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Overview of this talk

(I) General goal and some obstacles
(II) Type theories from iterated presheaves
(III) Formalizing models of type theory in type theory
(IV) First-order logic with dependent types [if time allows]
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I. General goal and some obstacles
A longstanding goal: A constructive model theory of depedent type
theory, more specially Martin-Löf style type theories (MLTT).

I usable model-theoretic methods for obtaining effective results
about theories and their relations, or to interpret richer type
theories constructively.

I implement syntax and models in type theory, to be able to
formally check correctness, facilitate reasoning and extract
algorithms.

Obstacles:
I usual constructivity or predicativity issues.
I MLTT is a priori not as flexible as set theory as a meta-theory,

and introduces coherence problems in the sense of category
theory (Dybjer 1995). (What can MLTT + Univalence Axiom
do to ameliorate this?)
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Two kinds of models

Kind (α): Interpretation of A=MLTT + Ax in B=MLTT: one
judgements in A are translated to possible several judgements,
possibly of different kinds, in B , preferable so that definitional
equalities in A are translated to definitional equalities in B .

Kind (β): The model of A is a structure and a (first-class) object of
B .
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II. Models of MLTT from iterated presheaves

It is well-known that the presheaves over a category

PSh(C) = SetsC
op

gives rise to a model of MLTT, by construction of a category with
attributes/families (Hofmann 1997) closed under the standard type
formers.

This model may be constructed even in constructive set theory.

For C = ∆, this is the simplicial sets model. The Kan simplicial set
model of MLTT+Univalence (Voevodsky) is a subcategory of
PSh(∆), for which it turns out that there obstacles to a
constructive model (Bezem, Coquand). A constructive model of
Univalence is given by Bezem, Coquand and Huber (2013) using
cubical sets which live in PSh(2).
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Iterated presheaves

Let C be a small category. Let P be a presheaf on C. The category
of elements of P , denoted

Σ(C,P),

consists of objects (a, x) where a is an object in C and x is an
element of P(a). A morphism α : (a, x) // (b, y) is a C-morphism
α : a // b, such that P(α)(y) = x .

Σ(C,P) is the well-known
Grothendieck construction and is usually denoted∫

C
P.

This category is again small. There is a projection functor
πP = π : Σ(C,P) // C defined by π(a, x) = a and π(α) = α, for
α : (a, x) // (b, y).
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It is well-known that the Grothendieck construction gives the
following equivalence

PSh(C)/P ' PSh(Σ(C,P)).

This suggests a relation to semantics of dependent types. One can
iterate the Grothendieck construction as follows. Write

Σ(C) = C

Σ(C,P1,P2, . . . ,Pn) = Σ(Σ(C,P1,P2, . . . ,Pn−1),Pn).

Here Pk+1 ∈ PSh(Σ(C,P1, . . . ,Pk)) for each k = 0, . . . , n − 1.
Note that

πPk+1 : Σ(Σ(C,P1,P2, . . . ,Pk),Pk+1) // Σ(C,P1,P2, . . . ,Pk).

Using these projections, define the iterated first projection functor

π∗P1,P2,...,Pn =def πP1 ◦ πP2 ◦ · · · ◦ πPn : Σ(C,P1,P2, . . . ,Pn) // C.
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We explicate these constructions to see the connection to contexts
of type theory. The objects of the category Σ(C,P1,P2, . . . ,Pn)
have the form (· · · ((a, x1), x2), . . . , xn) but we shall write them as
(a, x1, . . . , xn). Thus

a ∈ C, x1 ∈ P1(a), x2 ∈ P2(a, x1), . . . , xn ∈ Pn(a, x1, . . . , xn−1).

Proposition A morphism

α : (a, x1, . . . , xn) // (b, y1, . . . , yn)

in Σ(C,P1,P2, . . . ,Pn) is given by a morphism α : a // b in C
such that

P1(α)(y1) = x1,P2(α)(y2) = x2, . . . ,Pn(α)(yn) = xn.
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A category with attributes from iterated presheaves

Let C be a fixed small category.

Define a category MPSh(C) = M to have as objects finite
sequences P = [P1, . . . ,Pn], n ≥ 0, such that
Pk+1 ∈ PSh(Σ(C,P1, . . . ,Pk)) for each k = 0, . . . , n − 1.

Define the set of morphisms HomM(P,Q) as a subset of the
functors from Σ(P) to Σ(Q), as follows:

HomM(P,Q) = {f ∈ Σ(Q)Σ(P) : π∗Q ◦ f = π∗P}. (1)

Notice that since π∗
Q

(β) = β and π∗
P

(α) = α for all arrows β in

Σ(Q), and α in Σ(P), it holds for f ∈ HomM(P,Q),

f (α) = α.

Theorem MPSh(C) is a category with terminal object [].
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The restriction in the hom-sets of MPSh(C) yields the following
characterization.

Lemma For P,Q ∈ PSh(C) there is a bijection

HomMPSh(C)([P], [Q]) ∼= HomPSh(C)(P,Q).

Theorem. [·] : PSh(C) //MPSh(C) is a full and faithful functor.

Composing the Yoneda embedding with the above embedding we
get:

Corollary. [·] ◦ y : C //MPSh(C) is a full and faithful functor.
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Theorem Let P = [P1, . . . ,Pn] and Q = [Q1, . . . ,Qm] be objects
of MPSh(C). An MPSh(C)-morphism f : P // Q is given by m
components f1, . . . , fm, which are such that for objects (a, x) of
Σ(P):

f (a, x) = (a, f1(a, x), . . . , fm(a, x)) (2)

and

f1(a, x) ∈ Q1(a), f2(a, x) ∈ Q2(a, f1(a, x)), . . . ,

fm(a, x) ∈ Qm(a, f1(a, x), . . . , fm−1(a, x))

Moreover for each morphism α : (a, x) // (b, y) in Σ(P), the
following naturality equations hold

Q1(α)(f1(b, y)) = f1(a,P1(α)(y1), . . . ,Pn(α)(yn))
...

Qm(α)(fm(b, y)) = fm(a,P1(α)(y1), . . . ,Pn(α)(yn))
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Example. For R ∈ PSh(Σ(C,P)), the projection functor πR is
morphism [P,R] // P in MPSh(C).

Example. Sections. Let Q ∈ PSh(Σ(C,P)), where
P = [P1, . . . ,Pn]. Consider a MPSh(C)-morphism s : P // [P,Q]
which is a section of πQ , that is, it satisfies πQ ◦ s = idP . By
Theorem above it follows that s is specified by s ′ such that

s(a, x) = (a, x , s ′(a, x)),

where s ′(a, x) ∈ Q(a, x) and (a, x) ∈ Σ(C,P), and for
α : (a, x) // (b, y),

Q(α)(s ′(b, y)) = s ′(a,P1(α)(y1), . . . ,Pn(α)(yn)).

For n = 0, this is
Q(α)(s ′(b)) = s ′(a).
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An equivalence
Theorem. The category MPSh(C) is equivalent to PSh(C).

Note: for C = 1 this gives an equivalent to the category of sets.

Proof. The following functor Σ∗ : MPSh(C) // PSh(C) gives the
equivalence

For any object P of MPSh(C) define the presheaf Σ∗(P) on C by
letting

Σ∗(P)(a) = {(x1, . . . , xn) : x1 ∈ P1(a), . . . , xn ∈ Pn(a, x1, . . . , xn)},
and for α : b // a, assigning

Σ∗(P)(α)((x1, . . . , xn)) = (P1(α)(x1), . . . ,Pn(α)(xn)).

For f : P // Q in MPSh(C) define a natural transformation

Σ∗(f ) : Σ∗(P) // Σ∗(Q)

by letting

Σ∗(f )a((x1, . . . , xn)) = (f1(a, x1, . . . , xn), . . . , fm(a, x1, . . . , xn)).

Here f1, . . . , fm are as in equation (2).
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The following will give the types in a context P . Define for each
P ∈ MPSh(C),

T(P) = PSh(Σ(C,P)).

For a morphism f : Q // P , and S ∈ T(P), let

T(f )(S) = S ◦ f ∈ T(Q).

Thus T is a contravariant functor. We write S{f } for S ◦ f .
For Q ∈ T define its set of elements as the sections of πQ

E(P,Q) = {s : P // [P,Q] : πQ ◦ s = idP}
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These data give rise to a natural category with attributes.

Theorem. Let M = MPSh(C) for a small category C. For
S ∈ T(P) and f : Q // P , the functor
qS ,f = q : [Q, S ◦ f ] // [P, S ] defined by

q(a, x , u) = (f (a, x), u) and q(α) = f (α) (α : (a, x , u) //(b, y , v))

makes the following into a pullback square in M:

Q P
f

//

Q, S ◦ f

Q

πS◦f

��

Q, S ◦ f P, S
qS,f // P, S

P

πS

��
(3)

with appropriate functoriality in f .
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The Π-construction
Let R = [R1, . . . ,Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R)) and
Q ∈ PSh(Σ(R,P)). Define a presheaf Π(P,Q) over Σ(R) as
follows (cf. Kripke semantics):

For (a, x) ∈ Σ(R), let

Π(P,Q)(a, x) =
{

h ∈ (Πb ∈ C)(Πf : b → a)

(Πv ∈ P(b,R(f )(x))Q(b,R(f )(x), v) |
∀b ∈ C,∀f : b → a, ∀v ∈ P(b,R(f )(x)),

∀c ∈ C,∀β : c → b,

Q(β)(h(b, f , v)) = h(c , f ◦ β,P(β)(v))
}

Here R(f )(x) is R1(f )(x1), . . . ,Rn(f )(xn).

For α : (a′, x ′)→ (a, x) and h ∈ Π(P,Q)(a, x) define
Π(P,Q)(α)(h) = h′ by

h′(b, f , v) = h(b, α ◦ f , v), (4)

for b ∈ C, f : b → a′, v ∈ P(b,R(f )(x ′)).
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Σ-construction

Let R = [R1, . . . ,Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R)) and
Q ∈ PSh(Σ(R,P)). We define a presheaf Σ̇(P,Q) over Σ(R) as
follows. For (a, x) ∈ Σ(R), let

Σ̇(P,Q)(a, x) = {(u, v) : u ∈ P(a, x), v ∈ Q(a, x , u)}.

For α : (a′, x ′)→ (a, x) and h ∈ Σ̇(P,Q)(a, x) define

Σ̇(P,Q)(α)(u, v) = (P(α)(u),Q(α)(v)).
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Explication of the Π-case over a simple category
Suppose that C is the category 0→ 2← 1.

Let R = [R1, . . . ,Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R)) and
Q ∈ PSh(Σ(R,P)). Now the definition of Π(P,Q) simplifies for
a = 0, 1, since there are only identity arrows into a, the naturality
condition becomes void, so we have:

Π(P,Q)(a, x) = (Πb ∈ C)(Πf : b → a)(Πv ∈ P(b,R(f )(x)))Q(b,R(f )(x), v)
∼= (Πv ∈ P(b, x)Q(b, x , v)

For a = 2, the naturality condition has a few nontrivial cases, which
can be simplified to

Π(P,Q)(2, x) =
{

h ∈ (Πb ∈ C)(Πf : b → 2)

(Πv ∈ P(b,R(f )(x))Q(b,R(f )(x), v) |
∀v ∈ P(2, x),

Q(f02)(h(2, id2, v)) = h(0, f02,P(f02)(v)),
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Explication of the Π-case over a simple category
Suppose that C is the category 0→ 2← 1.

Let R = [R1, . . . ,Rn] ∈ MPSh(C). Let P ∈ PSh(Σ(R)) and
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The constructions are still not standard intensional type theory
since there are equations involved in some type formers. Can these
be eliminated?

Basic pairs as a model of type theory.

Martin-Löf 2012 (seminar), Tonelli 2013 (MSc Thesis,
Padova/Stockholm):

The judgement A type is interpreted as the following three
standard judgements

A0 type
A1 type
x : A0, y : A1 =⇒ A2(x , y) type

Now (x) : (x : A0, y : A1, z : A2(x , y))→ (x : A0) and
(y) : (x : A0, y : A1, z : A2(x , y))→ (y : A1) so the triple
(A0,A1,A2) can be considered as a presheaf over 0→ 2← 1.
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General contexts in the basic pair model are triples of contexts:

x1 : A0
1, . . . , xn : A0

n(x1, . . . , xn−1) context

y1 : A1
1, . . . , yn : A1

n(y1, . . . , yn−1) context

x1 : A0
1, y1 : A1

1, z1 : A2
1(x1, y1), . . . ,

xn : A0
n(x1, . . . , xn−1), yn : A1

n(y1, . . . , yn−1),

zn : A2
n(x1, y1, z1, . . . , xn−1, yn−1, zn−1, xn, yn) context.
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Martin-Löf’s Π-relation type in Coq

Inductive Pi (A: Set)(B: A -> Set) :Set :=
lamPi: (forall b:(forall x:A, B x), Pi A B).

Inductive PiRel (A: Set)(A’: Set)(P:A -> A’-> Set)
(B: A -> Set)(B’: A’ -> Set)
(Q: (forall x:A, forall x’:A’, forall p:P x x’,

B x -> B’ x’ -> Set))
: (Pi A B) -> (Pi A’ B’) -> Set :=

lamPiRel:
(forall b: (forall x:A, B x),
forall b’: (forall x:A’, B’ x),
forall q: (forall x:A, forall x’:A’,

forall p: P x x’,
Q x x’ p (b x) (b’ x’)),

PiRel A A’ P B B’ Q (lamPi A B b)(lamPi A’ B’ b’)).
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Makkai’s presentation of dependent type signatures

Makkai (1995) uses a categorical way of presenting dependent
types in his seminal version of dependently sorted logic, FOLDS.

A FOLDS signature is a category K , which is
I skeletal (isomorphic objects are identical)
I one-way (no endomorphisms except identities)
I finitely branching (only finitely many arrows are going out

from each object)
Any functor K → Sets (i.e.presheaf on K op) gives a model of
dependent sets.

Examples:

K = 0← 2→ 1 is the example above.

K = ∆op
semi gives semisimplicial sets
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A method for translating from Makkai’s presentation to standard
type-theoretic presentation:

Define a binary relation ≤ on the objects of K by

A ≤ B ⇐⇒def there is a morphism from B to A.

By the properties of K this is a well-founded partial order. Let ≤∗
be a linear order that extends ≤.

Construct for every object A a
non-repeating enumeration

xA
1 , . . . , x

A
n(A)

of all the non-identity morphisms with domain A, so that

cod(xA
i ) ≤∗ cod(xA

j ) whenever i < j .
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We shall below define a signature where the objects of K are the
type symbols and where the morphisms of K serve as variables in
the declarations.
For each object A of K we will have a type declarationDA:

ΓA =⇒ A(Var(ΓA)) type

by induction on ≤.

If ΓA = y1 : B1, . . . , ym : Bm, the declaration says more explicitly

y1 : B1, . . . , ym : Bm =⇒ A(y1, . . . , ym) type

where A is the type symbol declared.
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If σ = u1, . . . , un is a sequence of morphisms in K whose all of
whose domains are equal to the codomain of v ∈ Arr K , we write
σv for

u1v , . . . , unv .

Let
ΓA = x1 : C1(Var(ΓC1)x1), . . . , xn : Cn(Var(ΓCn)xn)

where xi = xA
i , Ci = cod(xi ) and n = n(A).

If
B1 <

∗ B2 <
∗ · · · <∗ BN <∗ · · ·

are all the objects of K , then the pre-signature corresponding to the
vocabulary K is

ΣK = [DB1 , . . . ,DBN , . . .].
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Examples

For K = 0← 2→ 1 with the order 0 <∗ 1 <∗ 2 we get

=⇒ 0 type
=⇒ 1 type

f20 : 0, f21 : 1 =⇒ 2(f20, f21) type

Note: (awkwardly) f20, f21 are variable symbols, and 0, 1, 2 are type
symbols.

The product category Kn = K × [n] gives the general forms of the
types in contexts in the basic pair model. Here [n] is the category
corresponding to the ordinal n.
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Examples

l , r : Eq→ Hom d , c : Hom→ Ob.

with dl = dr and cl = cr .
Order consistently

Ob <∗ Hom <∗ Eq

Then we get

=⇒ Ob type
d , c : Ob =⇒ Hom(d , c) type

dl , cl : Ob, l : Hom(d , c)l , r : Hom(d , c)r =⇒ E (l , k) type

Mulitplying, using the equalities of the category, and the renaming
x = dl , y = cl gives as the last line

x , y : Ob, l : Hom(x , y), r : Hom(x , y) =⇒ E (l , k) type
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Next we can use the notion of homomorphism between signatures
of dependent types of Cartmell 1986, to obtain a counterpart to
natural transformations. Thus we get a type theory corresponding
to PSh(K op).

A possible direction would be to extend Martin-Löf’s and Tonelli’s
model to general FOLDS signatures K using the method above.
This ought to be a model of kind α, interpreting definitional
equalities as definitional equalities in some MLTT extended with
certain generalized inductive types.

28 / 100



Next we can use the notion of homomorphism between signatures
of dependent types of Cartmell 1986, to obtain a counterpart to
natural transformations. Thus we get a type theory corresponding
to PSh(K op).

A possible direction would be to extend Martin-Löf’s and Tonelli’s
model to general FOLDS signatures K using the method above.
This ought to be a model of kind α, interpreting definitional
equalities as definitional equalities in some MLTT extended with
certain generalized inductive types.

28 / 100



III. Formalizing models of type theory in type theory

One standard framework for interpreting dependent type theory is a
category with attributes (Cartmell) or equivalently category with
families (Dybjer).

I This modeling usually takes place in set theory.
I An important example is Hofmann’s model (Hofmann 1997),

which is built from the syntax and judgements of intensional
type theory, and is used to translate proofs in extensional type
theory into proofs in the intensional theory.

I However, it is of interest to do the modeling in type theory
itself, e.g. for the purpose of formal verification, and for
foundational reasons. (Dybjer, Internal Type Theory, 1995 and
onwards).
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Definition
1. A category with attributes (cwa) consists of the data
(a) A category C with a terminal object 1.

This is the called the category of contexts and substitutions.

(b) A functor T : Cop // Set.
This functor is intended to assign to each context Γ a set
T (Γ) of types in the context and tells how substitutions act on
these types. For f : B // Γ and σ ∈ T (Γ) we write

σ{f } for T (f )(σ).

(c) For each σ ∈ T (Γ), an object Γ.σ in C and a morphism

p(σ) = pΓ(σ) : Γ.σ // Γ in C.

This tells that each context can be extended by a type in the
context, and that there is a projection from the extended
context to the original one.
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(d) The final datum tells how substitutions interact with context
extensions:

For each f : B // Γ and σ ∈ T (Γ), there is a
morphism q(f , σ) = qΓ(f , σ) : B.(T (f )(σ)) // Γ.σ in C such
that

B Γ
f

//

B.(σ{f })

B

p(σ{f })

��

B.(σ{f }) Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore functoriality conditions
(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g , σ) = q(f , σ) ◦ q(g , σ{f }) for A
g // B f // Γ.

31 / 100



(d) The final datum tells how substitutions interact with context
extensions: For each f : B // Γ and σ ∈ T (Γ), there is a
morphism q(f , σ) = qΓ(f , σ) : B.(T (f )(σ)) // Γ.σ in C such
that

B Γ
f

//

B.(σ{f })

B

p(σ{f })

��

B.(σ{f }) Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore functoriality conditions

(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g , σ) = q(f , σ) ◦ q(g , σ{f }) for A
g // B f // Γ.

31 / 100



(d) The final datum tells how substitutions interact with context
extensions: For each f : B // Γ and σ ∈ T (Γ), there is a
morphism q(f , σ) = qΓ(f , σ) : B.(T (f )(σ)) // Γ.σ in C such
that

B Γ
f

//

B.(σ{f })

B

p(σ{f })

��

B.(σ{f }) Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and furthermore functoriality conditions
(d.1) q(1Γ, σ) = 1Γ.σ

(d.2) q(f ◦ g , σ) = q(f , σ) ◦ q(g , σ{f }) for A
g // B f // Γ.

31 / 100



Example:

In set theory (ZF or CZF) we may construct a cwa from any set U
which contains a singleton set and is Σ-closed in the sense that if
A ∈ U and F : A // U is any function then the following Σ-set
belongs to U

Σx∈AF (x) = {〈x , y〉 : x ∈ A, y ∈ F (x)}.

Then we can take C to be the full subcategory of sets with objects
in U. It is small. Moreover

T =def Set(·,U) : Cop // Set.

For Γ ∈ C and σ ∈ T (Γ)

Γ.σ =def Σx∈Γσ(x).
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Example (cont): The set-theoretic interpretation of the pullback
diagram in (d) is then

B Γ
f

//

Σy∈B .σ(f (y))

B

p

��

Σy∈B .σ(f (y)) Σx∈Γ.σ(x)
q // Σx∈Γ.σ(x)

Γ

p

��

where p(〈u, v〉) = u and q(〈y , s〉) = 〈f (y), s〉.

By assuming that the universe U is closed under further
constructions one can verify axioms for type theoretic constructions
like Π, W , I -types etc.
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Indirect model

In view of the fact that intensional Martin-Löf type theory
interprets the universe V of CZF (Aczel 1978, 1986) we get an
indirect intepretation of the extensional M-L type theory in the
intensional one.

Aczel’s interpretation has been formalized in various proof
assistants: LEGO (N.P. Mendler, 1990), Agda 1 (M.Takeyama mid
1990s), Coq (P. and Wilander 2011). In the latter interpretation a
full faithful functor

V // Setoids

is explicitly constructed.

However, we are interested in more direct interpretations.

34 / 100



Setoids

In type theories the notion of set is usually understood in the sense
of Bishop as a type together with an equivalence relation, also
called a setoid

A = (|A|,=A)

where |A| is a type and =A is an equivalence relation on |A|.

An extensional function f : A // B between setoids is a function
|A| // |B| which respects the equivalence relations, i.e.

(∀x , y : |A|)[x =A y =⇒ f (x) =B f (y)]

Two such functions f and g are extensionally equal (f =ext g) if
(∀x : |A|)(f (x) =B g(x)).
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The setoids and extensional functions in a (constructive) type
theory form an e-category Setoids and its properties can be
described in the same abstract way as the category Sets in a
(constructive) set theory.

The properties of the category reflects the possibilities and
limitations of constructions in the background theory.

36 / 100



The setoids and extensional functions in a (constructive) type
theory form an e-category Setoids and its properties can be
described in the same abstract way as the category Sets in a
(constructive) set theory.

The properties of the category reflects the possibilities and
limitations of constructions in the background theory.

36 / 100



The notion of e-category is a variant of the standard notion of
category, but where no equality relation is required on objects.

An e-category C consists of a type Ob C of objects, together with a
setoid C(A,B) of morphisms for every pair of objects A and B . The
composition is an extensional function

◦ : C(B,C )× C(A,B) // C(A,C )

which satisfies the usual monoid laws.

An e-functor is a functor where the object part is just a function
between types. There is no equality of objects to respect.
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ecwas - cwas in type theory

Referring back to Definition 1, in order for the equations (d.1) and
(d.2) to make sense, we need the object equalities

Γ.(σ{1Γ}) = Γ.σ p(σ{1Γ}) = p(σ)

and
A.(σ{f ◦ g}) = A.(σ{f }{g})

and moreover
p(σ{f ◦ g}) = p(σ{f }{g}).

They follow from the functoriality of T and by requiring the object
equality Γ.σ = Γ.σ′ and p(σ) = p(σ′) whenever σ = σ′.

This notion of cwa is not appropriate for categories C that lack
object equality, like e-categories.
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We modify the structure slightly to the setting of e-categories:

Definition 2. An e-category with attributes (ecwa) consists of the
following data (a) - (d):
(a) An e-category C with a terminal object 1.
(b) An e-functor T : Cop // Setoids.
(c) There is an e-functor ∆Γ : T (Γ)# // C/Γ. For σ ∈ Ob T (Γ),

write ∆Γ(σ) = (p(σ) : Γ.σ // Γ).

Here S# denotes the discrete e-category induced by a setoid S .
C/Γ denotes the slice e-category of C over Γ.

39 / 100



We modify the structure slightly to the setting of e-categories:

Definition 2. An e-category with attributes (ecwa) consists of the
following data (a) - (d):
(a) An e-category C with a terminal object 1.
(b) An e-functor T : Cop // Setoids.
(c) There is an e-functor ∆Γ : T (Γ)# // C/Γ. For σ ∈ Ob T (Γ),

write ∆Γ(σ) = (p(σ) : Γ.σ // Γ).

Here S# denotes the discrete e-category induced by a setoid S .
C/Γ denotes the slice e-category of C over Γ.
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Thus for any proof object t of σ =T (Γ) σ
′, ∆Γ(t) : Γ.σ // Γ.σ′ is

an isomorphism such that

Γ.σ

Γ

p(σ)

��?
??

??
??

??
??

??
Γ.σ Γ.σ′

∆Γ(t) // Γ.σ′

Γ

p(σ′)

����
��
��
��
��
��
�

commutes.

Moreover, ∆Γ(t) is independent of t and

∆Γ(t) = 1Γ.σ (t proof of σ =T (Γ) σ)

∆Γ(s◦t) = ∆Γ(s)◦∆Γ(t) (t pf. of σ =T (Γ) σ
′ and s pf. of σ′ =T (Γ) σ

′′)

(A particular feature of the slice of an e-category is that equalities
of objects over the base turn into isomorphism.)
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(d) For each f : B // Γ and σ ∈ T (Γ), there is a morphism
q(f , σ) : B.σ{f } // Γ.σ in C such that

B Γ
f

//

B.σ{f }

B

p(σ{f })

��

B.σ{f } Γ.σ
q(f ,σ) // Γ.σ

Γ

p(σ)

��

is a pullback, and moreover these morphisms satisfy
(d.1) q(1Γ, σ) ◦∆Γ(t) = 1Γ.σ where t is any pf. for T (1Γ)(σ) = σ.

(d.2) q(f ◦ g , σ) ◦∆A(t) = q(f , σ) ◦ q(g , σ{f }) for A
g // B f // Γ

and where t is any pf. for σ{f ◦ g} =TA σ{f }{g}.

41 / 100



Note the type correcting isomorphisms ∆(t).

Further in condition (d), note that if f = f ′ : B // Γ, s is a proof
of σ = σ′ ∈ T (Γ) and t is a proof of σ{f } = σ′{f ′}, then by the
pullback properly,

q(f , σ) ◦∆B(t) = ∆Γ(s) ◦ q(f ′, σ′).

Equality on finite contexts. Note that if f : B // Γ is an
isomotphism, and σ ∈ T (B), τ ∈ T (Γ) and t is proof of
σ =T (B) τ{f }, then

q(f , τ) ◦∆(t) : B.σ // Γ.τ

Thus we can inductively define when two finite contexts are equal.
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Interpretation

The definition of ecwas suggests introducing the following
judgements about types

I Γ ` σ type meaning σ ∈ T (Γ)

I Γ ` σ = σ′ meaning σ =T (Γ) σ
′ where σ, σ′ ∈ T (Γ).

Define E (Γ, σ), the elements of σ in the context Γ, to be the setoid
of sections of p(σ) : Γ.σ // Γ.

Note that if r is a proof for σ =T (Γ) σ
′, then M ∈ E (Γ, σ) implies

∆Γ(r) ◦M ∈ E (Γ, σ′).

(Cf. canonical isomorphisms of Curien 1993.)
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Now assuming a term M always come with an "original" type σ,
written as a pair (M, σ), we introduce the further judgements

I Γ ` (M, σ) : σ′ meaning

M ∈ E (Γ, σ) and σ =T (Γ) σ
′.

I Γ ` (M, σ) = (M ′, σ′) : σ′′ meaning

Γ ` (M, σ) : σ′′ and Γ ` (M, σ′) : σ′′ and that there is a proof
r of σ =T (Γ) σ

′ such that ∆Γ(r) ◦M =E(Γ,σ′) M ′.

44 / 100



Now assuming a term M always come with an "original" type σ,
written as a pair (M, σ), we introduce the further judgements

I Γ ` (M, σ) : σ′ meaning

M ∈ E (Γ, σ) and σ =T (Γ) σ
′.

I Γ ` (M, σ) = (M ′, σ′) : σ′′ meaning

Γ ` (M, σ) : σ′′ and Γ ` (M, σ′) : σ′′ and that there is a proof
r of σ =T (Γ) σ

′ such that ∆Γ(r) ◦M =E(Γ,σ′) M ′.

44 / 100



Now assuming a term M always come with an "original" type σ,
written as a pair (M, σ), we introduce the further judgements

I Γ ` (M, σ) : σ′ meaning

M ∈ E (Γ, σ) and σ =T (Γ) σ
′.

I Γ ` (M, σ) = (M ′, σ′) : σ′′ meaning

Γ ` (M, σ) : σ′′ and Γ ` (M, σ′) : σ′′ and that there is a proof
r of σ =T (Γ) σ

′ such that ∆Γ(r) ◦M =E(Γ,σ′) M ′.

44 / 100



The rules

Γ ` s : σ Γ ` σ = τ

Γ ` s : τ

Γ ` s = t : σ Γ ` σ = τ

Γ ` s = t : τ

are immediately justified.
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Substitution into terms

For M ∈ E (Γ, σ) and f : B // Γ, define M{f } : B // B.σ{f } as
the unique morphism (see diagram below) with
p(σ{f })) ◦M{f } = 1B and q(f , σ) ◦M{f } = M ◦ f . Thus
M{f } ∈ E (B, σ{f }).

B Γ
f //

B.σ{f }

B

p(σ{f })

��

B.σ{f } Γ.σ
q(f ,σ)

// Γ.σ

Γ

p(σ)

��

B

Γ.σ

M◦f

((RR
RRR

RRR
RRR

RRR
RRR

RRR
RRR

RRB

B.σ{f }

M{f }

��

B

B

1

��,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,,
,
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Stability under substitution

Thus if
Γ ` (M, σ) : σ′

and f : B // Γ, we have M{f } ∈ E (B, σ{f }) and
σ{f } =T (B) σ

′{f }, so

B ` (M{f }, σ{f }) : σ′{f }

Thus the rule

Γ ` s : σ′ f : B // Γ

B ` s{f } : σ′{f }

is justified.
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Moreover, if
Γ ` (M, σ) = (M ′, σ′) : σ′′

we have ∆Γ(r) ◦M =E(Γ,σ′) M ′ for some proof r of σ =T (Γ) σ
′.

Then
∆Γ(r) ◦M ◦ f = M ′ ◦ f

and hence
∆Γ(r) ◦ q(f , σ) ◦M{f } = M ′ ◦ f .

So by remark above there is a proof s of T (f )(σ) = T (f )(σ′) such
that ∆Γ(r) ◦ q(f , σ) = q(f , σ′) ◦∆B(s) and hence

q(f , σ′) ◦∆B(s) ◦M{f } = M ′ ◦ f .

It follows by uniqueness that ∆B(s) ◦M{f } = M ′{f }, so indeed

B ` (M{f }, σ{f }) = (M ′{f }, σ′{f }) : σ′′{f }.
This justifies also the rule:

Γ ` s = t : σ′′ f : B // Γ

B ` s{f } = t{f } : σ′′{f }
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From (Hofmann 1994) we take the following definition, but adapt it
in the obvious way to cwas.

A cwa supports Π-types if

for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is a
type

Π(σ, τ) ∈ T (Γ),

and moreover for every P ∈ E (Γ.σ, τ) there is an element

λσ,τ (P) ∈ E (Γ,Π(σ, τ)),

and furthermore for any M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ)
there is an element

Appσ,τ (M,N) ∈ E (Γ, τ{N}),

such that the following equations hold for any subst. f : B // Γ:
I (β-red) Appσ,τ (λσ,τ (P),N) = P{N} ,
I (Π-subst) Π(σ, τ){f } = Π(σ{f }, τ{q(f , σ)}),
I (λ-subst) λσ,τ (P){f } = λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),
I (App-subst)

Appσ,τ (M,N){f } = Appσ{f },τ{q(f ,σ)}(M{f },N{f }).
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Adapting this to ecwas ... the first part is similar

An ecwa supports Π-types if for σ ∈ T (Γ) and τ ∈ T (Γ.σ) there is
a type Π(σ, τ) ∈ T (Γ), and moreover for every P ∈ E (Γ.σ, τ) there
is an element λσ,τ (P) ∈ E (Γ,Π(σ, τ)), and furthermore for any
M ∈ E (Γ,Π(σ, τ)) and any N ∈ E (Γ, σ) there is an element
Appσ,τ (M,N) ∈ E (Γ, τ{N}), such that the following equations
hold for any f : B // Γ:

I (β-red) Appσ,τ (λσ,τ (P),N) =E(Γ,τ{N}) P{N}, [as before]
I (Π-subst) Π(σ, τ){f } =T (B) Π(σ{f }, τ{q(f , σ)}), [as before]
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This part of the definition has type adjustments:

I (λ-subst)

λσ,τ (P){f } =E(B,Π(σ,τ){f }) ∆B(t)◦λσ{f },τ{q(f ,σ)}(P{q(f , σ)}),

for any proof t of Π(σ{f }, τ{q(f , σ)}) =T (B) Π(σ, τ){f },

I (App-subst)

Appσ,τ (M,N){f } =E(··· ) ∆B(s)◦Appσ{f },τ{q(f ,σ)}(∆B(t)◦M{f },N{f })

for any proof s of τ{q(f , σ)}{N{f }} =T (B) τ{N}{f } and

any proof t of Π(σ, τ){f } =T (B) Π(σ{f }, τ{q(f , σ)}).
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any proof t of Π(σ, τ){f } =T (B) Π(σ{f }, τ{q(f , σ)}).
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Furthermore there are the following extensionality conditions on Π,
λ and App:

I (Π-cong) if s is a proof of σ =T (Γ) σ
′ and for τ ∈ T (Γ.σ),

τ ′ ∈ T (Γ.σ′) with τ =T (Γ.σ) τ
′{∆(s)}, then

Π(σ, τ) =T (Γ) Π(σ′, τ ′).

I (λ-cong) if P =E(Γ.σ,τ) P ′, then

λσ,τ (P) =E(Γ,Π(σ,τ)) λσ,τ (P ′)

I (App-cong) if M =E(Γ,Π(σ,τ)) M ′ and N =E(Γ,σ) N ′ then

∆Γ(s) ◦ Appσ,τ (M,N) =E(Γ,τ{N′}) Appσ,τ (M ′,N ′),

where s is any proof of τ{N} =T (Γ) τ{N ′}.
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IV. First-order logic with dependent types

A dependently typed (or sorted) system of first-order logic, FOLDS,
was introduced and studied by Makkai (1995, 1998, 2013).

The purpose of FOLDS is to provide a natural logical system for
formalizing (higher) category theory.

FOLDS can be considered as a so-called logic enriched type theory
(Maietti-Sambin 2005, Gambino-Aczel 2006) where the underlying
type theory is very rudimentary.

We present a system like FOLDS which is essentially due to Belo
(2008) and based on Cartmell’s (1986) generalized algebraic
theories but without equality of types. Unlike Makkai we allow
function symbols.
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Single-sorted vs multi-sorted first-order logic

The standard classical (or intutionistic) first-order logic assumes
one non-empty (inhabited) domain of quantification. The latter
restriction is due to the formulation of the existence introduction
rule

` >[t/x ]

` ∃x .> (∃I )
(5)

(we may let t = x)
In many-sorted logics, especially those used in the categorical logic,
one specifies the possible free variables of involved formulas

x1 : A1, . . . , xn : An; ∆ ` ψ[t/x ]

x1 : A1, . . . , xn : An; ∆ ` (∃x : A)ψ
(∃I )

if FV (t) ⊆ {x1, . . . , xn} and t has sort A. The derivation (5) is not
possible for n = 0.
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Many-sorted logic can be formulated (sequent-style) using
judgements of the form

Γ; ∆ ` φ

where
Γ = x1 : A1, . . . , xn : An

is a sequence of variables xi with associated sort Ai , and where

∆ = φ1, . . . , φm

is a sequence of formulas assumed to be true, and with their free
variables listed in Γ, the formula proved true φ has also its free
variables in Γ.
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In standard many-sorted logic the sorts Ai belong to a given set of
sorts and the order of the variables xi does not matter

x1 : A1, . . . , xn : An; ∆ ` φ

We may generalize this situation by letting the sort or types be
given by a type theory. This is the idea of logic enriched type
theory (Gambino and Aczel 2006).

We introduce three new judgement forms

A type — A is a type

a : A — a is an element (term) of type A

φ formula
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... and their hypothetical versions

x1 : A1, . . . , xn : An =⇒ A type

x1 : A1, . . . , xn : An =⇒ a : A

x1 : A1, . . . , xn : An =⇒ φ formula
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We will consider a type theory in which it is possible to introduce a
finite number of dependent types and dependent function.

A representative example is the language of a category (cf. Cartmell
1986, Makkai 1995).

1. 〈〉 =⇒ Ob type
2. x : Ob, y : Ob =⇒ Hom(x , y) type
3. x : Ob =⇒ 1x : Hom(x , x)

4. x : Ob, y : Ob, z : Ob, g : Hom(y , z), f : Hom(x , y) =⇒
g ◦x ,y ,z f : Hom(x , z)

This is will be considered as a dependent signature declaring the
constants Ob, Hom, 1 and ◦.
A complication is that we have to know that constants are declared
in legal contexts, e.g. in (4) above we have to know its context is
legal relative to (1) – (3).
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Example 1: E-category
Signature as above but add an equality predicate only on
Hom-types

x , y : Ob, f , g : Hom(x , y) =⇒ f =x ,y g formula.

Axioms in DTFOL/type theory

x , y : Ob, f : Hom(x , y);` f =x ,y f .
x , y : Ob, f , g : Hom(x , y); f =x ,y g ` g =x ,y .
x , y , z : Ob, f , g , h : Hom(x , y); f =x ,y g , g =x ,y h ` f =x ,y h.
x , y , z : Ob, f , h : Hom(x , y), g , k : Hom(y , z);

f =x ,y h, g =y ,z k ` g ◦x ,y ,z f =x ,z k ◦x ,y ,z h

x , y : Ob, f : Hom(x , y);` 1y ◦x ,y ,y f =x ,y f .
x , y : Ob, f : Hom(x , y);` f ◦x ,x ,y 1x =x ,y f .
x , y , z ,w : Ob, f : Hom(x , y), g : Hom(y , z), h : Hom(z ,w);

` h ◦x ,z,w (g ◦x ,y ,z f ) =x ,w (h ◦y ,z,w g) ◦x ,y ,w f .
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Example 2: E-bicategory
Signature for a bicategory (objects, arrows, transformations):
1. 〈〉 =⇒ O type
2. x , y : O =⇒ A(x , y) type
3. x : O =⇒ 1x : A(x , x)
4. x , y , z : O, g : A(y , z), f : A(x , y) =⇒ g ◦x ,y ,z f : A(x , z).
5. x , y : O, f , g : A(x , y) =⇒ T(x , y , f , g) type
6. x , y : O, f : A(x , y) =⇒ if : T(x , y , f , f ) type
7. x , y : O, f , g , h : A(x , y), β : T(x , y , g , h), α : T(x , y , f , g) =⇒
β ·x ,y ,f ,g ,h α : T(x , y , f , h)

8. x , y , z : O, f , h : A(x , y), g , k : A(y , z), β : T(g , k), α :
T(f , h) =⇒ β ∗x ,y ,z,f ,h,g ,k α : T(x , z , g ◦x ,y ,z f , k ◦x ,y ,z h)

9. x , y , z ,w : O, f : A(x , y), g : A(y , z), h : A(z ,w) =⇒
ax ,y ,z,w ,f ,g ,h : T(x ,w , (h ◦y ,z,w g) ◦x ,y ,w f , h ◦x ,z,w (g ◦x ,y ,z f ))

10. x , y : O, f : A(x , y) =⇒ lf : T(x , y , 1y ◦x ,y ,y f , f )
11. x , y : O, f : A(x , y) =⇒ rf : T(x , y , f ◦x ,x ,y 1x , f )

Further we add only congruence relations on the transformations:

x , y : O, f , g : A(x , y), α, β : T(x , y , f , g) =⇒ α =x ,y ,f ,g β formula.
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Depently typed first-order logic: Pre-syntax

We assume that F and T are two disjoint sets of symbols equipped
with arities 0, 1, 2, . . ..
Pre-terms: formed using F as function symbols and variables in the
usual way
Pre-types: S(t1, . . . , tn) where S ∈ T is a type symbol, and
t1, . . . , tn are pre-terms, n = ar(S)
Pre-contexts: 〈x1 : A1, . . . , xn : An〉, where x1, . . . , xn are distinct
variables, A1, . . . ,An are pre-types and FV (Ai ) ⊆ {x1, . . . , xi−1}.

61 / 100



Pre-syntax (cont.)

Pre-declarations: Either
of types:

x1 : A1, . . . , xn : An =⇒ S(x1, . . . , xn) type

encoded as a pair (Γ, S) where Γ = x1 : A1, . . . , xn : An pre-context,
S ∈ T and ar(S) = |Γ|,
or of functions:

x1 : A1, . . . , xn : An =⇒ f (x1, . . . , xn) : U

endcoded as a triple (Γ, f ,U) where Γ = x1 : A1, . . . , xn : An
pre-context, U pre-type, FV (U) ⊆ FV (Γ), ar(f ) = |Γ|.

Pre-signature: a finite sequence [D1, . . . ,Dn] of pre-declarations.
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Legal syntax — syntactic judgements

Contexts, types, elements and signatures are generated by
simultaneous induction given by rules (R1) – (R9)

Σ signature
〈〉 context [Σ]

(R1)

Γ context [Σ] Γ =⇒ A type [Σ]

Γ, x : A context [Σ]
(R2), x ∈ Var \Var(Γ)

x1 : A1 . . . , xn : An cont. [Σ]

x1 : A1 . . . , xn : An =⇒ xi : Ai [Σ]
(R4)
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To formulate the next two rules we introduce the notion of context
map. Let ∆ and Γ = x1 : A1, . . . , xn : An be two contexts relative
to Σ. A sequence (a1, . . . , an) of preterms is called a context map
∆ // Γ if

∆ context
Γ context
∆ =⇒ a1 : A1 [Σ]
∆ =⇒ a2 : A2[a1/x1] [Σ]
...

∆ =⇒ an : An[a1 . . . , an−1/x1, . . . , xn−1] [Σ]

We write (a1, . . . , an) : ∆ // Γ [Σ] for the conjunction of these
judgements.
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The sequence (a1, . . . , an) can be plugged into correct function and
type declarations according to the next rules.

(a1, . . . , an) : ∆ // 〈x1 : A1, . . . , xn : An〉 [Σ]
(〈x1 : A1 . . . , xn : An〉, S) decl. in Σ

∆ =⇒ S(a1, . . . , an) type [Σ]
(R5)

(a1, . . . , an) : ∆ // 〈x1 : A1, . . . , xn : An〉 [Σ]
(〈x1 : A1 . . . , xn : An〉, f ,U) decl. in Σ
∆ =⇒ U[a1, . . . , an/x1, . . . , xn] type [Σ]

∆ =⇒ f (a1, . . . , an) : U[a1, . . . , an/x1, . . . , xn] [Σ]
(R6)
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The final three rules are concerned with the formation of correct
signatures, i.e. sequences of function and type declarations.

[] signature
(R7)

Σ sig. Γ con. [Σ] S ∈ T S not decl. in Σ |Γ| = ar(S)

[Σ, (Γ, S)] sig.
(R8)

Σ sig. Γ con. [Σ] Γ =⇒ U type [Σ] f ∈ F not decl. in Σ |Γ| = ar(f )

[Σ, (Γ, f ,U)] sig.
(R9)
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The necessary substitution and weakening lemmas can be proved by
induction on the derivations:

Substitution lemma Let (s1, . . . , sn) : Θ // Γ be a context map,
where Γ = x1 : A1, . . . , xn : An.

(a) If Γ =⇒ B type, then Θ =⇒ B[s1, . . . , sn/x1, . . . , xn] type.
(b) If Γ =⇒ b : B , then

Θ =⇒ b[s1, . . . , sn/x1, . . . , xn] : B[s1, . . . , sn/x1, . . . , xn] type

Weakening lemma Suppose that Γ =⇒ B type. Let y be a
variable not in FV(Γ,Θ).
(a) If Γ,Θ context, then Γ, y : B,Θ context
(b) If Γ,Θ =⇒ A type, then Γ, y : B,Θ =⇒ A type
(c) If Γ,Θ =⇒ a : A, then Γ, y : B,Θ =⇒ a : A
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First-order formulas with dependent sorts

Similar to ordinary many-sorted first-order logic.

Predicate symbols are given by a set P of symbols with an arity.

Given a term signature Σ, we may to any

x1 : A1, . . . , xn : An context [Σ]

assign a new n-ary predicate symbol R ∈ P . This gives a predicate
declaration

(〈x1 : A1, . . . , xn : An〉,R).

Thus a signature for first-order logic with dependent sorts consists
of a term signature Σ and a sequence of predicate declarations Π =
[E1, . . . ,Em], where all predicates declared are distinct. Given this
we can form the set of formulas in each variable context Γ over
[Σ; Π]:
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I For each predicate declaration (∆,R) in Π, we assume the rule

Γ context [Σ] (a1, . . . , an) : Γ //∆

Γ⇒ R(a1, . . . , an) formula [Σ; Π]

I
Γ context [Σ]

Γ⇒ ⊥ formula [Σ; Π]

Γ context [Σ]

Γ⇒ > formula [Σ; Π]

I
Γ⇒ φ formula Γ⇒ ψ formula [Σ; Π]

Γ⇒ (φ ∧ ψ) formula [Σ; Π]

Γ⇒ φ formula Γ⇒ ψ formula [Σ; Π]

Γ⇒ (φ ∨ ψ) formula [Σ; Π]

Γ⇒ φ formula Γ⇒ ψ formula [Σ; Π]

Γ⇒ (φ→ ψ) formula [Σ; Π]

I

Γ, x : A⇒ φ formula [Σ; Π]

Γ⇒ (∀x : A)φ formula [Σ; Π]

Γ, x : A⇒ φ formula [Σ; Π]

Γ⇒ (∃x : A)φ formula [Σ; Π]
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Logic

Assumption rule:

Γ⇒ φ1, . . . , φn formulas
Γ;φ1, . . . , φm ` φi

Propositional rules:

Γ⇒ φ formula Γ; ∆ ` ⊥
Γ; ∆ ` φ (⊥E ) Γ⇒ ∆ formulas

Γ; ∆ ` > (>I )

Γ; ∆ ` φ Γ; ∆ ` ψ
Γ; ∆ ` φ ∧ ψ (∧I )

Γ; ∆ ` φ ∧ ψ
Γ; ∆ ` φ (∧E1)

Γ; ∆ ` φ ∧ ψ
Γ; ∆ ` ψ (∧E2)

Γ; ∆, φ ` ψ
Γ; ∆ ` φ→ ψ

(→ I )
Γ; ∆ ` φ→ ψ Γ; ∆ ` φ

Γ; ∆ ` ψ (→E )
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Γ; ∆,` φ Γ =⇒ ψ formula
Γ; ∆ ` φ ∨ ψ (∨I1)

Γ; ∆,` ψ Γ =⇒ φ formula
Γ; ∆ ` φ ∨ ψ (∨I2)

Γ; ∆ ` φ ∨ ψ Γ; ∆, φ ` θ Γ; ∆, ψ ` θ
Γ; ∆ ` θ (∨E )
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Quantifier rules: (usual variable conditions in blue)

Γ, x : A; ∆ ` ψ Γ⇒ ∆ formulas
Γ; ∆ ` (∀x : A)ψ

(∀I )

Γ; ∆ ` (∀x : A)ψ Γ⇒ t : A
Γ; ∆ ` ψ[t/x ]

(∀E )

Γ⇒ t : A Γ, x : A⇒ ψ formula Γ; ∆ ` ψ[t/x ]

Γ; ∆ ` (∃x : A)ψ
(∃I )

Γ; ∆ ` (∃x : A)ψ Γ, x : A; ∆, ψ ` φ Γ⇒ ∆, φ formulas
Γ; ∆ ` φ (∃E )

We assume capture free substitution and α-equivalence, so that
substitutions into quantified formulas are always possible.
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Partial functions - in classical logic

In classical (non-dependent, many-sorted,) logic a functional
relation, can be extended to a function.
Suppose

x =A u, y =B z , φ(x , y) ` φ(u, z)

and
φ(x , y), φ(x , z) ` y =B z

Suppose ∗ is some constant in B . We can introduce a total
function symbol f : A→ B with defining axiom

f (x) =B y ↔ φ(x , y) ∨ y =B ∗ ∧ ¬(∃y : B)φ(x , y).

In intuitionistic logic this is not possible, unless the domain of
definition of the relation φ is decidable.
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Partial functions - in dependently typed FOL
Suppose again

x =A u, y =B z , φ(x , y) ` φ(u, z)

and
φ(x , y), φ(x , z) ` y =B z

Introduce a type D for the domain of definition of φ

x : A⇒ D(x) type

and an axiom

x : A, y : B;φ(x , y) ` (∃p : D(x))>

and a dependent function symbol f

x : A, p : D(x)⇒ f (x , p) : B

with axiom
x : A, p : D(x);` φ(x , f (x , p))

This works out as it should ...
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Local propositions-as-types

Consider a fixed signature. Suppose Γ = x1 : A1, . . . , xn : An is a
context and that φ is a formula in that context.

Add a new dependent type to the signature

Γ =⇒ F (x1, . . . , xn) type

Then add two axioms over the extended signature

Γ, p : F (x1, . . . , xn);` φ

Γ;φ ` (∃p : F (x1, . . . , xn))>

Truth of φ(= φ(x1, . . . , xn)) has thus been encoded as
inhabitedness of F (x1, . . . , xn).
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Standard semantics in Martin-Löf type theory

A signature Σ,Π is interpreted by a sequence of constant
declarations. These will be postulates of type theory.
The standard semantics of a judgement in dependently typed
first-order logic

x1 : A1, . . . , xn : An;φ1, . . . , φm ` ψ

will be the type-theoretic judgement

x1 : A1, . . . , xn : An, φ1 true, . . . , φm true =⇒ ψ true

which can be paraphrased as the existence of a term q such that

x1 : A1, . . . , xn : An, p1 : φ1, . . . , pm : φm =⇒ q : ψ.

This is interpretation is straightforward in Coq and Agda and
should be easily supported by these proof assistants.
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As we consider the standard semantics to be M-L type theory
(MLTT) the notion of function will be the (intensional) functions or
operations of that theory. The axiom of choice is valid in MLTT
with this notion of function, since it does not require the functions
to respect prescribed equivalence relations. In E-categories we may
for example have functions that chose pullbacks and projections
from the arrow data.

Y Zg
//

P(X ,Y ,Z , f , g)

Y

p2(x ,y ,z,f ,g)

��

P(X ,Y ,Z , f , g) X
p1(x ,y ,z,f ,g) // X

Z

f

��

But it is not necessary that these functions respect equalities.
Functions that respect equalities will be called extensional functions.
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CETCS - constructive version of Lawvere’s ETCS

The Elementary Theory of the Category of Sets (ETCS) is a
classical first-order axiomatization of the category of sets and
function (Lawvere 1963). The set-theoretic constructions possible
are basically those of Zermelo’s set theory Z. In modern categorical
terms ETCS is a well-pointed boolean topos with the axiom of
choice. S. MacLane has argued (not quite successfully) such
theories are enough for mathematical practice.

Unlike set theory its theorems are invariant under set-isomorphism

φ(A) and A ∼= B implies φ(B) (A,B are sets)

CETCS is a constructive version of ETCS suitable for formalizing
elementary parts of Bishop’s constructive mathematics (P. 2012).
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CETCS

Signature: to ΣCat we add declarations for terminal object and
pullbacks
1. 〈〉 =⇒ 1 : Ob
2. x , y , z : Ob, f : Hom(x , z), g : Hom(y , z) =⇒ P(x , y , z , f , g) :

Ob
3. −”− =⇒ p1(x , y , z , f , g) : Hom(P(x , y , z , f , g), x)

4. −”− =⇒ p2(x , y , z , f , g) : Hom(P(x , y , z , f , g), y)

and similarly for initial object and pushouts. Further we can add
the Π-construction
5. x , y , z : Ob, f : Hom(x , y), g : Hom(z , x) =⇒ Π(x , y , z , f , g) :

Ob
6. −”− =⇒ π(x , y , z , f , g) : Hom(Π(x , y , z , f , g), y)

7. −”− =⇒ ev(x , y , z , f , g) :
Hom(P(x ,Π(x , y , z , f , g), y , f , π(x , y , z , f , g)), z)
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That the object 1 is terminal is formalized as

X : Ob, f , g : Hom(X , 1);` f =X ,1 g
X : Ob;` (∃f : Hom(X , 1))> (6)

That pullbacks exists are given by (dropping some subscripts and
derivable arguments)

X ,Y ,Z : Ob, f : Hom(X ,Z ), g : Hom(Y ,Z );`
f ◦ p1(f , g) = g ◦ p2(f , g)

X ,Y ,Z ,W : Ob, f : Hom(X ,Z ), g : Hom(Y ,Z ), h : Hom(W ,X ), k : Hom(W ,Y );
f ◦ h = g ◦ k `
(∃t : Hom(W ,P(f , g)))

p1(f , g) ◦ t =w ,x h ∧ p2(f , g) ◦ t = k .
X ,Y ,Z ,W : Ob, f : Hom(X ,Z ), g : Hom(Y ,Z ), t, s : Hom(w ,P(f , g)));

p1(f , g) ◦ t = p1(f , g) ◦ s,
p2(f , g) ◦ t = p2(f , g) ◦ s ` t = s

(7)
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A morphism x : 1 // X is called an element of X . We write this as
x ∈ X . For x , x ′ ∈ X we write x =1,X x ′ as x =X x ′. A morphism
f : X // Y is called surjective if for every y ∈ Y , there is x ∈ X
such that f ◦ x =Y y . The following axiom states that 1 is a strong
generator of the category:

(G) Every surjective mono X // Y is an isomorphism.

We consider as in (P. 2012) a sequence of maps
α1 : P // X1, . . . , α1 : P // Xn that are jointly monic as a relation
between X1, . . . ,Xn and for elements x1 ∈ X1, . . . , xn ∈ Xn we write

(x1, . . . , xn) ε (α1, . . . , αn)

if there is p ∈ P with α1 ◦ p =X1 x1, . . . , αn ◦ p =Xn xn. A relation
α1 : P // X1, α2 : P // X2 is called a partial function from X1 to
X2 if α is mono.
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Existence of dependent products Π is formulated as follows

For any mappings Y
g // X f // I we have a commutative diagram

Y oo
ev(f ,g)

Y

g

��?
??

??
??

??
??

??
??

??
??

?

X I
f

//

P(f , π(f , g))

X

p2

��

P(f , π(f , g)) Π(f , g)
p1 // Π(f , g)

I

π(f ,g)

��

(8)

where for any for any element i ∈ I and any partial function
ψ =def (ξ : R // X , υ : R // Y ) satisfying (a) and (b):
(a) for all x ∈ X , y ∈ Y , (x , y) ε ψ implies gy =X x and fx =I i ,
(b) if fx =I i , then there is y ∈ Y with (x , y) ε ψ

there is a unique s ∈ Π(f , g) s.t. π(f , g) ◦ s =I i and for all x ∈ X ,
y ∈ Y ,

(s, x , y) ε α⇐⇒ (x , y) ε ψ. (9)

Here α =def (p1, p2, ev(f , g)).
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Further axioms include: Natural numbers object (for recursion and
induction), non-triviality of binary sums.
and optionally a presentation axiom with new constants
8. x : Ob =⇒ Pre(x) : Ob
9. x : Ob =⇒ prex : Hom(Pre(x), x)

(PA) For every object x , Pre(x) is projective and prex : Pre(x) // x
is surjective.

This says that every object is a quotient of an object on which the
axiom of choice is valid.
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Axiomatizing the category of small categories

An early proposal:

F.W. Lawvere: The category of categories as a foundation for
mathematics, In: La Jolla conference on categorical algebra,
Springer-Verlag, 1966, pp. 1-20.

Is there a constructive version of this theory ?

A start:

O.Wilander: An E-bicategory of E-categories exemplifying a
type-theoretic approach to bicategories. In: O.Wilander, On
constructive sets and partial structures. PhD Thesis, Uppsala
University 2011.

Project: carry out such a axiomatization using dependently typed
FOL, with E-categories in type theory rather than categories in sets
as intended model.
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General semantics of dependently typed FOL

The type system we introduced may be interpreted by a cwa. This
is a category E (contexts and context maps) with a contravariant
functor Ty : Eop // Set (the possible types in a context and the
action on them by substitution). There is moreover an operation .
that extends contexts Γ ∈ Ob(E) by a type B ∈ Ty(Γ):
Γ.B ∈ Ob(E). The extended context has a projection down to the
orginal context

pΓ,B : Γ.B // Γ.

The logic is then interpreted using another contravariant functor
Eop //Heyting similarly to a hyper doctrine or tripos.
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The logical part :
I A functor P : Eop //Heyting into the category of

Heyting-algebras with maps preserving all propositional logic
operations (∧, ∨, →,>,⊥)

I For any Γ ∈ Ob(E) and S ∈ Ty(Γ) monotone operations

∀Γ,S , ∃Γ,S : P(Γ.S) // P(Γ)

such that for Q ∈ P(Γ), R ∈ P(Γ.S),

I Q ≤ ∀Γ,S(R)⇐⇒ P(pΓ,S)(Q) ≤ R

I ∃Γ,S(R) ≤ Q ⇐⇒ R ≤ P(pΓ,S)(Q).
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I (Beck-Chevalley) For the pullback square

∆ Γσ
//

∆.S{σ}

∆

p∆,S{σ}

��

∆.S{σ} Γ.S
q∆,Γ,S (σ)

// Γ.S

Γ

pΓ,S

��

(10)

we have for R ∈ P(Γ.S),

I P(σ)(∀Γ,S(R)) = ∀∆,S{σ}(P(q∆,Γ,S)(σ)(R)),

I P(σ)(∃Γ,S(R)) = ∃∆,S{σ}(P(q∆,Γ,S)(σ)(R)).
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The Lindenbaum-Tarski model
We indicate how to construct a universal Heyting-algebra model.

Theorem. The contexts and context maps for a fixed signature
form a category with attributes.

Proof. Let Σ be a fixed signature. Let Γ = x1 : A1, . . . , xn : An be
a context with respect to the signature. By rules (R3) and (R3) we
have for all i = 1, . . . , n

Γ =⇒ Ai type

and
Γ =⇒ xi : Ai

Now trivially, Ai = Ai [x1, . . . , xi−1/x1, . . . , xi−1] so

1Γ =def (x1, . . . , xn) : Γ // Γ

is a context map. This will be the identity.
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Suppose that ∆ = y1 : B1, . . . , ym : Bm and
Θ = z1 : C1, . . . , zk : Ck are contexts and that

σ = (s1, . . . , sm) : Γ //∆ and τ = (t1, . . . , tk) : ∆ //Θ

are context maps. The vector of terms

τ ◦ σ =def
(
t1[s1, . . . , sm/y1, . . . , ym], . . . , tk [s1, . . . , sm/y1, . . . , ym]

)
is a context map Γ //Θ, the composition of τ and σ.

It is straightforward to show that this gives a category where the
empty context 〈〉 is terminal.
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The following square is a pullback diagram for any variable
v /∈ FV (∆), and u /∈ FV (Γ):

∆ Γ
(s1,...,sn)

//

∆, v : S [s1, . . . , sn/x1, . . . , xn]

∆

(y1,...,ym)

��

∆, v : S [s1, . . . , sn/x1, . . . , xn] Γ, u : S
(s1,...,sn,v) // Γ, u : S

Γ

(x1,...,xn)

��
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Assume that the variables form a set V with decidable equality, and
that there is a function fresh such that for any list of variables
x1, . . . , xn,

fresh(x1, . . . , xn) ∈ V \ {x1, . . . , xn}.

For a context Γ = x1 : A1, . . . , xn : An write

fresh(Γ) = fresh(x1, . . . , xn).

Then this becomes the required pullback diagram of the CwA:

∆ Γ
(s1,...,sn)

//

∆, fresh(∆) : S [s1, . . . , sn/x1, . . . , xn]

∆

(y1,...,ym)

��

∆, fresh(∆) : S [s1, . . . , sn/x1, . . . , xn] Γ, fresh(∆) : S
(s1,...,sn,fresh(Γ)) // Γ, fresh(∆) : S

Γ

(x1,...,xn)

��
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Let CΣ be the category of contexts and context maps relative to a
signature Σ. We define a functor Ty : Cop

Σ
// Set which assigns

types to contexts

Ty(Γ) = {S ∈ pretype : Γ =⇒ S type}

and for a context map σ : ∆ // Γ, let

Ty(σ)(S) = S [σ/Γ].

Here
S [σ/Γ] = S [s1, . . . , sn/x1, . . . , xn]
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Let S = [Σ,Π] be a fixed signature.

Theorem. Let Γ be a context in the signature. Then the set of
formulas in the context

P(Γ) = {φ : Γ =⇒ φ}

is a Heyting pre-algebra ordered (≤) by derivability

φ ≤ ψ ⇐⇒def Γ;φ ` ψ.
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Substitution is an operation that preserves order and the
propositional connectives.
For a context map f : ∆ // Γ define P(f ) : P(Γ) // P(∆) by

P(f )(φ) = φ[f /Γ]

Theorem. For a context map σ : ∆ // Γ, P(σ) is a morphism of
pre-Heyting algebras, i.e. it preserves the order and the operations
∧, ∨, →, > and ⊥. Moreover this assignment is pseudo-functorial
in the sense that for another context map τ : Θ //∆

P(τ ◦ σ)(φ) ≡ P(τ)(P(σ)(φ))

and
P(1Γ)(φ) ≡ φ.

Here φ ≡ ψ means φ ≤ ψ and ψ ≤ φ.
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Suppose Γ context and Γ⇒ S : type. We have the projection
context map pΓ,S ; Γ.S // Γ. Define ∀Γ,S ,∃Γ,S : P(Γ.A) // P(Γ) by

∀Γ,S(φ) = (∀ fr(Γ) : S)(φ)

and
∃Γ,S(φ) = (∃ fr(Γ) : S)(φ).

Theorem. Suppose Γ context and Γ⇒ S : type. Then
(a) ∀Γ,S and ∃Γ,S are monotone
(b) For Q ∈ P(Γ), R ∈ P(Γ.S),

Q ≤ ∀Γ,S(R)⇐⇒ P(pΓ,S)(Q) ≤ R

(c) For Q ∈ P(Γ), R ∈ P(Γ.S),

∃Γ,S(R) ≤ Q ⇐⇒ R ≤ P(pΓ,S)(Q).

95 / 100



Theorem. (Beck-Chevalley condition) Suppose that Γ is a context
and S is a type in context Γ. Let σ : ∆ // Γ be a context map.
Then for φ ∈ P(Γ.S)

(a) P(σ)(∀Γ,S(φ)) ≡ ∀∆,Ty(σ)(S)(P(q∆,Γ,S(σ)(φ)))

(b) P(σ)(∃Γ,S(φ)) ≡ ∃∆,Ty(σ)(S)(P(q∆,Γ,S(σ)(φ)))
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