ty(Γ) of types in the context and tells how substitutions act
on these types. For f : B // Γ and A ∈ Ty(Γ) we write

A{f } for Ty(f )(A).

(c) For each A ∈ Ty(Γ), an object Γ.A in C and a morphism

p(A) = pΓ(A) : Γ.A // Γ in C.

This tells that each context can be extended by a type in the
context, and that there is a projection from the extended
context to the original one.
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(d) For each A ∈ Ty(Γ), there is a set Tm(Γ,A) — thought of as
the terms of type A. For f : ∆ // Γ there is a function
Tm(f ) : Tm(Γ,A)→ Tm(∆,A{f }), where we write a{f } for
Tm(f )(a). It should satisfy the following

I a{1Γ} = a for a ∈ Tm(Γ,A)
I a{f ◦ g} = a{f }{g} for a ∈ Tm(Γ,A)

(e) For each A ∈ Ty(∆) there is an element
vA = vΓ,A ∈ Tm(∆.A,A{p(A)}).

(f) For any morphism f : Γ //∆ and a ∈ Tm(Γ,A{f }), there is

〈f , a〉A : Γ //∆.A.

This construction should satisfy
I p(A) ◦ 〈f , a〉A = f ,
I vA{〈f , a〉A} = a,
I 〈p(A) ◦ h, vA{h}〉A = h for any h : Γ //∆.A.

and moreover for any g : Θ // Γ,

〈f , a〉A ◦ g = 〈f ◦ g , a{g}〉A (1)
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Cwfs with named variables (projections)

Let V be an infinite discrete set. The set V is considered as the
stock of variables. Let V d denote the set of finite sequences

x = x1, x2, . . . , xn = ((· · · (((), x1), x2), · · · ), xn)

from V , where xi 6= xj whenever i 6= j .

Definition A category with families and named variables (cwfn)
consists of the following data
(a1) [as before] A category C with a terminal object >.
(a2) A function n : Ob(C) // V d assigning each context a list of

distinct variables (intended to be the names of projections). It
is required that n(>) = (), the empty list. Define the fresh
variables for Γ:

Fr(Γ) = {x ∈ V : x is not in n(Γ)}.

8 / 51



(b) [as before] Ty is a functor Cop // Set.
(c) For each A ∈ Ty(Γ), and each x ∈ Fr(Γ), an object

Ext(Γ, x ,A) in C, — briefly written Γ.(x : A) — and a
morphism p(x : A) = pΓ(x : A) : Γ.(x : A) // Γ. It is required
that

n(Ext(Γ, x ,A)) = (n(Γ), x).

(d) [as before] For each A ∈ Ty(Γ), there is a set Tm(Γ,A). It
should be such that for f : ∆ // Γ there is a function
Tm(f ) : Tm(Γ,A)→ Tm(∆,A{f }), where we write a{f } for
Tm(f )(a). It should satisfy the following

I a{1Γ} = a for a ∈ Tm(Γ,A)
I a{f ◦ g} = a{f }{g} for a ∈ Tm(Γ,A)
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(e) For each A ∈ Ty(∆), and each x ∈ Fr(∆), there is an element

v(x :A) = v∆,(x :A) ∈ Tm(∆.(x : A),A{p(x : A)}).

(f) For any morphism f : Γ //∆, A ∈ Ty(∆), and each
x ∈ Fr(∆), and a ∈ Tm(Γ,A{f }), there is

〈f , a〉(x :A) : Γ //∆.(x : A).

We use the suggestive notation 〈f , x := a〉A for this
morphism. It should satisfy

I p(x : A) ◦ 〈f , x := a〉A = f ,
I v(x :A){〈f , x := a〉A} = a,
I 〈p(x : A) ◦ h, x := v(x :A){h}〉A = h for any h : Γ //∆.(x : A).

and moreover for any g : Θ // Γ,

〈f , x := a〉A ◦ g = 〈f ◦ g , x := a{g}〉A (2)
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We define for f : Θ // Γ, A ∈ Ty(Γ), y ∈ Fr(Θ) and x ∈ Fr(Γ), a
morphism q(f ,A, x , y) : Θ.(y : A{f }) // Γ.(x : A) by

q(f ,A, x , y) =def 〈f ◦ p(y : A{f }), x := v(y :A{f })〉A.

The following is a pullback square, satisfying well-known
functoriality conditions in the parameter f :

Θ Γ
f

//

Θ.(y : A{f })

Θ

p(y :A{f })

��

Θ.(y : A{f }) Γ.(x : A)
q(f ,A,x ,y) // Γ.(x : A)

Γ

p(x :A)

��
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Π-type construction in a cwfn

A cwfn supports Π-types if for A ∈ Ty(Γ), x ∈ Fr(Γ), and
B ∈ Ty(Γ.(x : A)) there is a type ΠΓ(x ,A,B) ∈ Ty(Γ), and
moreover for every b ∈ Tm(Γ.(x : A),B) there is an element
λΓ,A,B(x , b) ∈ Tm(Γ,ΠΓ(x ,A,B)), and furthermore for any
c ∈ Tm(Γ,ΠΓ(x ,A,B)) and any a ∈ Tm(Γ,A) there is an element
AppΓ,x ,A,B(c , a) ∈ Tm(Γ,B{〈1Γ, x := a〉A}), such that the
following equations hold for any f : Θ // Γ:

(β-conv) AppΓ,A,B(λΓ,A,B(x , b), a) = b{〈1Γ, x := a〉A},
(Π-subst) ΠΓ(x ,A,B){f } = ΠΘ(y ,A{f },B{q(f ,A, x , y)}), provided

y ∈ Fr(Θ)

(λ-subst) λΓ,A,B(x , b){f } = λΘ,A{f },B{q(f ,A,x ,y)}(y , b{q(f ,A, x , y)}),
provided y ∈ Fr(Θ)

(App-subst) AppΓ,x ,A,B(c , a){f } = AppΘ,y ,A{f },B{q(f ,A,x ,y)}(c{f }, a{f }),
provided y ∈ Fr(Θ).
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Analyzing the syntax

With the notations

Π(A, (x)B) = Π(x ,A,B)

λ((x)b) = λ(x , b)

we can rewrite the term formers as the rules

I

Γ : Ctx x : Fr(Γ) A : Ty(Γ) B : Ty(Γ.(x : A))

Π(A, (x)B) : Ty(Γ)

I
Γ : Ctx, x : Fr(Γ) A : Ty(Γ) B : Ty(Γ.(x : A)) b : Tm(Γ.(x : A),B)

λ((x)b) : Tm(Γ,Π(A, (x)B))

I Γ : Ctx, x : Fr(Γ),A : Ty(Γ),B : Ty(Γ.(x : A)), c :
Tm(Γ,Π(A, (x)B)), a : Tm(Γ,A) / App(c , a) :
Tm(Γ,B{〈1Γ, x := a〉A})
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Demonstration of resulting syntax

We drop several of the subscripts and annotations in these
examples. We also write

〈x1 := a1, x2 := a2, . . . , xn := an〉
= 〈. . . 〈〈!, x1 := a1〉, x2 := a2〉, . . . , xn := an〉.

Note that 〈〉 = ! and 〈x1 := a1〉 = 〈!, x1 := a1〉.
For a context Γ = >.x1 : A1.x2 : A2. . . . .xn : An we note that its
identity is

1Γ = 〈x1 := vx1 , x2 := vx2 , . . . , xn := vxn〉.
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Consider a simple example with a binary relation R between two
types and a function f .
Let A,B ∈ Ty(>). Then >.x : A ∈ C and p = ! : >.x : A //>.
Thus B{p} ∈ Ty(>.x : A). Form >.x : A.y : B{p} :∈ C.
Let R ∈ Ty(>.x : A.y : B{p}) and f ∈ Tm(>.x : A,B{p}). Now
1>.x :A : >.x : A //>.x : A gives

〈1>.x :A, y := f 〉 : >.x : A //>.x : A, y : B{p}

and hence
R{〈1>.x :A, y := f 〉} ∈ Ty(>.x : A).

Rewriting the identity and using f = f {1>.x :A} we get

R{〈x := vx , y := f {〈x := vx〉}〉} ∈ Ty(>.x : A).

Thus

Π(A, (x)R{〈x := vx , y := f {〈x := vx〉}〉}) ∈ Ty(>).
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Assume furthermore that

g ∈ Tm(>.x : A,R{〈x := vx , y := f {〈x := vx〉}〉}).

Rewriting the identity this becomes

g{〈x := vx〉} ∈ Tm(>.x : A,R{〈x := vx , y := f {〈x := vx〉}〉}).

Thus

λ((x)g{〈x := vx〉}) ∈ Π(A, (x)R{〈x := vx , y := f {〈x := vx〉}〉}) ∈ Ty(>),

where (λx : A)b is short for λΓ,A,B(x , b). Writing E [a1, . . . , an] for
E{〈x1 := a1, . . . , xn := an〉} and E type or term in the context
>.x1 : A1.x2 : A2. . . . .xn : An, we can express this as

λ((x)g [vx ]) ∈ Π(A, (x)R[vx , f [vx ]]) ∈ Ty(>),
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We have a twist map

〈x := vx , y := vy{p}〉 : >.y : B.x : A{p} //>.x : A.y : B{p}

Thus

R{〈x := vx , y := vy{p}〉} ∈ Ty(>.y : B.x : A{p}).

With the abbreviation principle above

R[vx , vy{p}] ∈ Ty(>.y : B.x : A{p}).

Furthermore

Π(A{p}, (x)R[vx , vy{p}]) ∈ Ty(>.y : B). (3)

This suggests that projections p should be forgotten in writing out
the formulas in order to produce the standard variableful
presentation. The last would then be

Π(A, (x)R[vx , vy ]) ∈ Ty(>.y : B).
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Martin-Löf’s substitution calculus - polymorphic, free cwfs?
The first-order part of the Substitution Calculus (Martin-Löf 1992)
has the judgment forms

Γ : context
Γ = ∆ : context
γ : ∆ // Γ

γ = δ : ∆ // Γ

Γ =⇒ A : type
Γ =⇒ A = B : type
Γ =⇒ a : A
Γ =⇒ a = b : A

One can also add (as in Tasistro 1993) a judgement for context end
extension

Γ � ∆ : context
to explicate this notion.
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There are two rules for context formation

() : context
Γ : context Γ =⇒ A : type

(Γ, x : A) : context

The thinning rules ("context polymorphism") are:

γ : ∆ // Γ

γ : Θ // Γ
(∆ � Θ)

γ : ∆ // Γ

γ : ∆ //Θ
(Θ � Γ)

γ : ∆ =⇒ A : type
γ : Θ =⇒ A : type (∆ � Θ)

γ : ∆ =⇒ a : A
γ : Θ =⇒ a : A

(∆ � Θ)

The composition rules and associativity laws (omitted here).
Unit laws:

Γ : context
() : Γ // Γ

γ : ∆ // Γ

()γ = γ : ∆ // Γ

γ : ∆ // Γ

γ() = γ : ∆ // Γ

Γ // A : type
Γ // A() = A : type

Γ // a : A
Γ // a() = a : A
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Updating laws and β, η, ξ-rules

γ : ∆ // Γ ∆ =⇒ a : Aγ
(γ, x = a) : ∆ // Γ, x : A

δ : Θ //∆ γ : ∆ // Γ ∆ =⇒ a : Aγ
(γ, x = a)δ = (γδ, x = aδ) : Θ // Γ, x : A

γ : ∆ // Γ ∆ =⇒ a : Aγ
(γ, x = a) = γ : ∆ // Γ

γ : ∆ // Γ ∆ =⇒ a : Aγ
∆ =⇒ x(γ, x = a) = a : Aγ

γ : ∆ // ()

γ = () : ∆ // ()

γ : ∆ // Γ, x : A
γ = (γ, x = xγ) : ∆ // Γ, x : A

γ : ∆ // () γ : ∆ // ()

γ = δ : ∆ // ()

γ : ∆ // Γ, x : A δ : ∆ // Γ, x : A γ = δ : ∆ // Γ ∆ =⇒ xγ = xδ : Aγ
γ = δ : ∆ // Γ, x : A

Variable law: derive Γ =⇒ x : A when x : A is declared in Γ.
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Interpretation Substitution Calculus by a cwfn C?

I Contexts: Γ ∈ Ob(C)

I Context maps from ∆ to Γ:

∆ � ∆′
f // Γ′ � Γ

I Types over Γ:
Γ � Γ′ A ∈ Ty(Γ′)

I Elements of type A over Γ:

Γ � Γ′ A ∈ Ty(Γ′) a ∈ Tm(Γ′,A)
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Interpreting equalities

I (∆ � ∆′
f // Γ′ � Γ) ∼ (∆ � ∆′′

g // Γ′′ � Γ) iff

pΓ′,Γ ◦ f ◦ p∆,∆′ = pΓ′′,Γ ◦ g ◦ p∆,∆′′

I (Γ � Γ′; A ∈ Ty(Γ′)) ∼ (Γ � Γ′′; B ∈ Ty(Γ′′)) iff

A{pΓ,Γ′} = B{pΓ,Γ′′}

I (Γ � Γ′; A ∈ Ty(Γ′); a ∈ Tm(Γ′,A)) ∼
(Γ � Γ′′; B ∈ Ty(Γ′′); b ∈ Tm(Γ′′,B)) iff

A{pΓ,Γ′} = B{pΓ,Γ′′} and a{pΓ,Γ′} = b{pΓ,Γ′′}.
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III. Formalizing models of type theory in type theory

An equivalent (to cwfs) standard framework for interpreting
dependent type theory is a category with attributes (Cartmell) .

I This modeling usually takes place in set theory.
I An important example is Hofmann’s model (Hofmann 1997),

which is built from the syntax and judgements of intensional
type theory, and is used to translate proofs in extensional type
theory into proofs in the intensional theory.

I However, it is of interest to do the modeling in type theory
itself, e.g. for the purpose of formal verification, and for
foundational reasons. (Dybjer, Internal Type Theory, 1995 and
onwards).
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Categories with attributes is a variant of cwfs where the elements
Tm(Γ,A) are defined as sections of projections p(A) : Γ.A // Γ. It
seems slightly easier to formalize.

Definition 1. A category with attributes (cwa) consists of the data
(a) A category C with a terminal object >.
(b) A functor Ty : Cop // Set.
(c) For each A ∈ Ty(Γ), an object Γ.A in C and a morphism

p(A) = pΓ(A) : Γ.A // Γ in C.
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(d) The final datum tells how substitutions interact with context
extensions: For each f : ∆ // Γ and A ∈ Ty(Γ), there is a
morphism q(f ,A) = qΓ(f ,A) : ∆.(A{f }) // Γ.A in C such
that

∆ Γ
f

//

∆.(A{f })

∆

p(A{f })

��

∆.(A{f }) Γ.A
q(f ,A) // Γ.A

Γ

p(A)

��

is a pullback, and furthermore functoriality conditions
(d.1) q(1Γ,A) = 1Γ.A

(d.2) q(f ◦ g ,A) = q(f ,A) ◦ q(g ,A{f }) for Θ
g //∆

f // Γ.
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Example: The set-theoretic interpretation of the pullback diagram
in (d) is then

∆ Γ
f

//

Σy∈∆.A(f (y))

∆

p

��

Σy∈∆.A(f (y)) Σx∈Γ.A(x)
q // Σx∈Γ.A(x)

Γ

p

��

where p(〈u, v〉) = u and q(〈y , s〉) = 〈f (y), s〉.

By assuming that the universe U is closed under further
constructions one can verify axioms for type theoretic constructions
like Π, W , I -types etc.
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Indirect model in MLTT

In view of the fact that intensional Martin-Löf type theory
interprets the universe V of CZF (Aczel 1978, 1986) we get an
indirect intepretation of the extensional M-L type theory in the
intensional one.

Aczel’s interpretation has been formalized in various proof
assistants: LEGO (N.P. Mendler, 1990), Agda 1 (M.Takeyama mid
1990s), Coq (P. and Wilander 2011). In the latter interpretation a
full faithful functor

V // Setoids

is explicitly constructed.

However, we are interested in more direct interpretations.
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Setoids

In type theories the notion of set is usually understood in the sense
of Bishop as a type together with an equivalence relation, also
called a setoid

A = (|A|,=A)

where |A| is a type and =A is an equivalence relation on |A|.

An extensional function f : A // B between setoids is a function
|A| // |B| which respects the equivalence relations, i.e.

(∀x , y : |A|)[x =A y =⇒ f (x) =B f (y)]

Two such functions f and g are extensionally equal (f =ext g) if
(∀x : |A|)(f (x) =B g(x)).
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The setoids and extensional functions in a (constructive) type
theory form an e-category Setoids and its properties can be
described in the same abstract way as the category Sets in a
(constructive) set theory.

The properties of the category reflects the possibilities and
limitations of constructions in the background theory.
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The notion of e-category is a variant of the standard notion of
category, but where no equality relation is required on objects.

An e-category C consists of a type Ob C of objects, together with a
setoid C(A,B) of morphisms for every pair of objects A and B . The
composition is an extensional function

◦ : C(B,C )× C(A,B) // C(A,C )

which satisfies the usual monoid laws.

An e-functor is a functor where the object part is just a function
between types. There is no equality of objects to respect.
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E-cwas - cwas in type theory

Referring back to Definition 1, in order for the equations (d.1) and
(d.2) to make sense, we need the object equalities

Γ.(A{1Γ}) = Γ.A p(A{1Γ}) = p(A)

and
Θ.(A{f ◦ g}) = Θ.(A{f }{g})

and moreover
p(A{f ◦ g}) = p(A{f }{g}).

They follow from the functoriality of Ty and by requiring the object
equality Γ.A = Γ.A′ and p(A) = p(A′) whenever A = A′.

This notion of cwa is not appropriate for categories C that lack
object equality, like e-categories.
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We modify the structure slightly to the setting of e-categories:

Definition 2. An e-category with attributes (ecwa) consists of the
following data (a) - (d):
(a) An e-category C with a terminal object >.
(b) An e-functor Ty : Cop // Setoids.
(c) There is an e-functor ∆Γ : Ty(Γ)# // C/Γ. For

A ∈ Ob Ty(Γ), write ∆Γ(A) = (p(A) : Γ.A // Γ).

Here S# denotes the discrete e-category induced by a setoid S .
C/Γ denotes the slice e-category of C over Γ.
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Thus for any proof object t of A =Ty(Γ) A′, ∆Γ(t) : Γ.A // Γ.A′ is
an isomorphism such that

Γ.A

Γ

p(A)

��?
??

??
??

??
??

??
Γ.A Γ.A′

∆Γ(t) // Γ.A′

Γ

p(A′)

����
��
��
��
��
��
�

commutes.

Moreover, ∆Γ(t) is independent of t and

∆Γ(t) = 1Γ.A (t proof of A =Ty(Γ) A)

∆Γ(s◦t) = ∆Γ(s)◦∆Γ(t) (t pf. of A =Ty(Γ) A′ and s pf. of A′ =Ty(Γ) A′′)

(A particular feature of the slice of an e-category is that equalities
of objects over the base turn into isomorphism.)
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(d) For each f : Ψ // Γ and A ∈ Ty(Γ), there is a morphism
q(f ,A) : Ψ.A{f } // Γ.A in C such that

Ψ Γ
f

//

Ψ.A{f }

Ψ

p(A{f })

��

Ψ.A{f } Γ.A
q(f ,A) // Γ.A

Γ

p(A)

��

is a pullback, and moreover these morphisms satisfy
(d.1) q(1Γ,A) ◦∆Γ(t) = 1Γ.A where t is any pf. for Ty(1Γ)(A) = A.

(d.2) q(f ◦ g ,A) ◦∆Θ(t) = q(f ,A) ◦ q(g ,A{f }) for Θ
g //Ψ

f // Γ
and where t is any pf. for A{f ◦ g} =Ty(Θ) A{f }{g}.
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Note the type correcting isomorphisms ∆(t).

Further in condition (d), note that if f = f ′ : Ψ // Γ, s is a proof
of A = A′ ∈ Ty(Γ) and t is a proof of A{f } = A′{f ′}, then by the
pullback properly,

q(f ,A) ◦∆Ψ(t) = ∆Γ(s) ◦ q(f ′,A′).

Equality on finite contexts. Note that if f : Ψ // Γ is an
isomorphism, and A ∈ Ty(Ψ), B ∈ Ty(Γ) and t is proof of
A =Ty(Ψ) B{f }, then get isomorphism:

q(f ,B) ◦∆(t) : Ψ.A // Γ.B

Thus we can inductively define when two finite contexts are equal.
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Interpretation

The definition of ecwas suggests introducing the following
judgements about types

I Γ ` A type meaning A ∈ Ty(Γ)

I Γ ` A = A′ meaning A =Ty(Γ) A′ where A,A′ ∈ Ty(Γ).

Define Tm(Γ,A), the elements of A in the context Γ, to be the
setoid of sections of p(A) : Γ.A // Γ.

Note that if r is a proof for A =Ty(Γ) A′, then M ∈ Tm(Γ,A)
implies ∆Γ(r) ◦M ∈ Tm(Γ,A′).

(Cf. canonical isomorphisms of Curien 1993.)
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Now assuming a term a always come with an "original" type A,
written as a pair (a,A), we introduce the further judgements

I Γ ` (a,A) : A′ meaning

a ∈ Tm(Γ,A) and A =T (Γ) A′.
I Γ ` (a,A) = (a′,A′) : A′′ meaning

Γ ` (a,A) : A′′ and Γ ` (a,A′) : A′′ and that there is a proof r
of A =Ty(Γ) A′ such that ∆Γ(r) ◦ a =Tm(Γ,A′) a′.
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The rules

Γ ` s : A Γ ` A = B
Γ ` s : B

Γ ` s = t : A Γ ` A = B
Γ ` s = t : B

are immediately justified.
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Substitution into terms

For a ∈ Tm(Γ,A) and f : Ψ // Γ, define a{f } : Ψ //Ψ.A{f } as
the unique morphism (see diagram below) with
p(A{f })) ◦ a{f } = 1Ψ and q(f ,A) ◦ a{f } = a ◦ f . Thus
a{f } ∈ Tm(Ψ,A{f }).

Ψ Γ
f //

Ψ.A{f }

Ψ

p(A{f })

��

Ψ.A{f } Γ.A
q(f ,A)

// Γ.A

Γ

p(A)

��

Ψ

Γ.A

a◦f

((RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRΨ

Ψ.A{f }

a{f }

��

Ψ

Ψ

1

��,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,
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Stability under substitution

Thus if
Γ ` (a,A) : A′

and f : Ψ // Γ, we have a{f } ∈ Tm(Ψ,A{f }) and
A{f } =Ty(Ψ) A′{f }, so

Ψ ` (a{f },A{f }) : A′{f }

Thus the rule

Γ ` s : A′ f : Ψ // Γ

Ψ ` s{f } : A′{f }

is justified.
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Moreover, if
Γ ` (a,A) = (a′,A′) : A′′

we have ∆Γ(r) ◦ a =Tm(Γ,A′) a′ for some proof r of A =T (Γ) A′.
Then

∆Γ(r) ◦ a ◦ f = a′ ◦ f

and hence
∆Γ(r) ◦ q(f ,A) ◦ a{f } = a′ ◦ f .

So by remark above there is a proof s of Ty(f )(A) = Ty(f )(A′)
such that ∆Γ(r) ◦ q(f ,A) = q(f ,A′) ◦∆Ψ(s) and hence

q(f ,A′) ◦∆Ψ(s) ◦ a{f } = a′ ◦ f .

It follows by uniqueness that ∆Ψ(s) ◦ a{f } = a′{f }, so indeed

Ψ ` (a{f },A{f }) = (a′{f },A′{f }) : A′′{f }.
This justifies also the rule:

Γ ` s = t : A′′ f : Ψ // Γ

Ψ ` s{f } = t{f } : A′′{f }
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The notion of Π-types is similar for cwas as for cwfs, but note that
elements are particular context maps. For ecwas we need to make
appropriate changes.

An ecwa supports Π-types if for A ∈ Ty(Γ) and B ∈ Ty(Γ.A) there
is a type Π(A,B) ∈ Ty(Γ), and moreover for every b ∈ Tm(Γ.A,B)
there is an element λA,B(b) ∈ Tm(Γ,Π(A,B)), and furthermore for
any M ∈ Tm(Γ,Π(A,B)) and any a ∈ Tm(Γ,A) there is an
element AppA,B(c , a) ∈ Tm(Γ,B{a}), such that the following
equations hold for any f : Ψ // Γ:

I (β-red) AppA,B(λA,B(b), a) =Tm(Γ,B{a}) P{a}, [as before]
I (Π-subst) Π(A,B){f } =Ty(B) Π(A{f },B{q(f ,A)}), [as

before]

42 / 51



This part of the definition has type adjustments:

I (λ-subst)

λA,B(b){f } =Tm(B,Π(A,B){f }) ∆B(t)◦λA{f },B{q(f ,A)}(b{q(f ,A)}),

for any proof t of Π(A{f },B{q(f ,A)}) =Ty(B) Π(A,B){f },

I (App-subst)

AppA,B(c , a){f } =Tm(··· ) ∆Ψ(s)◦AppA{f },B{q(f ,A)}(∆Ψ(t)◦c{f }, a{f })

for any proof s of B{q(f ,A)}{a{f }} =Ty(Ψ) B{a}{f } and

any proof t of Π(A,B){f } =Ty(Ψ) Π(A{f },B{q(f ,A)}).
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Furthermore there are the following extensionality conditions on Π,
λ and App:

I (Π-cong) if s is a proof of A =Ty(Γ) A′ and for B ∈ Ty(Γ.A),
B ′ ∈ Ty(Γ.A′) with B =Ty(Γ.A) B ′{∆(s)}, then

Π(A,B) =Ty(Γ) Π(A′,B ′).

I (λ-cong) if b =Tm(Γ.A,B) b′, then

λA,B(b) =Tm(Γ,Π(A,B)) λA,B(b′)

I (App-cong) if c =Tm(Γ,Π(A,B)) c ′ and a =Tm(Γ,A) a′ then

∆Γ(s) ◦ AppA,B(c , a) =Tm(Γ,B{a′}) AppA,B(c ′, a′),

where s is any proof of B{a} =Ty(Γ) B{a′}.
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I (App-cong) if c =Tm(Γ,Π(A,B)) c ′ and a =Tm(Γ,A) a′ then

∆Γ(s) ◦ AppA,B(c , a) =Tm(Γ,B{a′}) AppA,B(c ′, a′),

where s is any proof of B{a} =Ty(Γ) B{a′}.
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Furthermore there are the following extensionality conditions on Π,
λ and App:

I (Π-cong) if s is a proof of A =Ty(Γ) A′ and for B ∈ Ty(Γ.A),
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Π(A,B) =Ty(Γ) Π(A′,B ′).

I (λ-cong) if b =Tm(Γ.A,B) b′, then

λA,B(b) =Tm(Γ,Π(A,B)) λA,B(b′)
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where s is any proof of B{a} =Ty(Γ) B{a′}.
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Bounded categories with attributes
Here all types are subobjects of a fixed setoid, the bounding setoid,
thought of a setoid of raw types. This brings the possibility to
eliminate the type correcting ∆s in the formulation above.

A category (with equality) on objects can be formulated essentially
algebraically in type theory with three setoids Ob(C), Arr(C) and
Cmp(C) of object, arrows and composable arrows, respectively.
There are extensional functions

1 : Ob //Arr

dom, cod : Arr //Ob

cmp : Cmp //Arr fst, snd : Cmp //Arr

satisfying familiar equations, with convention that

cod(fst(u)) = dom(snd(u)).
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Let B be a setoid. The class of subobjects (or subsetoids) of B
(denoted Sub(B)) consists of all pairs S = (S ,mS) where S is a
setoid, and mS : S // S is an extensional injective function. An
element x ∈ B is a member of S if there is some u ∈ S with
mS(u) =B x , and this case we write

x ∈̇ S .

From this we get the usual derived relations =̇ and ⊆̇ between
subobjects. A binary relation on B is a subobject R of B × B .
Composition R ◦ S of such binary relations is defined as expected.
For subsetoids X ,Y of B . We say that R ∈ Sub(B × B) is relation
from X to Y , if (x , y) ∈̇R implies x ∈̇X and y ∈̇Y . The relation is
total on X if x ∈̇X implies that (x , y) ∈̇R for some y ∈ B . A
relation is functional if

(x , y) ∈̇R, (x , z) ∈̇R =⇒ y =B z .

A total functional relation from A to B is in a certain sense
equivalent to a setoid extensional function A // B , but we shall
not utilize this below.
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Definition. A bounded category with attributes (bcwa) consists of
the following data
(a) A category C with a terminal object >.

(b1) A set B thought of a set of raw types.
(b2) An extensional function Ty : Ob(C) // Sub(B).
(b3) An extensional function Ty : Arr(C) //Sub(B×B) such that

I for each f ∈ Arr(C), Ty(f ) is a total functional relation from
Ty(cod(f )) to T(dom(f )),

I for each Γ ∈ Ob(C), T(1Γ) is the identity relation on Ty(Γ)
I for each u ∈ Cmp(C),

Ty(cmp(u)) = Ty(fst(u)) ◦ Ty(snd(u))

(c) For each Γ ∈ Ob(C), each A ∈ B, and each proof
q : (A ∈̇Ty(Γ)), an arrow pΓ(A, q) ∈ Arr(C) with
cod(pΓ(A, q)) = Γ satifying the extensionality condition

Γ = Γ′,A = A′ =⇒ pΓ(A, q) = pΓ′(A′, q′).

Write Ext(Γ,A, q) or Γ.A for dom(pΓ(A, q))
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(d) For each f : ∆ // Γ and A ∈ B with r : (A ∈̇Ty(dom(f ))),
there is a qΓ(f ,A, r) ∈ Arr(C) satisfying the extensionality
condition

Γ = Γ′,A = A′, f = f ′ =⇒ qΓ(f ,A, r) = qΓ′(f ′,A′, r ′).

and q(f ,A, r) = qΓ(f ,A, r) ∈ Arr(C) such that, for B ∈ B and
r ′ : ((A,B) ∈̇Ty(f )),

· ·
f

//

·

·

p(B,r ′)

��

· ·
q(f ,A,r) // ·

·

p(A,r)

��

is well composed and is a pullback, and furthermore these
functoriality conditions hold:

(d.1) q(1Γ,A, r) = 1Γ.A
(d.2) q(cmp(u),A, r) = q(fst(u),A, r ′) ◦ q(snd(u),B, r ′′) for

u ∈ Cmp(C) and ((A,B) ∈̇T (fst(u)))
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Conjecture: Every type generated ecwa can be turned in to a
bcwa and this can be formalized in Coq.
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